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Introduction 
This Project implements a Deep Q-Network (DQN) agent to play the game Connect 4. 

The goal of the project was not only to train an agent that performs reasonably well, but also to 

understand the entire learning process, including environment design, reward shaping, training 

stability, evaluation, and practical debugging. Instead of using an existing library or environment 

online, we implemented the full system from scratch. This includes the Connect 4 environment, 

the replay buffer, the deep neural network, the training loop, the evaluation script, and finally a 

simple graphical user interface (GUI). By doing this, I was able to clearly see how different 

components of reinforcement learning (RL) interact with each other. Throughout the project, we 

encountered multiple issues such as unstable training, poor evaluation results, incorrect reward 

signals, and unexpected agent behavior. Solving these problems helped us understand RL 

beyond theory and formulas. This report describes the system design, the problems 

encountered, and the lesions learned during the learning process. 

Environment Design 
The first step of the project was to design a Connect 4 environment. The environment 

controls the board state, available actions, turn switching, reward calculation, and game 

termination. The board is a 6x7 matrix: 1 represents the agent's piece, -1 represents the 

opponent's piece, and 0 represents an empty cell. The agent always plays first. After each agent 

moves, a random opponent makes a move. This setup allows the agent to learn basic strategies 

while keeping the opponent simple. Instead of using the raw board matrix, we converted the 

board into a two-channel input. One channel shows where the agent's pieces are, and the other 



channel shows where the opponent's pieces are. This format works better with convolutional 

neural networks (CNNs), which is what’s used as the backend of the DQN, because the network 

can learn patterns separately for each player. The function board_to_cnn_input() performs this 

conversion automatically before feeding the state to the neural network.The environment has 

several key methods. The reset() method clears the board and starts a new game. The step() 

method takes an action (which column to drop a piece into) and returns the next state, the 

reward, and whether the game is done. The available_actions() method returns which columns 

still have empty spaces. The check_winner() method checks all possible winning conditions: 

horizontal, vertical, and diagonal lines of four pieces. One important decision was the reward 

structure. We gave +1 reward for winning, 0 reward for a draw, and -2 reward for illegal moves. 

At first, we tried giving small negative rewards for every move to encourage the agent to win 

faster. However, this made training unstable because the agent would sometimes prefer losing 

quickly over winning slowly. We removed these step penalties and the training became more 

stable 

Replay Buffer and Experience Replay 

The replay buffer stores past experiences so the agent can learn from them multiple 

times. Each experience contains the state, action taken, reward received, next state, and 

whether the game ended. We store up to 50,000 experiences in a deque data structure. When 

the buffer is full, old experiences are automatically removed. During training, we randomly 

sample batches of 64 experiences from the buffer. This random sampling is important because it 

breaks the correlation between consecutive game states. If we trained on experiences in the 

order they happened, the agent would overfit to recent games and forget earlier lessons. 

Random sampling helps the agent learn more general strategies. At first, we had a bug where 

we started training before the buffer had enough experience. This caused errors because we 

tried to sample more experiences than existed. We fixed this by checking if the buffer size is at 

least 64 before starting any training step. This small check prevented many crashes early in 

development. 

Deep Q-Network Agent Architecture 

The primary learning component of this project is a Deep Q-Network (DQN) agent that 

would be designed to learn effective policies for playing Connect 4. It is important to explain how 



the DQN framework works so that the model becomes clearer. A DQN combines Q-learning with 

deep neural networks, allowing the agent to approximate the action-value function Q(s,a) for 

high-dimensional state spaces that would otherwise be somewhat infeasible to represent using 

other more tabular methods. This Q(s,a) would be represented as Q-values, so effectively the 

DQN estimates the expected cumulative reward of placing a piece in any of the seven columns 

given the current configuration of the Connect 4 board. The neural network architecture used for 

function approximation is specifically tailored to exploit the spatial structure of the board. Each 

game state is represented as a tensor of shape (2,6,7), where the 2 channels correspond to the 

current player’s pieces and the opponent’s pieces. This encoding allows the model to 

distinguish between friendly and opposing tokens while also preserving the two-dimensional 

layout of the board. Such a representation is critical for learning spatial patterns, including 

vertical stacks, horizontal connections, diagonal threats, etc. The network begins with a 

convolutional component composed of three two-dimensional convolutional layers. The first 

convolutional layer applies 32 filters of size 3x3 with padding, followed by a ReLU activation 

function. This layer is intended to capture low-level spatial features such as adjacent pieces and 

simple alignments. The second convolutional layer increases the number of filters to 64, 

enabling the network to detect more complex patterns such as partial winning configurations 

and early-stage threats. A third convolutional layer with 64 filters further refines the extracted 

features, allowing the model to combine lower-level patterns into higher-level representations. 

Pooling layers were intentionally omitted from the architecture in order to preserve the full 

spatial resolution of the board, which basically means reducing dimensions through pooling 

would result in shrinking the board and therefore losing critical positional information in a 

relatively small game grid already. Following the convolutional layers, the output tensor is 

flattened and passed into a fully connected component of the network. The flattened feature 

vector has a size of 64×6×7, which is mapped to a hidden layer consisting of 256 neurons with 

ReLU activation. This dense layer enables the network to integrate spatial features across the 

entire board and should be able to reason about global board configurations. The final output 

layer contains seven neurons, one for each possible action corresponding to dropping a piece 

into one of the seven columns. Each output neuron represents a predicted Q-value for the 

associated action, allowing the agent to compare and select among legal moves. Lastly, in order 

to stabilize training, this DQN agent maintains two separate networks: a primary network and a 

target network. The primary network is updated frequently through gradient descent, while the 

target network is updated less often by copying the weights of the primary network. This 

separation should help mitigate the instability that can arise when the same network is used 



both to select and evaluate actions, which is apparently a known issue in standard Q-learning 

with function approximation.  

Training and Learning Strategy 

Training the DQN agent would mean following an episodic RL framework, which means 

each episode corresponds to a full game of Connect 4. During training, the agent plays against 

a random opponent, which should provide a simple yet diverse baseline adversary. At the start 

of each episode, the environment is reset and the agent begins interacting with the game by 

selecting actions according to an epsilon-greedy policy. This strategy is supposed to balance 

exploration and exploitation by allowing the agent to choose random actions with probability 

(epsilon), while selecting the action with the highest predicted Q-value otherwise. The epsilon 

value is initially set to 1.0, resulting in fully random behavior at the beginning of training. This 

should encourage a more broader exploration of the state-action space and prevent the agent 

from prematurely converging to suboptimal strategies. Over time though, epsilon decays in a 

multiplicative manner toward a minimum value of 0.1, gradually shifting the agent’s behavior 

toward exploitation of learned policies while still retaining some degree of randomness. This 

decay schedule allows the agent to refine its strategy based on accumulated experience while 

also avoiding the problem of overfitting too early. During each step of gameplay, the agent will 

store its experiences in the replay buffer. For each sampled batch from the replay buffer, the 

agent computes predicted Q-values for the actions taken using the primary network. Target 

Q-values are computed using the target network by selecting the maximum predicted value for 

the next state and applying the Bellman equation, which means the loss is calculated as the 

mean squared error between the predicted Q-values and the target values, and the network 

parameters are updated using the Adam optimizer. A discount factor (gamma) of 0.99 is used to 

prioritize long-term rewards, which is hopefully appropriate for a strategic game like Connect 4 

where delayed outcomes such as setting up future wins are critical. After completing all training 

episodes, the learned model parameters are saved to storage, which would help allow the 

trained agent to be evaluated independently of the training process. 

Model Evaluation and Performance Assessment 

After training was completed, the performance of the Deep Q-Network agent was 

evaluated by having it play a series of games against a random opponent using a separate 



evaluation script. During evaluation, the exploration was disabled by setting the agent’s epsilon 

value to zero, ensuring that all actions were selected greedily based on the learned Q-values 

rather than random exploration. A total of 100 games were played, and the outcomes were 

recorded in terms of wins, losses, and draws. The evaluation results showed that the trained 

agent achieved 31 wins out of 100 games, corresponding to a win rate of 31%, while losing 69 

games and producing no draws. These results indicate that, although the agent was able to 

learn some non-trivial strategies and even occasionally defeat the random opponent, its overall 

performance remained relatively weak. Given that a random agent would be expected to win 

approximately half of its games against another random player, the observed win rate suggests 

that the learned policy was not robust enough to consistently outperform the baseline behavior. 

Inspection of the final board states from several evaluation games provides additional insight 

into the agent’s behavior. In many cases, the agent demonstrated an ability to form vertical or 

diagonal sequences early in the game, indicating that it had learned some basic spatial patterns 

relevant to Connect 4. However, the agent seemed to have frequently failed to recognize 

imminent threats from the opponent or missed opportunities to block winning moves. This 

suggests that while the convolutional neural network was able to extract these local board 

features, the agent struggled to apply enough reason effectively about the longer-term 

consequences and perform multi-step planning, which are critical in Connect 4. 

Several factors likely contributed to the observed performance limitations. One major 

challenge was the simplicity of the opponent used during training and evaluation. While training 

against a random opponent allows the agent to learn fundamental mechanics of the game, it 

seems to not expose the agent to consistently strong strategies. As a result, the learned policy 

may have overfitted to suboptimal opponent behavior, and as a result, fail to generalize when 

faced with more strategically diverse situations. Additionally, the reward structure used during 

training was pretty sparse, with rewards primarily assigned at terminal states for wins or losses. 

Sparse rewards can slow down learning and make it difficult for the agent to correctly assign 

credit to intermediate actions that contribute to any long-term success. Another challenge 

encountered during training was the instability in the learning process. Although experience 

replay and a target network were implemented to improve stability, fluctuations in the loss 

values were still observed throughout training. This behavior is apparently common in deep RL 

and reflects the non-stationary nature of the learning target, as the agent’s policy continuously 

evolves. Furthermore, the number of training episodes used was indeed limited due to 

computational constraints, even when training in environments such as Google Colab. A much 



larger number of training episodes would likely be necessary for the agent to converge toward a 

stronger policy. Despite these limitations however, the evaluation results do demonstrate that 

the implemented DQN was functional and capable of learning from interaction with the 

environment, which shows progress. The agent showed measurable improvement over purely 

random behavior and successfully integrated convolutional feature extraction with Q-learning. 

Future Improvements and Conclusion 

There are several clear directions for future improvement like increasing the number of 

training episodes and adjusting the hyperparameters such as the learning rate, batch size, and 

epsilon decay schedule, which could lead to more stable learning and improved performance. 

Enhancing the reward function to include intermediate rewards for advantageous board 

positions or successful blocking moves may also help guide the agent toward better strategies. 

Additionally, training against stronger or adaptive opponents, such as maybe a heuristic-based 

agent or through self-play, could significantly improve the robustness and generalization ability 

of the learned policy. Also worth noting, there are more advanced extensions of DQN, such as 

the Double DQN or Dueling DQN architectures that could be explored that apparently would 

help even more in reducing overestimation bias and improve the learning efficiency. Overall 

though, while the current results indicate that the agent has not yet achieved not even close to 

strong competitive performance, the evaluation does highlight both the progress made and the 

challenges inherent in applying deep reinforcement learning to complex, strategic board games. 
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