Comparative Study of Reinforcement Learning using
Pacman Game

Santhiya Theanraj

Department of Computer and Information Science, Temple University

Abstract

This project investigates various Q-learning based reinforcement learning algorithms
applied to the classic Pac-Man game environment. The primary objective is to train an
intelligent Pac-Man agent capable of maximizing rewards by consuming food pellets while
strategically avoiding ghosts. Three reinforcement learning approaches are implemented
and evaluated: Q-Learning, Approximate Q-Learning with hand-crafted features, and
Deep Q-Learning (DQN) with convolutional neural networks. The performance of these
algorithms is analyzed across four different grid layouts of varying complexity: tinyMaze,
smallClassic, mediumGrid, and mediumClassic. Results demonstrate that while basic
Q-Learning performs adequately on small grids, it becomes computationally inefficient
as state space complexity increases. Approximate Q-Learning shows significant improve-
ments through intelligent feature engineering, achieving high win rates on medium-sized
grids. Deep Q-Learning exhibits the most promising results on complex environments
by automatically learning feature representations, though requiring substantial compu-
tational resources. With sufficient training iterations, the trained agents demonstrate
gameplay skills that can surpass human performance on standardized grid layouts.

1 Introduction

Reinforcement learning (RL) has emerged as a powerful paradigm for training autonomous
agents to make sequential decisions in complex environments. This project applies reinforce-
ment learning techniques to the classical Pac-Man game, providing a challenging testbed for
evaluating different algorithmic approaches.

The Pac-Man environment presents several key challenges characteristic of real-world RL
problems: large state spaces, delayed rewards, partial observability (ghost behavior), and the
need for both short-term tactical decisions and long-term strategic planning. The agent must
learn to navigate mazes efficiently, collect food pellets, utilize power pellets strategically to
consume frightened ghosts, and avoid capture by enemy ghosts.

This project implements and compares three fundamental reinforcement learning approaches
across multiple grid layouts:

e Q-Learning: A tabular method storing Q-values for state-action pairs
o Approximate Q-Learning: Function approximation using hand-crafted features

o Deep Q-Learning (DQN): Neural network-based approach with automatic feature
learning

The game environment is built upon the Berkeley Al Pac-Man framework, providing stan-
dardized grid layouts for consistent performance evaluation. Four different grid configurations
are utilized, ranging from simple 6 x 6 grids (tinyMaze) to complex 16 x 20 layouts (mediumClas-
sic), allowing for systematic analysis of algorithm scalability and generalization capabilities.

Layout Dimensions Ghosts State Space

tinyMaze 6 X6 1 Small
smallClassic 16 x 6 1 Medium
mediumGrid 10 x 10 1 Large
mediumClassic 16 x 20 2 Very Large

Table 1: Grid layout configurations and complexity

2 Related Work

The application of deep learning to reinforcement learning has seen significant advancement in
recent years, particularly through the development of Deep Q-Networks (DQN). Mnih et al. [2]
introduced the first deep learning model capable of learning control policies directly from high-
dimensional sensory input using reinforcement learning. Their approach successfully addressed
several key challenges that had previously hindered the combination of deep neural networks
with RL.

The DQN architecture employs a convolutional neural network trained with a variant of
Q-learning, where the input consists of raw pixel data and the output is a value function esti-
mating future rewards. Two critical innovations enabled stable training: experience replay,
which stores agent experiences in a replay buffer and randomly samples transitions to break
correlations in the training data, and a target network, which is updated periodically to
provide stable Q-value targets during training [2].

When applied to Atari 2600 games, DQN demonstrated remarkable performance, outper-
forming previous approaches on six out of seven games tested and surpassing human expert
performance on three games, all without any game-specific architectural modifications or hand-
crafted features [2]. This work established that deep reinforcement learning could successfully
scale to complex, high-dimensional state spaces.

Building upon this foundation, our implementation adapts the DQN approach to the Pac-
Man domain, using a similar convolutional architecture but with modifications suited to the
grid-based nature of the game environment.

3 Environment Design

The Pac-Man environment consists of a grid-based maze where the agent (Pac-Man) must
collect food pellets while avoiding ghosts. A key challenge in creating an effective learning en-
vironment is balancing difficulty: ghosts that are too predictable provide insufficient challenge,
while perfectly optimal ghosts make learning impossible.

3.1 Ghost Movement Algorithm

We implemented a weighted probabilistic chase algorithm that creates intelligent yet beatable
ghost behavior.This approach ensures ghosts actively chase Pac-Man but occasionally make
suboptimal moves, creating a balanced learning environment where the agent can develop both
offensive (food collection) and defensive (ghost avoidance) strategies.

Algorithm 1 Action Execution and State Transition

1: function EXECUTEACTION(state, action)
2 target < ApplyAction(state.pacman, action)
3 if target is wall then
4: new__pacman < state.pacman
5: else
6 new__pacman <— target
7 end if
8 new_dots < state.dots
9 if new pacman € state.dots then
10: new__dots « state.dots \ {new_pacman}
11: end if
12: ghost_moves < GetLegalMoves(state.ghost)
13: ghost_moves < ghost_moves \ {Opposite Dir(state.ghost__dir)}
14: sorted_moves < SortByDistance(ghost__moves, new__pacman)
15: weights < [n,n —1,..., 1] where n = |sorted_moves|
16: new__ghost__dir + WeightedRandomChoice(sorted_moves, weights)
17: new__ghost < ApplyAction(state.ghost, new__ghost_ dir)
18: new_ state < State(new_pacman,new__ghost,new dots, state.walls,new _ghost_ dir)
19: return new__state
20: end function
21: function GETLEGALMOVES(position)

22: moves < ()

23: for direction € {North, South, East, West} do
24: next <— ApplyAction(position, direction)

25: if next is not wall then

26: moves < moves U {direction}

27: end if

28: end for

29: return moves

30: end function

(a) Tiny Grid (b) Medium Grid

(¢) Medium Classic Grid

Figure 1: Pacman grid environments of increasing complexity used in this study

3.2 Distance Metrics and Features

For feature extraction in Approximate Q-Learning, we use Manhattan distance to measure
distances between grid positions:

dManhattan = |1 — T2| + |y1 — ¥2 (1)

Manhattan distance is ideal for grid-based movement where diagonal moves are not allowed,
providing accurate path length estimates.

3.3 Reward Function

The reward structure encourages efficient food collection while penalizing dangerous behav-
ior.The small negative reward per time step prevents the agent from wandering aimlessly and
encourages goal-directed behavior.

4 Experimental Setup

4.1 Q-Learning Implementation and Parameter Tuning

For the Q-Learning implementation, I began with a tiny 6x6 grid environment to evaluate
the agent’s learning capabilities. The initial training configuration consisted of 2,000 episodes
with a learning rate («) of 0.5, an exploration factor (€¢) of 0.3, and a discount factor () of
0.9. As illustrated in Figures 2a and 2b, the agent’s performance demonstrated significant
improvement after the second episode, indicating effective learning and adaptation to the envi-
ronment. However, the high exploration factor resulted in excessive random actions even after

4

Algorithm 2 Reward Calculation

1: function CALCULATEREWARD(old__state, action, new__state)
2 reward < 0

3 dots__eaten < |old__state.dots| — |new__state.dots|
4: reward < reward + (dots__eaten x 10)

5: reward < reward — 1

6 if new__state.pacman = new__state.ghost then

7 reward < reward — 500

8 else if |new_state.dots| = 0 then

9: reward < reward + 500

10: end if

11: return reward

12: end function

the agent had acquired substantial knowledge about optimal policies. To refine the agent’s
behavior and reduce unnecessary exploration, I subsequently decreased the epsilon value from
0.3 to 0.1. This adjustment allowed the agent to exploit its learned policy more frequently
while still maintaining sufficient exploration to avoid local optima, resulting in more consistent
and improved performance across subsequent training episodes.

Q-Leamnin, g Training Curve

1000
e D0 B AR a0 episede

(a) Performance with e = 0.3 (initial episodes) (b) Performance with e = 0.3 (later episodes)

Figure 2: Q-Learning agent performance showing improvement after Episode 2 with e = 0.3

During the play phase with the tiny maze, the Q-Learning agent demonstrated strong
performance, winning 75% of the games, which validated the effectiveness of the learned policy
in a limited state space. Encouraged by these results, I proceeded to evaluate the agent on
a medium grid of size 10x6, where the state space increased significantly. However, the Q-
Learning agent with the same hyperparameters (o« = 0.5, ¢ = 0.3, v = 0.9, 2,000 episodes)
that performed well in the tiny maze suffered considerably in this expanded environment.
The agent failed to win any games, highlighting a critical limitation of tabular Q-Learning:
as the state space grows exponentially with grid size, the same number of training episodes
becomes insufficient for adequate exploration and convergence. This performance degradation
underscores the curse of dimensionality in reinforcement learning, where the agent requires
significantly more training episodes to visit and learn optimal actions for the vastly increased
number of state-action pairs in the larger environment.

Grid Size State Space | Win Rate | Training Episodes
Tiny (6x6) Small 75% 3,000
Medium (10x6) Large 0% 3,000

Table 2: Q-Learning performance comparison across different grid sizes

4.2 Approximate Q-Learning Configuration and Hyperparameters

For the Approximate Q-Learning implementation on the medium grid, I configured the agent
with carefully tuned hyperparameters to balance exploration, learning stability, and long-term
planning. The training was conducted over 3,000 episodes using the simple feature extractor
with a discount factor (v) of 0.95, emphasizing the importance of future rewards and encour-
aging strategic planning over immediate gains. The learning rate («)) was set to 0.3, providing
moderate update steps to ensure stable convergence of feature weights without overshooting
optimal values. To leverage the generalization capabilities of function approximation, the explo-
ration rate (€) was reduced to 0.1, significantly lower than the 0.3 used in tabular Q-Learning,
as the agent’s ability to generalize across similar states reduces the need for extensive random
exploration. After training, the agent’s learned policy was evaluated over 5 play episodes. This
configuration—combining increased training episodes (3,000 vs 2,000), higher discount factor
(0.95 vs 0.9), and reduced exploration (0.1 vs 0.3)—was specifically designed to exploit the
feature-based representation’s efficiency in handling the expanded state space of the medium
grid.

Method Grid Size Episodes | « y €
Approx Q-Learning | 10x6 (Medium) 3,000 0.31095|0.1

Table 3: Comparison of hyperparameters across different Q-Learning approaches

Figure 3 illustrates the training progress of the Approximate Q-Learning agent on the
classic 7x10 grid over 10,000 episodes. The learning curve demonstrates the agent’s gradual
improvement in cumulative rewards as the feature weights converge toward optimal values.
The initial episodes show high variance due to exploration and random weight initialization,
while later episodes exhibit more stable performance as the agent exploits its learned policy.
The feature-based approach enables effective generalization across similar states, resulting in
consistent improvement even in the larger state space where tabular Q-Learning failed.

Q-Learning Training Curve

400

200 4

Total Reward

—200 4

—400 4

—600 1
Episode Reward
100-Episode Moving Average

4] 500 1000 1500 2000 2500 3000
Episode

Figure 3: Approximate Q-Learning training performance on classic grid (7x10) over 10,000
episodes showing cumulative rewards per episode

5 Deep Q-Network (DQN) Implementation

To overcome the limitation of manual feature engineering in Approximate Q-Learning, I im-
plemented a Deep Q-Network(DQN) that automatically learns state representations through

6

a neural network.The DQN agent was implemented using a CNN designed to efficiently pro-
cess a structured, grid-based representation of the Pac-Man environment. Instead of raw pixel
input, the state was encoded as a five-channel equivalent image, representing the positions of
Pac-Man, ghosts, food pellets, capsules, and walls. This representation significantly reduced
computational overhead while preserving essential spatial information.The network architec-
ture consists of three convolutional layers with increasing channel depths, followed by two fully
connected layers. ReLLU activation functions were applied throughout the network to introduce
non-linearity. The output layer produces Q-values corresponding to the four possible movement
actions.

Training was performed using experience replay with a memory capacity of 100,000 transi-
tions and a batch size of 64. A target network was updated every 50 training steps to stabilize
learning. The learning rate was set to 0.00025, and an epsilon-greedy exploration strategy was
employed, with epsilon decaying from 1.0 to 0.01 over 1,000 episodes.

Experimental results indicate that the DQN agent learns effective policies on small grid
layouts within approximately two hours of training Training was conducted on the smallClassic
grid for 5,000 episodes with learning rate o = 0.001 and discount factor v = 0.95:

DQN Training Curve

Episode Reward
04" 100-Episode Moving Average

-1000

—2000 4

Total Reward

=3000 4

—4000

0 500 1000 1500 2000 2500 3000
Episode

Figure 4: DQN training curve with epsilon decay overlay

Table 4: Pacman Q-Learning Training Performance

Metric Value
Total Training Episodes 3,000
Wins 1,506
Losses 1,494
Overall Win Rate 50.20%
Final Win Rate (Last 100 Episodes) 93.00%
Overall Average Reward -265.81
Final Average Reward (Last 100 Episodes) 111.51
Best Episode Reward 205.00
Worst Episode Reward -3912.00

The DQN agent achieved superior generalization through automatic feature learning, though
requiring longer training compared to approximate Q-Learning (5,000 vs 3,000 episodes for
comparable grids).

6 Other Attempts

Several challenges were encountered during the initial implementation of the Deep Q-Network
(DQN). The choice of the number of network layers, kernel size, stride, and activation functions
plays a critical role in the performance of convolutional neural networks (CNNs). Most of the
architectures explored in this work were inspired by the classical Deep Q-learning framework
proposed by Mnih et al. However, the inclusion of max-pooling layers after every convolutional
layer resulted in degraded performance.

An attempt was made to use raw pixel data from game frames captured during gameplay as
input to the network. This approach proved to be computationally expensive and challenging
due to the high dimensionality of the input space.

State-space information was stored in the replay memory at every step of the Pacman game
and accessed during each training step. Therefore, selecting an efficient data structure for
adding, removing, and sampling experiences was essential. Initially, NumPy arrays were used
to implement the replay memory with the expectation of faster access compared to a queue-
based approach. However, this implementation was inefficient, and the design was subsequently
changed to use a deque, which significantly improved performance.

Training on the medium classic grid remained a major challenge due to the large model size,
consisting of approximately 1.8 million parameters. Even after more than 16 hours of training
with extensive hyperparameter tuning, the agent failed to win any games and exhibited near-
random behavior. Multiple modifications to the neural network architecture and batch size
were attempted to improve training performance. However, the large state space caused the
agent to require significantly longer training times than expected even after using colab GPU.

7 Conclusion

This project helped in developing a strong understanding of the fundamentals of reinforcement
learning and how agents learn using a Q-table. It highlighted the importance of feature ex-
traction in approximate Q-learning, which enables agents to learn efficiently in larger state
spaces. Similarly, the project demonstrated how Deep Q-learning automatically learns impor-
tant feature representations through exploration and experience replay, even in smaller classic
grid environments.

8 Acknowledgement

I would like to sincerely thank Prof. Pei Wang for his continuous support throughout the course.
His assignments on diverse topics and the accompanying discussions were quite different from
conventional coursework and provided a unique learning experience. Through this course, I was
introduced to the foundational work of artificial intelligence from 1960s to present day. Overall,
this course enabled me to learn a wide range of new theories and research concepts related to
artificial intelligence.

References

[1] Berkeley Pacman Code. http://ai.berkeley.edu/projectoverview. html.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller, “Playing Atari with Deep Reinforcement Learning,”
arXiv preprint arXiw:1312.5602, 2013.

David Silver et al., “Human-level control through deep reinforcement learning,” Nature,
d0i:10.1038 /nature14236, 2015.

Matthew Hausknecht and Peter Stone, “Deep Recurrent Q-Learning for Partially Observ-
able MDPs,” arXiv preprint arXiv:1507.06527, 2015.

Hado van Hasselt, Arthur Guez, and David Silver, “Deep Reinforcement Learning with
Double Q-Learning,” arXiv preprint arXiv:1509.06461, 2015.

Volodymyr Mnih et al., “Reinforcement Learning with Unsupervised Auxiliary Tasks,”
arXiv preprint arXiv:1611.05397, 2016.

Mehdi Mirza et al., “Asynchronous Methods for Deep Reinforcement Learning,” arXiv
preprint arXiv:1602.01783, 2016.

loannis Antonoglou et al., “Prioritized FExperience Replay,” arXiv preprint
arXiw:1511.05952, 2016.

Python Documentation. https://docs.python.org/3/.

	Introduction
	Related Work
	Environment Design
	Ghost Movement Algorithm
	Distance Metrics and Features
	Reward Function

	Experimental Setup
	Q-Learning Implementation and Parameter Tuning
	Approximate Q-Learning Configuration and Hyperparameters

	Deep Q-Network (DQN) Implementation
	Other Attempts
	Conclusion
	Acknowledgement

