Connect 4 with Deep Q-Learning

CIS 5603 - Artificial Intelligence
Prof. Pei Wang

XiaoHui Kang
Donye Wakefield
Dec 15, 2025

Introduction

This Project implements a Deep Q-Network (DQN) agent to play the game Connect 4.
The goal of the project was not only to train an agent that performs reasonably well, but also to
understand the entire learning process, including environment design, reward shaping, training
stability, evaluation, and practical debugging. Instead of using an existing library or environment
online, we implemented the full system from scratch. This includes the Connect 4 environment,
the replay buffer, the deep neural network, the training loop, the evaluation script, and finally a
simple graphical user interface (GUI). By doing this, | was able to clearly see how different
components of reinforcement learning (RL) interact with each other. Throughout the project, we
encountered multiple issues such as unstable training, poor evaluation results, incorrect reward
signals, and unexpected agent behavior. Solving these problems helped us understand RL
beyond theory and formulas. This report describes the system design, the problems

encountered, and the lesions learned during the learning process.

Environment Design

The first step of the project was to design a Connect 4 environment. The environment
controls the board state, available actions, turn switching, reward calculation, and game
termination. The board is a 6x7 matrix: 1 represents the agent's piece, -1 represents the
opponent's piece, and 0 represents an empty cell. The agent always plays first. After each agent
moves, a random opponent makes a move. This setup allows the agent to learn basic strategies
while keeping the opponent simple. Instead of using the raw board matrix, we converted the

board into a two-channel input. One channel shows where the agent's pieces are, and the other



channel shows where the opponent's pieces are. This format works better with convolutional
neural networks (CNNs), which is what’s used as the backend of the DQN, because the network
can learn patterns separately for each player. The function board_to_cnn_input() performs this
conversion automatically before feeding the state to the neural network.The environment has
several key methods. The reset() method clears the board and starts a new game. The step()
method takes an action (which column to drop a piece into) and returns the next state, the
reward, and whether the game is done. The available_actions() method returns which columns
still have empty spaces. The check winner() method checks all possible winning conditions:
horizontal, vertical, and diagonal lines of four pieces. One important decision was the reward
structure. We gave +1 reward for winning, 0 reward for a draw, and -2 reward for illegal moves.
At first, we tried giving small negative rewards for every move to encourage the agent to win
faster. However, this made training unstable because the agent would sometimes prefer losing
quickly over winning slowly. We removed these step penalties and the training became more

stable

Replay Buffer and Experience Replay

The replay buffer stores past experiences so the agent can learn from them multiple
times. Each experience contains the state, action taken, reward received, next state, and
whether the game ended. We store up to 50,000 experiences in a deque data structure. When
the buffer is full, old experiences are automatically removed. During training, we randomly
sample batches of 64 experiences from the buffer. This random sampling is important because it
breaks the correlation between consecutive game states. If we trained on experiences in the
order they happened, the agent would overfit to recent games and forget earlier lessons.
Random sampling helps the agent learn more general strategies. At first, we had a bug where
we started training before the buffer had enough experience. This caused errors because we
tried to sample more experiences than existed. We fixed this by checking if the buffer size is at
least 64 before starting any training step. This small check prevented many crashes early in

development.

Deep Q-Network Agent Architecture

The primary learning component of this project is a Deep Q-Network (DQN) agent that

would be designed to learn effective policies for playing Connect 4. It is important to explain how



the DQN framework works so that the model becomes clearer. A DQN combines Q-learning with
deep neural networks, allowing the agent to approximate the action-value function Q(s,a) for
high-dimensional state spaces that would otherwise be somewhat infeasible to represent using
other more tabular methods. This Q(s,a) would be represented as Q-values, so effectively the
DQN estimates the expected cumulative reward of placing a piece in any of the seven columns
given the current configuration of the Connect 4 board. The neural network architecture used for
function approximation is specifically tailored to exploit the spatial structure of the board. Each
game state is represented as a tensor of shape (2,6,7), where the 2 channels correspond to the
current player’s pieces and the opponent’s pieces. This encoding allows the model to
distinguish between friendly and opposing tokens while also preserving the two-dimensional
layout of the board. Such a representation is critical for learning spatial patterns, including
vertical stacks, horizontal connections, diagonal threats, etc. The network begins with a
convolutional component composed of three two-dimensional convolutional layers. The first
convolutional layer applies 32 filters of size 3x3 with padding, followed by a RelLU activation
function. This layer is intended to capture low-level spatial features such as adjacent pieces and
simple alignments. The second convolutional layer increases the number of filters to 64,
enabling the network to detect more complex patterns such as partial winning configurations
and early-stage threats. A third convolutional layer with 64 filters further refines the extracted
features, allowing the model to combine lower-level patterns into higher-level representations.
Pooling layers were intentionally omitted from the architecture in order to preserve the full
spatial resolution of the board, which basically means reducing dimensions through pooling
would result in shrinking the board and therefore losing critical positional information in a
relatively small game grid already. Following the convolutional layers, the output tensor is
flattened and passed into a fully connected component of the network. The flattened feature
vector has a size of 64x6x7, which is mapped to a hidden layer consisting of 256 neurons with
RelLU activation. This dense layer enables the network to integrate spatial features across the
entire board and should be able to reason about global board configurations. The final output
layer contains seven neurons, one for each possible action corresponding to dropping a piece
into one of the seven columns. Each output neuron represents a predicted Q-value for the
associated action, allowing the agent to compare and select among legal moves. Lastly, in order
to stabilize training, this DQN agent maintains two separate networks: a primary network and a
target network. The primary network is updated frequently through gradient descent, while the
target network is updated less often by copying the weights of the primary network. This

separation should help mitigate the instability that can arise when the same network is used



both to select and evaluate actions, which is apparently a known issue in standard Q-learning

with function approximation.

Training and Learning Strategy

Training the DQN agent would mean following an episodic RL framework, which means
each episode corresponds to a full game of Connect 4. During training, the agent plays against
a random opponent, which should provide a simple yet diverse baseline adversary. At the start
of each episode, the environment is reset and the agent begins interacting with the game by
selecting actions according to an epsilon-greedy policy. This strategy is supposed to balance
exploration and exploitation by allowing the agent to choose random actions with probability
(epsilon), while selecting the action with the highest predicted Q-value otherwise. The epsilon
value is initially set to 1.0, resulting in fully random behavior at the beginning of training. This
should encourage a more broader exploration of the state-action space and prevent the agent
from prematurely converging to suboptimal strategies. Over time though, epsilon decays in a
multiplicative manner toward a minimum value of 0.1, gradually shifting the agent’s behavior
toward exploitation of learned policies while still retaining some degree of randomness. This
decay schedule allows the agent to refine its strategy based on accumulated experience while
also avoiding the problem of overfitting too early. During each step of gameplay, the agent will
store its experiences in the replay buffer. For each sampled batch from the replay buffer, the
agent computes predicted Q-values for the actions taken using the primary network. Target
Q-values are computed using the target network by selecting the maximum predicted value for
the next state and applying the Bellman equation, which means the loss is calculated as the
mean squared error between the predicted Q-values and the target values, and the network
parameters are updated using the Adam optimizer. A discount factor (gamma) of 0.99 is used to
prioritize long-term rewards, which is hopefully appropriate for a strategic game like Connect 4
where delayed outcomes such as setting up future wins are critical. After completing all training
episodes, the learned model parameters are saved to storage, which would help allow the

trained agent to be evaluated independently of the training process.

Model Evaluation and Performance Assessment

After training was completed, the performance of the Deep Q-Network agent was

evaluated by having it play a series of games against a random opponent using a separate



evaluation script. During evaluation, the exploration was disabled by setting the agent’s epsilon
value to zero, ensuring that all actions were selected greedily based on the learned Q-values
rather than random exploration. A total of 100 games were played, and the outcomes were
recorded in terms of wins, losses, and draws. The evaluation results showed that the trained
agent achieved 31 wins out of 100 games, corresponding to a win rate of 31%, while losing 69
games and producing no draws. These results indicate that, although the agent was able to
learn some non-trivial strategies and even occasionally defeat the random opponent, its overall
performance remained relatively weak. Given that a random agent would be expected to win
approximately half of its games against another random player, the observed win rate suggests
that the learned policy was not robust enough to consistently outperform the baseline behavior.
Inspection of the final board states from several evaluation games provides additional insight
into the agent’s behavior. In many cases, the agent demonstrated an ability to form vertical or
diagonal sequences early in the game, indicating that it had learned some basic spatial patterns
relevant to Connect 4. However, the agent seemed to have frequently failed to recognize
imminent threats from the opponent or missed opportunities to block winning moves. This
suggests that while the convolutional neural network was able to extract these local board
features, the agent struggled to apply enough reason effectively about the longer-term

consequences and perform multi-step planning, which are critical in Connect 4.

Several factors likely contributed to the observed performance limitations. One major
challenge was the simplicity of the opponent used during training and evaluation. While training
against a random opponent allows the agent to learn fundamental mechanics of the game, it
seems to not expose the agent to consistently strong strategies. As a result, the learned policy
may have overfitted to suboptimal opponent behavior, and as a result, fail to generalize when
faced with more strategically diverse situations. Additionally, the reward structure used during
training was pretty sparse, with rewards primarily assigned at terminal states for wins or losses.
Sparse rewards can slow down learning and make it difficult for the agent to correctly assign
credit to intermediate actions that contribute to any long-term success. Another challenge
encountered during training was the instability in the learning process. Although experience
replay and a target network were implemented to improve stability, fluctuations in the loss
values were still observed throughout training. This behavior is apparently common in deep RL
and reflects the non-stationary nature of the learning target, as the agent’s policy continuously
evolves. Furthermore, the number of training episodes used was indeed limited due to

computational constraints, even when training in environments such as Google Colab. A much



larger number of training episodes would likely be necessary for the agent to converge toward a
stronger policy. Despite these limitations however, the evaluation results do demonstrate that
the implemented DQN was functional and capable of learning from interaction with the
environment, which shows progress. The agent showed measurable improvement over purely

random behavior and successfully integrated convolutional feature extraction with Q-learning.
Future Improvements and Conclusion

There are several clear directions for future improvement like increasing the number of
training episodes and adjusting the hyperparameters such as the learning rate, batch size, and
epsilon decay schedule, which could lead to more stable learning and improved performance.
Enhancing the reward function to include intermediate rewards for advantageous board
positions or successful blocking moves may also help guide the agent toward better strategies.
Additionally, training against stronger or adaptive opponents, such as maybe a heuristic-based
agent or through self-play, could significantly improve the robustness and generalization ability
of the learned policy. Also worth noting, there are more advanced extensions of DQN, such as
the Double DQN or Dueling DQN architectures that could be explored that apparently would
help even more in reducing overestimation bias and improve the learning efficiency. Overall
though, while the current results indicate that the agent has not yet achieved not even close to
strong competitive performance, the evaluation does highlight both the progress made and the

challenges inherent in applying deep reinforcement learning to complex, strategic board games.



	Connect 4 with Deep Q-Learning 
	Introduction 
	Environment Design 
	Deep Q-Network Agent Architecture 
	Training and Learning Strategy 
	Model Evaluation and Performance Assessment 


