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Abstract

Modern neural networks continue to grow in scale, creating
substantial computational and communication challenges
for decentralized learning systems characterized by hetero-
geneous clients and non-IID data distributions. Although
pruning is a widely-used technique to reduce model size
and communication overhead, most existing pruning ap-
proaches rely on heuristic rules and decouple pruning from
model training, leading to suboptimal sparse structures and
instability in federated or decentralized environments. To
address these limitations, we propose a bi-level optimiza-
tion framework that jointly learns the pruning mask and
model parameters. In our method, the upper-level problem
optimizes the pruning mask to improve global performance,
while the lower-level problem trains model parameters under
a fixed mask. This formulation enables a principled coupling
between structural decisions and parameter updates, over-
coming the limitations of traditional heuristic pruning.

We evaluate the proposed method on decentralized train-
ing tasks involving both RNN and linear SVM models across
multiple datasets. Experimental results show that our ap-
proach consistently achieves faster convergence, higher AUC,
and lower training loss compared with baseline pruning
strategies. The improvements are particularly significant
in heterogeneous or non-IID data settings, demonstrating
the advantages of bi-level optimization for structure-aware
model compression. Preliminary experiments on a CNN
(ResNet-18) with CIFAR-10 indicate that larger models intro-
duce additional optimization challenges, motivating further
refinement of our algorithm. Overall, our findings confirm
that bi-level pruning offers an effective, optimization-driven
alternative to heuristic pruning in decentralized learning
systems.

Keywords: Model Pruning, Bi-level Optimization, Decentral-
ized, Distributed Training Communication Efficiency

1 Introduction

The rapid growth of modern neural networks has signifi-
cantly improved performance across a wide range of tasks,
but it also introduces substantial challenges in computa-
tion, storage, and communication [1, 5]. These challenges
are particularly pronounced in decentralized and distributed
learning settings, where multiple clients collaboratively train
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a model without sharing raw data [7]. In such environments,
limited bandwidth, heterogeneous hardware, and non-IID
data distributions make efficient model training and deploy-
ment increasingly difficult.

Model pruning is a widely adopted technique to address
these issues by removing unimportant model parameters,
thereby reducing model size and communication overhead [6].
However, most existing pruning methods are heuristic in
nature, such as magnitude-based pruning, and are typically
applied either after training or independently from the opti-
mization process [4]. While effective in centralized settings,
these approaches often suffer from performance degradation
and instability when applied to decentralized learning sce-
narios. In particular, heuristic pruning does not explicitly
account for client heterogeneity or non-IID data, which can
amplify accuracy loss and slow convergence.

Recent studies suggest that the limitations of heuristic
pruning stem from its decoupled design: the pruning deci-
sion and the model training process are treated as separate
stages rather than being jointly optimized [1]. This observa-
tion motivates the exploration of optimization-driven prun-
ing strategies. Bi-level optimization provides a principled
framework to address this challenge by naturally modeling
hierarchical decision-making problems [2]. In the context
of model pruning, the upper-level problem determines the
model structure (i.e., which parameters to prune), while the
lower-level problem optimizes the remaining model parame-
ters under a fixed structure.

In this project, we adopt a bi-level optimization perspec-
tive to design a pruning framework tailored for decentralized
learning. The pruning mask is optimized at the upper level
to improve global performance, while model parameters are
trained at the lower level given the current mask. This joint
formulation enables pruning decisions to be directly guided
by training dynamics, rather than by static heuristics. As a
result, the learned sparse models are better aligned with the
underlying data distribution and training objectives.

We evaluate the proposed approach on decentralized learn-
ing tasks involving both RNN and SVM models across multi-
ple datasets. Experimental results demonstrate that the bi-
level pruning method achieves faster convergence, improved
predictive performance, and greater robustness to non-IID
data compared with baseline pruning strategies. These find-
ings highlight the effectiveness of bi-level optimization as a



structured and principled alternative to heuristic pruning in
decentralized learning systems.

The remainder of this report is organized as follows. Sec-
tion 2 reviews related work on model pruning and bi-level op-
timization. Section 3 introduces preliminary background on
model pruning and bi-level optimization. Section 4 presents
the proposed bi-level pruning method in detail. Section 5
describes the experimental setup and reports the evaluation
results. Finally, Section 6 concludes the report and discusses
future directions.

2 Related Works

In this section, we review prior work related to model prun-
ing and bi-level optimization, which form the theoretical and
methodological foundations of our approach.

2.1 Model pruning

Model pruning has been extensively studied as an effec-
tive technique for reducing the size and computational cost
of neural networks [1, 5]. Early work primarily focused
on heuristic-based approaches, such as magnitude pruning,
which removes parameters with small absolute weights [6].
These methods are simple and computationally efficient,
and have been widely adopted in centralized training set-
tings. Variants of magnitude-based pruning have also been
explored in iterative frameworks, most notably Iterative Mag-
nitude Pruning (IMP), which progressively removes parame-
ters while retraining the model to recover accuracy [4].

Despite their success, heuristic pruning methods exhibit
several limitations. First, pruning decisions are typically de-
coupled from the training process, meaning that the model
structure is not optimized jointly with model parameters.
Second, many pruning strategies are designed for central-
ized training and assume homogeneous data distributions.
When applied to decentralized or federated learning settings
with non-IID data, these methods often suffer from degraded
performance, unstable convergence, and reduced generaliza-
tion [7]. Recent studies have shown that such heuristic ap-
proaches may fail to consistently identify high-quality sparse
subnetworks, especially under high sparsity constraints or
heterogeneous data regimes.

To address these challenges, optimization-based pruning
methods have been proposed. These approaches formulate
pruning as a constrained optimization problem by introduc-
ing sparsity regularization or learnable masks [8]. While
these methods provide a more principled foundation than
heuristic pruning, they often struggle to match the perfor-
mance of iterative pruning schemes and may introduce addi-
tional optimization complexity.

2.2 Bi-level Optimization

Bi-level optimization is a hierarchical optimization frame-
work consisting of two nested problems, where the solution
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of the upper-level problem depends on the optimal solution
of the lower-level problem [2]. This formulation naturally
arises in problems that involve structure selection or hyper-
parameter optimization, such as meta-learning and neural
architecture search [3].

In the context of model pruning, bi-level optimization of-
fers a natural way to decouple structural decisions from pa-
rameter optimization. The upper-level problem can be used
to optimize the pruning mask or model structure, while the
lower-level problem focuses on training model parameters
under a fixed structure. This separation enables a principled
interaction between pruning and training, allowing prun-
ing decisions to be guided by training dynamics rather than
static heuristics.

Recent work has demonstrated that model pruning can be
reformulated as a bi-level optimization problem with favor-
able properties, such as bi-linearity between pruning masks
and model parameters [9]. By exploiting this structure, bi-
level pruning methods can achieve computational efficiency
comparable to first-order optimization while maintaining
strong performance, making them well-suited for decentral-
ized and non-IID settings.

3 Preliminary

This section introduces the background concepts required to
understand our proposed approach. We first review the basic
formulation of model pruning, followed by an overview of
bi-level optimization and its relevance to pruning problems.

3.1 Model Pruning

Model pruning aims to reduce the size and computational
cost of a neural network by removing unimportant parame-
ters while preserving predictive performance. Given a model
with parameters w € R”, pruning is commonly formulated
by introducing a binary mask m € {0, 1}", where each ele-
ment of m determines whether the corresponding parameter
in w is retained. The pruned model can be expressed as

w=mow, (1)

where © denotes element-wise multiplication.

Traditional pruning approaches typically rely on heuristic
criteria, such as weight magnitude, gradient magnitude, or
sensitivity measures, to determine which parameters should
be removed. These methods are often applied either after
model training or iteratively with retraining steps. While
effective in centralized settings, heuristic pruning does not
explicitly account for the interaction between model struc-
ture and training dynamics, which can lead to suboptimal
sparse models, especially under high sparsity or non-1ID data
distributions.

From the perspective of decentralized learning, pruning
plays an additional role by reducing communication over-
head among distributed clients. Smaller models lead to lower
transmission costs during parameter aggregation. However,
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improper pruning may amplify performance gaps across
clients with heterogeneous data, motivating the need for
more principled pruning strategies.

3.2 Bi-level Optimization

Bi-level optimization is a hierarchical optimization frame-
work consisting of two nested optimization problems. The
upper-level problem optimizes a set of high-level variables,
while the lower-level problem optimizes another set of vari-
ables whose solution depends on the upper-level variables.
A general bi-level optimization problem can be written as

min F(x,y*(x)) st y"(x) =argmin G(x,y), (2)
X y

where x denotes the upper-level variable and y denotes the
lower-level variable.

Bi-level optimization naturally fits problems that involve
structure selection or hyperparameter tuning. In the con-
text of model pruning, the pruning mask can be treated as
the upper-level variable, while the model parameters are
optimized at the lower level under a fixed mask. This formu-
lation explicitly captures the dependency between pruning
decisions and model training.

A key challenge in bi-level optimization lies in efficiently
computing gradients for the upper-level problem, as the
lower-level solution implicitly depends on the upper-level
variables. Recent studies have shown that under certain struc-
tural assumptions, such as bi-linearity between variables, bi-
level optimization can be solved efficiently using first-order
methods. This observation motivates the use of bi-level opti-
mization as a practical and principled foundation for model
pruning, particularly in decentralized learning settings.

The concepts introduced in this section lay the ground-
work for the bi-level pruning framework presented in the
next section.

4 Method

In this section, we present our bi-level optimization frame-
work for model pruning in decentralized environments. The
key idea is to integrate pruning directly into decentralized
training, so that the pruning mask and model parameters
are optimized jointly while respecting data locality and com-
munication constraints.

4.1 Problem Setting

We consider a decentralized learning setup with K workers
/ clients connected by a communication graph. The k-th
worker holds a local dataset Dy drawn from a possibly non-
IID distribution and defines a local loss function £ ) (-; Dy).
The goal is to collaboratively train a compact model that
achieves high accuracy while reducing both model size and
communication cost.

Let y € RY denote the model parameters and let x € R?
denote the pruning parameters (or mask), with the same

dimension as y. The effective parameters used for prediction
are given by the element-wise product

O(x,y) = x0Oy eRd,

which gates individual weights and induces sparsity in the
model. This formulation can be instantiated for different
architectures:

e For SVMs, y collects the linear classifier weights, and
x prunes feature dimensions.

e For RNNs, y stacks recurrent and output-layer weights,
and x controls sparsity in temporal connections.

e For CNNs, y corresponds to convolutional and fully
connected filters, and x performs unstructured pruning
by masking individual weights within these filters.

4.2 Bi-level Pruning Formulation

Following the spirit of bi-level pruning in centralized set-
tings [? ], we formulate decentralized pruning as a bi-level
optimization problem. The upper-level problem optimizes
the pruning mask x by trading off global performance and
model compactness, while the lower-level problem optimizes
the model parameters y for a fixed mask.

Concretely, the lower-level problem learns the model pa-
rameters y on top of a given pruning mask x:

K
1
* = i —_— (k) 5
Yy (x) = arg m;n X kE:I LY (xoy; Dy), (3)

where the loss is computed locally on each worker using its
own data and the pruned parameters x © y.

Given the implicit solution y*(x), the upper-level problem
adjusts the pruning mask by minimizing the global perfor-
mance after local training, together with a regularizer that
encourages sparsity and communication efficiency:

K
min F(x) = Il(z./:”” (x0y"(x): D) + ARG, (4)
k=1

where R(x) is a sparsity-promoting regularizer (e.g., #; or
structured group penalties) and A > 0 controls the pruning
strength. Intuitively, (4) searches for a pruning policy that
maintains accuracy while removing as many redundant pa-
rameters as possible and indirectly reducing communication
cost.

Together, (3) and (4) define a nonconvex bi-level optimiza-
tion problem in the decentralized setting, which is signifi-
cantly more challenging than its centralized counterpart due
to data heterogeneity and limited communication.

4.3 Decentralized Bi-level Optimization Algorithm

Solving (4)-(3) exactly is infeasible in practice, so we adopt an
approximate scheme that alternates between inner updates
of y and outer updates of x.



Inner loop (lower level). For a fixed pruning mask x, each
worker performs multiple local stochastic gradient steps to
minimize its local objective with respect to y. Denoting by
yt(k) the local copy of the model parameters at iteration ¢ on
worker k, the update takes the form

(k) i k
v = O, wuy” = nygts

JENK

where Ny denotes the neighbors of worker k in the commu-
nication graph, (wg;) are mixing weights, n,, is the step size,
and ggk) is a stochastic gradient of £L*) (x ©y; Dy) evaluated
at yfk) . We employ variance-reduced gradient tracking to
stabilize training under non-IID data and reduce the number
of communication rounds.

Outer loop (upper level). After a certain number of inner-

loop steps, the workers collaboratively update the pruning

mask x. Given gradient estimators {V,.£® (x © yfk))}le,
we approximate the hypergradient of F(x) and perform a

projected gradient step:

K
1
X1 = Px (xt —Nx (E Z VxL(k) (x: 0 yt(k)) + AVR(xt)))
k=1

where 7, is the outer-loop step size, P x denotes projection
onto a feasible set (e.g., box constraints or probability simplex
for normalized masks), and the gradients are aggregated in
a decentralized manner via the same communication graph.

4.4 Communication Efficiency

The proposed framework improves communication efficiency
in two complementary ways:

e Parameter sparsity. As training progresses, the learned
mask x drives many entries of x © y towards zero, en-
abling sparse communication of model updates.

e Decentralized updates. Both the inner and outer
loops rely only on neighbor-to-neighbor communica-
tion, avoiding any centralized parameter server and
naturally fitting multi-agent or federated scenarios.

5 Experiments

In this section, we empirically evaluate the proposed decen-
tralized bi-level pruning framework on three representative
model families: SVMs, RNNs, and CNNs.

5.1 Datasets and Models
We consider the following models and datasets.

e SVMs. We use a simple two-layer linear classifier
on several standard binary classification benchmarks,
including a9a, covtype, and IMDB. Concretely, the
model first applies a linear feature transformation with
weight matrix W; € RI*H  followed by a linear clas-
sifier W, € RF*? for binary prediction. The trainable
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parameters y are obtained by concatenating the flat-
tened weights of W; and Wa, while the pruning param-
eter x is an unstructured mask applied to W; to prune
individual weights.

e RNNs. We adopt a recurrent neural network classifier
on the Sent140 dataset to study how pruning interacts
with temporal dependencies and convergence stability
in sequence models. Each input tweet is represented
as a sequence of 300-dimensional word embeddings,
forming an input tensor of shape [T, B, 300], where T
is the sequence length and B is the batch size. The clas-
sifier is implemented as a two-layer Simple RNN with
hidden size H (e.g., H = 4096), followed by a fully con-
nected layer that maps the final hidden representation
to two output logits.

e CNNs. We use a ResNet-18 architecture on CIFAR-10
as a representative convolutional neural network. In
this setting, we apply unstructured pruning by mask-
ing individual weights in the convolutional and fully
connected layers.

For completeness, we note the division of implementation
work. Heng Liang is primarily responsible for experiments
on Sent140, a9a, and CIFAR-10, while Qi Chen focuses on
covtype and IMDB. Both authors jointly analyze the results
and prepare the final report.

5.2 Experimental Setup

All experiments are conducted in a decentralized environ-
ment where workers are connected by a fixed communica-
tion graph. Unless otherwise stated, we use the same com-
munication topology and mixing matrix across all methods
and models.

For the SVM experiments, we use a mini-batch size of 32
and a hidden feature dimension of 20 (for the corresponding
feature transformation layer when applicable). The learning
rate is set to 0.001, with p = 0.1 and momentum 0.9. The
target pruning rate is fixed at approximately 20%, meaning
that about one fifth of the weights are removed by the learned
mask at convergence.

For the RNN experiments on Sent140, we use a batch size
of 16 and a hidden dimension of 128. The learning rate, p,
and momentum are kept the same as in the SVM setting
(learning rate 0.001, p = 0.1, momentum 0.9), and we again
target a pruning rate of about 20%.

For the CNN experiments with ResNet-18 on CIFAR-10, we
use a batch size of 16 and train the model in a decentralized
setting with 8 workers connected in a ring topology. The
learning rate is set to 0.001, with p = 0.1 and momentum
0.9, and we again target a pruning rate of about 20%. As
in the other settings, we apply unstructured pruning to the
convolutional and fully connected layers via the same bi-
level optimization scheme described in Section 4, alternating
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Figure 1. SVM results on a%a (Ir = 0.001, € = 0.1).
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Figure 2. SVM results on IMDB (Ir = 0.001, € = 0.1).

between inner-loop updates of the model parameters and
outer-loop updates of the pruning mask.

5.3 Results

We compare our method against several strong decentralized
optimization baselines, including D-SVRGDA, a variance-
reduced decentralized gradient method used as a non-pruned
reference, and D-SVRGDA-Clip, a clipped variant with thresh-
olds 7 € 0.8,0.6,0.4,0.2 that induces sparsity by limiting
the magnitude of communicated updates. We also include
the D-®?BSA family of bi-level stochastic approximation
algorithms—D-®?BSA-VR, D-®*BSA-10, D-®?BSA-5, and D-
®?BSA-1—which differ in the number of inner steps and in
whether variance reduction is applied in the outer loop. All
baselines use the same decentralized communication graph
and, whenever applicable, similar learning rate and batch-
size configurations to ensure a fair comparison with our
proposed method.

We report results in terms of training/upper loss, test
accuracy or AUC, and the sparsity level of the final model.
The SVM results on the a9a, IMDB, and covtype datasets are
shown in Figures 1, 2, and 3, respectively. The RNN results
on Sent140 are shown in Figure 4, and the CNN results on
CIFAR-10 are reported in Figure 5. For the CNN experiments,
in order to obtain stable training and focus on the effect
of pruning in the decentralized setting, we follow existing
practice and initialize the network from a pretrained ResNet-
18 model rather than training it from scratch.

Accuracy

o 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000

Iter Iter
(a) Upper loss on covtype  (b) Test accuracy on covtype

Figure 3. SVM results on covtype (Ir = 0.001, € = 0.1).
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(a) Upper loss on Sent140 (b) Test AUC on Sent140

Figure 4. RNN results on Sent140 (Ir = 0.001, € = 0.1).
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(a) Upper loss on CIFAR-10 (b) Test accuracy on CIFAR-
10

Figure 5. ResNet-18 results on CIFAR-10 (Ir = 0.001, € = 0.1).

Across all model families, our method consistently achieves
the best or near-best performance. For the SVM benchmarks
(a9a, IMDB, and covtype), our method achieves the low-
est upper loss and the highest or near-highest test accu-
racy throughout training, while maintaining a pruning rate
of around 20%, yielding a significantly smaller model. On
Sent140, our RNN experiments show that the proposed method
exhibits a much faster decrease in upper loss and converges
to a higher test AUC than all baselines, indicating that the
bi-level pruning does not harm, and may even stabilize, opti-
mization in sequence models. On CIFAR-10 with ResNet-18,
our method reaches competitive or superior test accuracy



compared to non-pruned baselines, while removing a sub-
stantial fraction of weights via unstructured pruning, demon-
strating that the proposed framework can scale to deeper
architectures without sacrificing accuracy.

Overall, these results suggest that the proposed decentral-
ized bi-level pruning framework can simultaneously improve
communication efficiency and maintain (or even enhance)
model performance across a diverse set of architectures and
datasets.

6 Conclusions

In this work, we proposed a bi-level optimization framework
for model pruning in decentralized environments. By ex-
plicitly separating the pruning mask (upper level) from the
model parameters (lower level) and coupling them through
a bi-level objective, our method provides a principled al-
ternative to heuristic pruning strategies commonly used in
distributed learning.

We instantiated the framework on linear SVMs, RNNs, and
a CNN (ResNet-18), and evaluated it across several bench-
marks, including a9a, IMDB, covtype, Sent140, and CIFAR-
10. Empirically, our approach achieves faster convergence,
lower training or upper-level loss, and higher test accuracy
or AUC compared with strong decentralized baselines, while
maintaining a nontrivial pruning rate (around 20%) that sig-
nificantly reduces the effective model size. These results
indicate that bi-level pruning can simultaneously improve
communication efficiency and preserve, or even enhance,
predictive performance in decentralized settings.

At the same time, our preliminary CNN experiments sug-
gest that larger and deeper architectures remain more sen-
sitive to optimization and initialization, pointing to several
promising directions for future work, including more robust
hypergradient approximations, adaptive pruning schedules,
and extensions to additional model families and graph topolo-
gies.
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