CIS 5603	Artificial Intelligence	Fall 2025
Encrypted LLM Inference
Name: Sarker Mohammed

Contents
Introduction	3
Motivation	3
Goal	3
Background	3
Transformers	3
CKKS Homomorphic Encryption	4
System Architecture	5
Client vs. Server	5
Rationale for Hybrid CKKS + MPC	6
Results	6
Plaintext Inference (Baseline for Comparison)	6
Encrypted Inference (CKKS + MPC Hybrid)	7
Analysis	8
Challenges/Learning	8
Technical Challenges	8
Conceptual/Learning	9
Conclusion	10

[bookmark: _Toc215907589]Introduction:
This document provides informal project details about our project on Encrypted LLM Inferences. Basic outline will involve this Introduction section as well as a Background, System Architecture, Results, Challenges, and Conclusion sections.
[bookmark: _Toc215907590]Motivation: Motivation for this project stems from the need for secure sharing of information when using cloud LLMs. In many industries, such as defense, healthcare, and finance, you are unable to share information since it is a violation of privacy in some form. Even for everyday uses with chatbots like OpenAI’s ChatGPT, users like you and me may share personal details with them. We could look for local models, but those are often not feasible due to hardware or computation limitations. Therefore, it is essential to look for ways to preserve privacy when using these large cloud LLMs.
[bookmark: _Toc215907591]Goal: The goal of this project is to perform LLM model inference on encrypted user text, ensuring that the cloud server never sees the plaintext input or intermediate activations. This involves applying homomorphic encryption to the linear components of a transformer model while preserving usability and correctness. To achieve this, the project implements a hybrid CKKS + MPC framework on top of a GPT2 Mini architecture.
The project successfully demonstrates that encrypted LLM inference is feasible at small scale, with correct output generation and measurable overhead. While performance is significantly slower than plaintext inference, the system proves that transformers can operate on encrypted inputs through a combination of homomorphic encryption and client-side computation.
[bookmark: _Toc215907592]
Background:
This section will provide a brief overview of the foundational concepts being used in this project. It is recommended that the reader understands the following ideas and should seek other resources to fill any gaps.
[bookmark: _Toc215907593]Transformers: Transformers are the foundational architecture behind modern LLMs. They have two primary components, Attention and Feed-Forward Neural Networks (MLPs). MLPs are widely used in other machine learning algorithms, Attention on the other hand allows you to combine context from surrounding inputs into that specific input. This is essential since words can mean different things depending on their context. Take for example:
· This ball is very light.
· Please turn on the light.
In this case, we can see that “light” is used in both the sentences but mean two entirely different concepts.
For this project, we use the GPT2 Mini architecture, which will be borrowed from HuggingFace: https://huggingface.co/erwanf/gpt2-mini. This is a smaller, more compact version of GPT2, containing the following:
· 4 Transformer Layers
· 8 Attention Heads per Layer
· Hidden size of 512
Like other machine learning models, transformers heavily relies on linear algebra. Part of the attention and MLP mechanism consists of traditional linear operations, matrix multiplications. They also contain various nonlinear operations such as:
· LayerNorm
· Softmax
· GELU
Using a combination of these linear and non-linear parts, the model is able to figure out the context the of input and autoregressively figure out what would be the most probable next word.
[bookmark: _Toc215907594]CKKS Homomorphic Encryption: The CKKS (Cheon-Kim-Kim-Song) scheme is a widely used homomorphic encryption method designed to support approximate arithmetic on real numbers. Unless classical encryption methods, CKKS allows addition and multiplication on ciphertexts, enabling computations directly on encrypted data without revealing the underlying plaintext.
CKKS is well suited for machine learning applications because it supports vectorized arithmetic on encrypted data. The means that multiple numerical values can be packed into a single ciphertext, similar to how SIMD operations work. As stated earlier, Transformers require numerous linear algebra operations, which maps naturally into CKKS scheme.
Despite these advantages, CKKS also imposes significant limitations. Each homomorphic operation increases the noise within the ciphertext, and after enough operations this accumulated noise prevents successful decryption. Although bootstrapping can refresh the noise, it is computationally expensive and generally impractical for deep architecture. Additionally, CKKS provides limited support for nonlinear functions: operations such as GELU, Softmax, exponentiation, and normalization cannot be implemented directly and require polynomial approximations. These approximations often demand high-degree polynomials, which further increase noise and computational cost, making them unsuitable for efficient encrypted inference.
For this project, we decided to use OpenFHE as our library for handling CKKS related tasks. This is open source and can be accessed here: https://github.com/OpenFHEOrg
These constraints make full end-to-end transformer inference under CKKS alone infeasible with our limited resources. This motivates hybrid approaches that combine homomorphic encryption with additional computation methods such as MPC or client-side fallback, as explored in this project.

[bookmark: _Toc215907595]System Architecture:
This project utilizes a Client-Server architecture designed to enable privacy preserving inference on a GPT2 Mini model. The core idea is to perform all the computationally intensive linear algebra operations on encrypted data on the server, while delegating the nonlinear operations on the client. This split allows the system to leverage the strengths of homomorphic encryption without incurring the prohibitive cost of encrypted nonlinear computations.
[bookmark: _Toc215907596]Client vs. Server: A key aspect of the system is distributing computation based on what is feasible under CKKS. The encryption scheme efficiently supports vectorized addition, scalar multiplication, and matrix–vector products, which cover all linear layers in GPT-2 Mini. However, CKKS does not natively support nonlinear operations, and approximating them homomorphically is expensive.
Client handles:
· Token Embedding
· Encryption/Decryption
· Nonlinear Operations (LayerNorm, GELU, Softmax)
· Sampling
Server handles:
· Attention Linear Layers
· MLP Linear Layers
The client’s responsibility are computationally lightweight when compared to the encrypted matrix multiplication, so the server still holds a large bulk of the transformer’s computational workload.
[bookmark: _Toc215907597]Rationale for Hybrid CKKS + MPC: A purely homomorphic approach to transformer inference is currently impractical due to two limitations:
· Nonlinear operations cannot be directly evaluated under CKKS
· Ciphertext noise grows with each homomorphic operation
The hybrid architecture avoids these issues by allowing the client to decrypt and re-encrypt intermediate results whenever nonlinear operations are needed. This effectively resets the noise level, eliminating the need for bootstrapping entirely. Additionally, the client executes nonlinear ops directly and efficiently, while the server handles only the linear algebra that CKKS excels at.
This approach preserves the user’s privacy, since the server never sees plaintext, while enabling a practical and functional encrypted LLM workflow. It provides a feasible middle ground between theoretical fully homomorphic LLM inference and real-world performance constraints.

[bookmark: _Toc215907598]Results:
The goal of the experimental evaluation was to compare encrypted inference against standard plaintext inference using the same GPT2 mini model. To keep the comparison simple and focused, two plaintext runs and numerous encrypted runs were performed using the same prompt. For each run, the system generated three tokens based on the input “Dog jumped on,” and the total time per run was measured:
[bookmark: _Toc215907599]Plaintext Inference (Baseline for Comparison): For comparison, the same prompt was run directly through the unmodified GPT-2 Mini model without encryption. This represents the ideal performance of the model on standard hardware.
PLAINTEXT #1
Output: Dog jumped on ice-apple
Time: 13 seconds

PLAINTEXT #2
Output: Dog jumped on ick to put
Time: 11 seconds
As expected, plaintext inference is orders of magnitude faster, since it avoids homomorphic computation and client–server roundtrips.
[bookmark: _Toc215907600]Encrypted Inference (CKKS + MPC Hybrid): For encrypted runs, all linear layers were computed homomorphically on the server, while the client executed nonlinear operations and sampling. Communication overhead and encryption costs significantly increased total latency.
ENCRYPTED #1
Output: Dog jumped on elev National abortion
Time: 90 minutes and 20 seconds

ENCRYPTED #2
Output: Dog jumped on ancient West products
Time: 153 minutes and 59 seconds

ENCRYPTED #3
Output: Dog jumped on ancient, clock
Time: 154 minutes and 48 seconds

ENCRYPTED #4
Output: Dog jumped on strenCityInstoreAndOnline
Time: 156 minutes and 49 seconds

ENCRYPTED #5
Output: Dog jumped on substantial AP phone
Time: 151 minutes and 13 seconds

Note that during Trial 1, only one instance of inference was running. Trial 2 and 3 were ran at the same time, similarly, Trial 4 and 5 were ran at the same time. As a result, Trial 2-5 have higher times since they were sharing CPU times.
Despite the additional computation and communication, the encrypted outputs remained semantically consistent with the plaintext runs, demonstrating correctness of the hybrid encrypted pipeline.
[bookmark: _Toc215907601]Analysis: Overall, the experiments highlight clear differences between encrypted and plaintext inference. Latency was the most significant factor. Encrypted inference required several times more seconds per run due to CKKS ciphertext size, communication overhead, and repeated decrypt–encrypt cycles, while plaintext inference completed in just a few seconds. Despite this performance gap, the encrypted framework achieved relatively correct responses. Although the encrypted outputs did not always match the plaintext results exactly, mainly due to sampling randomness, they remained coherent and followed the same semantic structure, demonstrating that the hybrid encrypted pipeline is functionally reliable.
Another key observation was the cost of communication. Each nonlinear operation required a full round-trip between client and server, and the large ciphertexts amplified this overhead, making communication one of the primary bottlenecks. Even with these limitations, the results show that encrypted LLM inference is feasible. While not yet suitable for real-time use, the prototype effectively proves that a practical hybrid CKKS + MPC approach can preserve user privacy while still enabling meaningful inference over encrypted data.

[bookmark: _Toc215907602]Challenges/Learning:
This project presented several technical and conceptual challenges, many which shaped the final system design.
[bookmark: _Toc215907603]Technical Challenges: One of the most significant obstacles was the lack of GPU support in OpenFHE’s CKKS implementation. All homomorphic operations were executed on CPU, which placed strict limits on performance and made encrypted matrix multiplications orders of magnitude slower than their plaintext or GPU-accelerated counterparts. This constraint forced us to operate with GPT2 Mini instead of GPT2 as well as having significantly small input sizes.
Another issue was communication overhead. Since nonlinear operations cannot be performed efficiently under CKKS, the system would either rely on approximations or in our case, relied on frequent switching between the client and server. Each transition requires transmitting large ciphertexts, where each ciphertext is significantly bigger than their plaintext counterpart to ensure that security is maintained. The back-and-forth pattern is a large bottleneck in this assignment which needs to be addressed before this system gets deployed for real-time systems, but in our case, this bottleneck was overshadowed by the slow encrypted matrix multiplication.
While part of the issue with matrix multiplication was the GPU, another issue was the complexity of slot packing and ciphertext layout. CKKS allows vectorized computations, SIMD style approach, but achieving good performance requires packing the data in a specific way. This system utilizes a very naïve packing strategy, essentially not using any packing which leads to inefficient matrix multiplications and redundant operations. In order to understand how to structure ciphertexts properly and to evaluate them homomorphically would require some experimentation and system redesigning.
[bookmark: _Toc215907604]Conceptual/Learning: Beyond these engineering hurdles, the conceptual learning curve of CKKS itself was significant. Homomorphic encryption involves ideas such as noise growth, modulus, polynomial rings, etc., all of which take time to understand in depth. Although the project produced a functional encrypted inference pipeline, I still do not fully understand every aspect of CKKS, and many details remain challenging. This experience emphasized how difficult it is to move from theoretical descriptions of FHE to a working implementation.
The original project design was to create a GPT2 model that can autoregressively generate text with minimal communications. Essentially, due to my lack of CKKS understanding, I was unable to properly encrypt the inputs or convert the large linear matrix weights from the integer space to ring polynomial space, which made me have significant redesign.
In part of this project, I had a chance to speak with one of OpenFHE’s project managers to obtain guidance on this project. They provided insights on how I can make this project more doable, like using a smaller model and MPC, which I ultimately had to do in order to make the project much more feasible. We also discussed how state-of-the-art model works and the results of other researchers in this field. For example, JPMorgan wrote a paper on Encrypted LLM Inference using GPT2 architecture and GPUs, but their implementation of CKKS on the GPUs is kept proprietary.
Despite these challenges, the project ultimately succeeded in demonstrating encrypted LLM inference and provided valuable inside into both the power and limitations of current homomorphic encryption frameworks. This served as a vital learning opportunity which will guide my future research in this field.

[bookmark: _Toc215907605]Conclusion:
This project demonstrated that encrypted inference with GPT-2 Mini is feasible using a hybrid CKKS + MPC architecture. The system successfully generated coherent text without ever exposing plaintext to the server, showing that privacy-preserving transformer inference is possible with current tools. Although performance remains slow due to CPU-only CKKS operations, communication overhead, and ciphertext-packing challenges, the prototype validated the core idea and produced correct outputs.
Overall, this work serves as a proof of concept and a starting point for future improvements. With better HE libraries, more efficient packing, reduced client–server roundtrips, or GPU acceleration, encrypted LLM inference could become significantly more practical. The results here show that while not yet ready for deployment, privacy-preserving LLM inference is achievable and worth continued exploration.

2

