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Abstract

This project investigates a particular SINDy-RL approach in which
Sparse Identification of Nonlinear Dynamics (SINDy) is used to learn
compact surrogate models that drive reinforcement-learning-style control
of nonlinear systems. Two benchmark environments are considered: the
classic swing-up pendulum and a second-order oscillator with time-varying
stiffness and damping. In both cases, SINDy is trained from limited in-
teraction data and embedded in a model-based RL loop that performs
receding-horizon planning over candidate action sequences. For the pen-
dulum, online SINDy-RL is compared with an offline variant to illustrate
the value of continuous model adaptation. For the nonstationary oscil-
lator, online SINDy-RL is compared with a neural-network model-based
agent and a model-free Deep Q-Network (DQN). Simulation results show
that online SINDy-RL adapts to parameter drift and tracks sinusoidal
references more reliably than the DQN agent, while achieving comparable
performance to the neural-network baseline and maintaining interpretabil-
ity through sparse coefficient estimates. The pendulum experiments illus-
trate that useful swing-up policies can be obtained from a SINDy surrogate
trained on limited samples, albeit with sensitivity to modeling error and
data quality.
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1 Introduction

Model-based reinforcement learning (MBRL) seeks to improve sample efficiency
by learning a predictive model of the environment and using it for planning
or policy improvement, instead of relying solely on trial-and-error interactions.
In continuous-control domains this typically involves high-capacity neural net-
works, which demand large datasets and yield models that are difficult to inter-
pret and analyze. Sparse Identification of Nonlinear Dynamics (SINDy) provides
an appealing alternative by discovering low-dimensional governing equations
from data, selecting only a small subset of candidate basis functions.

1.1 Very important disclaimer

This work is investigating a very limited and narrow alley: 1. we are investigat-
ing one particular augmentation of SINDy to RL design. 2. the considered envi-
ronments are only two benchmark systems.

Figure 1: Pendulum

The central question is whether SINDy models
learned from limited interaction data can support
reinforcement-learning-style control that is both data-
efficient and interpretable, and how such SINDy-RL
controllers compare with baselines when the dynamics
are stationary versus drifting.

Bear in mind that many alternative architectures
and training protocols are possible and could plausi-
bly achieve even stronger performance.1

2 Methods

2.1 Environments

The considered systems are: a swing-up pendulum with fixed physical parame-
ters but noisy observation space, and a nonstationary oscillator whose stiffness
and damping drift over time. In both environments, the controller aims to track
a reference signal while penalizing velocity and control effort.

1Mini but important disclaimer: In writing of the report, AI has been used.
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Pendulum (stationary). The pendulum environment uses the state x =
[cos θ, sin θ, θ̇]⊤ and a bounded torque input u. The task is to swing the pendu-
lum from near the downward position to the upright position and keep it near
θ = ±π, while penalizing deviations and control magnitude via a quadratic cost
in angle, angular velocity, and torque. In all pendulum experiments the physical
parameters are fixed; only the data-collection and learning protocols (offline vs.
online, noiseless vs. noisy observations) differ.

Figure 2: Oscillator

Nonstationary oscillator. The oscillator has
state x = [p, v]⊤ with dynamics

ṗ = v, v̇ = −ω(t)2p− γ(t)v + u,

where ω(t)2 and γ(t) are time-varying stiffness
and damping coefficients, respectively. Both follow
piecewise-smooth schedules that define three phases
(start-up, relaxation, and steady), as illustrated in
Figure 3. The control objective is to track a sinu-
soidal reference position pref(t) while minimizing

ℓ(p, u, t) = (p− pref(t))
2 + 0.01u2.

Figure 3: Time-varying stiffness ω(t)2 and damping γ(t) for the nonstationary
oscillator.

2.2 SINDy Dynamics Modeling

The overall SINDy-RL pipeline is shown in Figure 4. A replay buffer stores re-
cent transitions (xt, ut, xt+1). A feature library Φ(x, u) maps states and actions
into candidate nonlinear terms. For the pendulum, Φ includes constants, cos θ,
sin θ, θ̇, the control u, and low-order products such as sin θ θ̇ and u θ̇. For the
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oscillator, Φ uses constants, p, v, u, and interactions such as p2, pv, and u2.
Approximate derivatives are obtained via

ẋt ≈
xt+1 − xt

∆t
,

and SINDy solves the sparse regression problem

Ẋ ≈ Φ(X,U)Ξ

using a sequentially thresholded least-squares procedure that alternates ridge
regression with coefficient pruning. The resulting sparse matrix Ξ defines the
dynamics model fSINDy(x, u).

Figure 4: SINDy-RL pipeline: transitions are stored, lifted by a feature library,
and used in sparse regression to obtain a dynamics model that feeds into the
RL/planning module.

2.3 SINDy-RL Control and Baselines

Receding-horizon SINDy-RL. For both environments, the SINDy model
is embedded in a receding-horizon planner. At each step, the current state
initializes a rollout, and a population of candidate action sequences over horizon
H is sampled. For each candidate, the SINDy dynamics are integrated forward
with Euler updates

xk+1 = xk +∆t fSINDy(xk, uk),

and the cumulative cost
∑H−1

k=0 ℓ(xk, uk, t+ k∆t) is estimated. The first action
of the lowest-cost sequence is applied to the real environment, and the resulting
transition is stored for future SINDy updates.

Online vs. offline SINDy. This distinction is used in both the pendulum
and oscillator experiments. In the offline SINDy-RL variant, an initial dataset
is collected under a simple exploration policy, SINDy is fit once on this dataset,
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and the resulting model is used for the entire episode without further updates.
In the online variant, the same planner is used but SINDy is periodically refit
on the latest buffer contents, enabling its coefficients to adapt either to noisy
observations (pendulum) or to drifting stiffness and damping (oscillator).

Additional comparison models (oscillator only). For the nonstationary
oscillator, several additional baselines are considered:

• Least-squares (LS) dynamics model: Linear regression on the same
feature library as SINDy, using ridge regularization with coefficient α =
10−4, no sparsity thresholding, and refitting every 100 time steps on a
sliding window of the most recent 2000 transitions.

• Neural network (NN) dynamics model: A feedforward network with
input dimension equal to the state–action vector, two hidden layers of
64 units each with ReLU activation, and a 2-dimensional linear output
predicting (ṗ, v̇).

• Model-free Deep Q-Network (DQN): A two-hidden-layer network
with 64 ReLU units per layer, mapping the oscillator state x = [p, v]⊤

to Q-values over a discrete action set of 11 torques uniformly spaced in
[−4, 4]. The agent uses ϵ-greedy exploration (ϵ decayed multiplicatively
by 0.995 per step from 1.0 to 0.05), a replay buffer of size 2000, discount
factor γ = 0.95, and Adam with learning rate 10−3.

All oscillator controllers use the same instantaneous cost ℓ(p, v, u, t), the same
control bounds, and the same nonstationary parameter schedule, allowing a
direct comparison of tracking performance and robustness to drift.

3 Simulation Results

3.1 Pendulum: Stationary Dynamics, Online vs. Offline
SINDy-RL

The pendulum experiments evaluate SINDy-RL in a stationary setting under
two learning regimes. In the offline configuration, a short dataset of noise-free
trajectories is first collected using a simple exploration policy. A SINDy model
is fit once to this dataset and then held fixed while the receding-horizon planner
optimizes a swing-up policy on the learned dynamics. In the online configu-
ration, the same planner is used but the SINDy model is updated periodically
from noisy streaming observations: after every fixed number of steps, recent
transitions are appended to the replay buffer and the sparse regression is refit
on a sliding window of the most recent data.

Figure 5 shows the online case. Despite measurement noise, the adaptive
SINDy model and controller eventually drive the pendulum angle to the upright
target and keep it there with small oscillations. Figure 6 shows the offline case:
the controller converges to the opposite stable equilibrium (downward) instead

5



of the desired upright configuration, illustrating how a fixed model identified
from limited data can mislead the planner even when the underlying dynamics
are time-invariant.

Figure 5: Pendulum, online SINDy-RL with noisy observations: the adaptive
SINDy model drives the angle toward and maintains it near the upright target.

Figure 6: Pendulum, offline SINDy-RL with a fixed model identified from limited
data: the controller converges to the wrong (downward) equilibrium.

3.2 Nonstationary Oscillator: SINDy-RL, NN Model, and
DQN

The nonstationary oscillator experiments assess robustness to drifting dynam-
ics. Here the stiffness ω(t)2 and damping γ(t) follow the schedule in Figure 3,
producing three phases with distinct effective dynamics. Three controllers are
compared on this environment:
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• SINDy-RL: model-based RL with an online SINDy dynamics model refit
periodically on recent transitions.

• NN model-based RL: the same receding-horizon planner, but using an
online neural-network dynamics model trained on the same replay buffer.

• DQN: a model-free Deep Q-Network acting directly on the environment
without an explicit dynamics model.

Figure 7 shows the resulting position trajectories. Both SINDy-RL and the
NN-based controller track the sinusoidal reference closely across all three phases
of the parameter schedule, with SINDy-RL additionally yielding interpretable
stiffness and damping coefficients. The DQN agent, trained under the assump-
tion of fixed dynamics, exhibits increasing tracking error and large excursions
once the parameters drift, indicating substantially lower robustness to nonsta-
tionarity.

Figure 7: Nonstationary oscillator: tracking performance of SINDy-RL (sparse
model-based), NN-based model-based RL, and model-free DQN.

To quantify these observations, Table 1 reports the mean tracking mean-
squared error (MSE) over evaluation runs for each controller. SINDy-RL and
the NN model-based controller achieve similarly low errors, whereas DQN is
roughly two orders of magnitude worse.

Table 1: Nonstationary oscillator: average tracking error for each controller.
MSE computed as 1

T

∑
t(pt − pref,t)

2 over the full episode.

Method Mean tracking MSE
SINDy-RL 0.18
NN model-based RL 0.17
DQN 11.15

7



Note that DQN was trained for the same number of environment steps as
the model-based methods (1000 steps); with substantially more training, DQN
performance would likely improve, though adapting to nonstationarity would
remain challenging for any method that assumes fixed dynamics.

4 Conclusions

SINDy-RL is able to learn compact, interpretable dynamics models from modest
interaction data and use them effectively for control in both the stationary pen-
dulum and the nonstationary oscillator. On the pendulum, online adaptation
enables successful swing-up even under noisy observations, whereas an offline
SINDy model trained on limited data can converge to the wrong equilibrium.
On the oscillator, the online SINDy-RL variant tracks drifting stiffness and
damping, achieving tracking error comparable to a neural-network model-based
controller (MSE of 0.18 vs. 0.17) while providing interpretable coefficient esti-
mates that directly correspond to physical parameters. In contrast, the model-
free DQN agent exhibits roughly two orders of magnitude higher tracking error
(MSE of 11.15), highlighting the sample-efficiency advantage of model-based
approaches in nonstationary settings.

Overall, the results support SINDy as a useful modeling layer for reinforce-
ment learning in dynamical systems when data efficiency, robustness to changing
dynamics, and interpretability all matter. Natural extensions include integrat-
ing explicit model uncertainty into the planner, applying the approach to higher-
dimensional control problems, and combining SINDy with more advanced policy
optimization algorithms to leverage the learned models more fully.
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A Environments

A.1 Pendulum

With unit length and mass, the dynamics is usually written in the following
form:

θ̈(t) = −bθ̇ − g sin θ(t) + T

Where θ is the position, θ̇ would be the velocity and θ̈ is the acceleration of the
mass.

A.2 Oscillator

The dynamics is usually written in the following form:

ẍ = − k

m
x− c

m
ẋ+ u

Where x is the position (same as p), ẋ would be the velocity (same as v) and ẍ
is the acceleration (same as v̇) of the mass.
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