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Abstract
This work explores a solution of enabling machines to per-
ceive and interpret human gestures through ambient elec-
tromagnetic signals. We develop a perceptual system that
leverages Wi-Fi Channel State Information (CSI) as a sens-
ing modality for non-contact hand gesture recognition. The
system implements a multi-stage perception pipeline—from
signal acquisition and sensory preprocessing to pattern recog-
nition and classification—achieving an F1-score of 0.97 across
six gesture classes. This work demonstrates how AI systems
can extend perceptual capabilities beyond traditional visual
and tactile sensing, enabling machines to "see" human mo-
tion through radio frequency variations. We analyze the sys-
tem from an AI perception perspective, examining feature
extraction, pattern discrimination, and the learned represen-
tations that enable robust gesture recognition.
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1 Introduction
1.1 Perception in Artificial Intelligence
Perception represents a foundational capability in artificial intelli-
gence—the ability to acquire, process, and interpret sensory informa-
tion from the environment to form meaningful representations that
enable intelligent behavior. While biological systems utilize vision,
hearing, touch, and other modalities to perceive their surroundings,
AI systems must design and implement artificial perceptual mech-
anisms that can extract relevant information from diverse signal
sources.

Traditional AI perception systems have primarily focused on
visual (camera-based) and auditory sensing. However, the space
of possible sensing modalities is much richer. This work explores
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radio frequency (RF) perception—specifically, using Wi-Fi Channel
State Information (CSI) as a sensory modality for perceiving human
gestures. This represents a novel form of machine perception that
extends AI’s sensory capabilities beyond conventional approaches.

1.2 The Gesture Perception Problem
Gesture recognition exemplifies a classical perception problem inAI:
given continuous sensory input (in this case, WiFi signal variations),
the system must:

• Sense: Acquire raw sensory data from the environment
• Process: Transform raw signals into meaningful features
• Recognize: Identify patterns corresponding to discrete ges-
ture categories

• Classify: Map observations to semantic labels (gesture types)

This perception pipeline parallels how biological systems process
sensory information. Just as human visual perception transforms
retinal patterns into recognized objects, our system transforms RF
signal patterns into recognized gestures.

1.3 Why WiFi-Based Perception
Wi-Fi Channel State Information (CSI) offers unique advantages as
a perceptual modality:

• Ubiquitous Sensing: Leverages existing WiFi infrastruc-
ture, requiring no additional sensors

• Privacy-Preserving: Unlike cameras, RF sensing does not
capture visual appearance

• Non-Invasive: Requires no worn devices or user instrumen-
tation

• Robust to Environmental Conditions: Functions in dark-
ness, occlusion, and varied lighting

• Penetrating Capability: RF signals can penetrate obstacles,
enabling through-wall sensing

As illustrated in Figure 1, WiFi transmitters (TX) and receivers
(RX) continuously exchange signals. When a user performs hand
gestures, these movements create variations in signal propagation
that manifest as changes in the CSI data. The challenge is to build
an AI perception system that can learn to interpret these signal
variations as meaningful gesture patterns.

1.4 Research Contributions
This work makes the following contributions to AI perception:

• Perceptual System Design: We design and implement a
complete perception pipeline for RF-based gesture recogni-
tion, from raw signal acquisition to high-level gesture classi-
fication
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Figure 1: Example Usage of Wi-Fi CSI for Hand Gesture
Recognition

• Feature Learning: We develop preprocessing methods that
enhance perceptually-relevant signal variations while sup-
pressing noise, analogous to early sensory processing in
biological systems

• Pattern Recognition: We apply deep residual learning to
automatically discover discriminative features for gesture
patterns, achieving 97% F1-score

• Perceptual Analysis: We analyze what patterns the system
learns, where perception fails (confusion between similar
gestures), and how preprocessing affects perceptual capabil-
ities

2 Related Work
2.1 AI Perception Systems
Perception in AI has evolved from hand-crafted feature extractors
to learned representations. Classical approaches relied on domain
experts to design features (e.g., SIFT for vision, MFCCs for audio),
while modern deep learning enables end-to-end perceptual learning
where features emerge automatically from data [7].

2.2 WiFi-Based Sensing as Perception
Wi-Fi CSI has emerged as a powerful perceptual modality for human
activity recognition [2, 4]. These systems implement various stages
of the perception pipeline:

• Signal Processing Layer: Filtering and denoising to en-
hance signal-to-noise ratio [5]

• Feature Extraction: Converting raw CSI into representa-
tions suitable for pattern recognition [3]

• Pattern Recognition: Applying machine learning to recog-
nize activities from features [1]

• Domain Adaptation: Enabling perception to generalize
across environments [6]

Wang et al. [1] developed Widar3.0, demonstrating that veloc-
ity profiles extracted from CSI can serve as domain-independent
perceptual features. This mirrors biological perception, where mo-
tion patterns (optic flow) provide robust cues regardless of specific
visual appearance.

2.3 Deep Learning for Perceptual Learning
Recent work has shown that deep neural networks can learn hi-
erarchical perceptual representations from CSI data. Xu et al. [7]
explored self-supervised learning techniques that enable perceptual
systems to learn from unlabeled sensory data, reducing dependence

on annotated training examples. This parallels how biological sys-
tems learn perceptual capabilities through unsupervised exposure
to sensory stimuli.

3 Perception System Architecture
3.1 Perceptual Pipeline Overview
Our gesture perception system implements a multi-stage pipeline
(Figure 2):

Figure 2: Perception System Architecture

(1) Sensory Acquisition: Raw CSI data capture
(2) Preprocessing: Signal filtering and feature selection
(3) Feature Extraction: Hierarchical representation learning

via ResNet
(4) Pattern Recognition: Classification into gesture categories
This architecture mirrors the computational stages in biologi-

cal perception, from early sensory processing to high-level object
recognition.

3.2 Problem Formulation: Perception as Pattern
Recognition

Formally, we define gesture perception as learning a mapping func-
tion:

𝑓𝜃 : X → Y
where:
• X = R𝑇×𝑑 is the space of CSI observations (𝑇 timesteps, 𝑑
features)

• Y = {1, 2, ..., 𝐾} is the discrete set of gesture categories
• 𝜃 represents learned perceptual parameters

The challenge is to learn 𝜃 such that 𝑓𝜃 maps similar sensory pat-
terns to the same category while discriminating between different
gesture types—a fundamental pattern recognition problem in AI.

3.3 Sensory Preprocessing: Enhancing
Perceptual Signals

Raw sensory signals contain both information-bearing variations
and noise. Effective perception requires isolating relevant signals,
analogous to early sensory processing in biological systems (e.g.,
retinal preprocessing in vision).
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We apply Butterworth filtering to extract low-frequency compo-
nents that correspond to hand motion, removing high-frequency
noise:

𝑋𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝐻 (𝑓 ) · 𝑋𝑟𝑎𝑤

where 𝐻 (𝑓 ) is the Butterworth filter frequency response. This
preprocessing enhances the signal-to-noise ratio, making subse-
quent pattern recognition more effective.

Additionally, we found that the real component of CSI carries
more perceptually-relevant information than the imaginary com-
ponent. This suggests that amplitude variations (captured by the
real part) are more informative for gesture perception than phase
variations.

3.4 Feature Learning: Hierarchical Perceptual
Representations

We employ a Residual Network (ResNet) architecture to learn hi-
erarchical perceptual features. ResNet’s skip connections enable
learning of increasingly abstract representations:

• Early Layers: Detect low-level signal patterns (edges, tran-
sitions)

• Middle Layers: Combine low-level features into motion
primitives

• Deep Layers: Recognize complex gesture patterns
This hierarchical processing parallels the ventral visual stream

in biological perception, where simple features combine to form
increasingly complex representations.

The ResNet architecture consists of:
• Input convolutional layer (64 filters, stride 2)
• Three residual stages with progressive downsampling
• Global average pooling
• Fully connected classification layer

The residual connections enable gradient flow through deep net-
works, allowing the system to learn subtle perceptual distinctions.

4 Experimental Evaluation
4.1 Dataset and Perceptual Categories
We use the WIDAR 3.0 dataset [8], focusing on six distinct gesture
categories (Figure 3):

• Push & Pull: Forward/backward motion
• Sweep: Lateral arm movement
• Clap: Repetitive hand collision
• Slide: Horizontal sliding motion
• Draw-N: Angular motion pattern (letter N)
• Draw-O: Circular motion pattern

Figure 3: Dataset Gestures Overview

Each gesture produces a distinctive CSI signature. The dataset
contains 1,500 samples per gesture (9,000 total), split 60% training,
20% validation, 20% testing.

4.2 Training the Perceptual System
We train the perception system using:

• Optimizer: Adam (learning rate: 0.001)
• Loss Function: Cross-entropy (measures perceptual confu-
sion)

• Epochs: 30 (early convergence observed)
• Batch Size: 32

4.3 Perception Performance
Baseline System: LearningWithout Preprocessing. The baseline ResNet
without preprocessing achieved:

• Training accuracy: 89.41%
• Validation accuracy: 76.11%
• Test accuracy: 75.0%

The performance gap between training and testing suggests
the perceptual system overfits to training data patterns, failing to
generalize perceptual capabilities.

Enhanced Perception: The Role of Preprocessing. After applying But-
terworth filtering and selecting the real CSI component, perception
performance improved dramatically (Table 1):

Table 1: Perceptual Performance by Gesture Class

Gesture Precision Recall F1-Score Samples
Push & Pull 0.94 0.93 0.94 157

Sweep 0.93 0.94 0.94 154
Clap 1.00 1.00 1.00 135
Slide 0.98 1.00 0.99 160

Draw-N 1.00 0.96 0.98 141
Draw-O 0.98 0.99 0.99 153
Overall 0.97 0.97 0.97 900

This demonstrates that preprocessing—analogous to early sen-
sory processing in biological systems—is crucial for effective per-
ception.

Figure 4 illustrates the impact of filtering on perceptual signal
quality:

The filtered signals exhibit clearer patterns, enabling more effec-
tive perceptual learning.

5 Perceptual Analysis
5.1 Where Perception Succeeds
The confusion matrix (Figure 5) reveals strong diagonal values,
indicating robust perceptual discrimination. Most gestures achieve
near-perfect recognition:

• Clap: 100% accuracy (distinctive repetitive pattern)
• Slide: 99% F1-score (clear horizontal motion signature)
• Draw-O: 99% F1-score (distinctive circular pattern)

5.2 Where Perception Fails: Perceptual
Confusion

The system exhibits perceptual confusion between gestures with
similar motion characteristics:
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(a) Raw CSI Amplitude (b) Filtered CSI Amplitude

(c) Raw CSI Real Part (d) Filtered CSI Real Part

Figure 4: Impact of Preprocessing on Perceptual Signal Qual-
ity

Figure 5: Confusion Matrix: Analyzing Perceptual Errors

Push & Pull vs. Sweep Confusion. The system misclassifies Push &
Pull as Sweep in 11 cases. Both gestures involve horizontal arm
motion:

• Push & Pull: Forward/backward motion along sagittal axis
• Sweep: Lateral motion along transverse axis

Both produce similar RF signatures with predominant motion
in the horizontal plane. The perceptual system struggles to dis-
criminate the axis of motion—a limitation analogous to motion
ambiguities in human vision (e.g., the aperture problem).

Draw-N vs. Draw-O Confusion. Angular (Draw-N) and circular
(Draw-O) motions occasionally confuse the system. This suggests:

• Smooth transitions in Draw-N resemble portions of Draw-
O’s circular motion

• The learned perceptual features may not fully capture angu-
lar vs. curved motion characteristics

• Additional temporal or geometric features may be needed
for robust discrimination

5.3 Learning Dynamics: Training the Perceptual
System

Figure 6 shows the learning curves:

Figure 6: Perceptual Learning Dynamics

• Training Loss: Steady decrease indicates effective gradient-
based learning

• Validation Fluctuations: Early instability stabilizes after
epoch 10, suggesting the perceptual system initially learns
noisy patterns before converging on robust features

• Fast Convergence: The system develops perceptual capa-
bilities quickly, reaching peak performance by epoch 20

These dynamics resemble perceptual learning in biological sys-
tems, where initial learning is unstable but eventually converges to
stable perceptual representations.

6 Discussion
6.1 The Importance of Sensory Preprocessing
Our results demonstrate that perceptual performance critically
depends on preprocessing. Raw signals contain irrelevant varia-
tions that confuse pattern recognition. Effective perception requires
filtering to isolate information-bearing components—a principle
observed across biological sensory systems (retinal preprocessing,
cochlear filtering, etc.).

This highlights a general principle in AI perception: percep-
tual systems must actively process sensory input to extract
relevant information, not merely record raw signals.

6.2 Feature Modality Selection
The superior performance of real vs. imaginary CSI components
reveals that not all signal aspects contribute equally to percep-
tion. The real component captures amplitude variations directly
related to physical motion, while phase information (imaginary
component) may be more susceptible to environmental noise.

This suggests: effective perception requires understanding
which signal modalities contain task-relevant information,
similar to how vision focuses on certain wavelengths or hearing
emphasizes certain frequency ranges.

6.3 Perceptual Generalization vs. Overfitting
The baseline system’s overfitting demonstrates a fundamental chal-
lenge in perceptual learning: memorizing training examples vs.
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learning generalizable perceptual features. Preprocessing improved
generalization by reducing dimensionality and removing spurious
patterns.

This relates to the classical AI problem of distinguishing rele-
vant from irrelevant variations in sensory input—the system
must learn to ignore noise while capturing signal.

6.4 Hierarchical Perceptual Representations
ResNet’s layered architecture learns increasingly abstract percep-
tual features, from low-level signal patterns to high-level gesture
representations. This hierarchical organization parallels biological
perception and represents a key principle in AI: complex percep-
tion emerges from compositional combination of simpler
features.

6.5 Limitations and Future Directions
Dataset Diversity. The single-user dataset limits perceptual gen-
eralization. Human perception develops through diverse sensory
experiences; similarly, AI perception requires exposure to varied
conditions. Future work should:

• Include multiple users with varying gesture styles
• Test across different environments (rooms, furniture layouts)
• Evaluate robustness to environmental dynamics

Perceptual Ambiguity. Some gestures remain perceptually ambigu-
ous (Push/Sweep confusion). Biological systems resolve ambiguity
through:

• Multi-modal Perception: Combiningmultiple sensorymodal-
ities

• Temporal Context: Using motion history to disambiguate
• Attention Mechanisms: Focusing on discriminative fea-
tures

Future perception systems could incorporate these mechanisms.

Explainable Perception. Understanding what the system perceives
remains challenging. Visualization techniques (activation maps, fea-
ture attribution) could reveal learned perceptual features, enabling:

• Debugging perceptual failures
• Validating learned representations
• Improving system design through understanding

Alternative Architectures. We tested AlexNet (Figure 7) but found
ResNet superior. Other architectures (Transformers, attention-based
models) may better capture temporal perceptual patterns. This
suggests: perceptual architecture design should match the
structure of perceptual information in sensory signals.

7 Conclusion
This work demonstrates that AI systems can develop novel forms
of perception beyond traditional sensing modalities. By treating
WiFi CSI as a perceptual signal, we enable machines to "see" human
motion through electromagnetic variations—a form of perception
unavailable to biological systems.

Key insights for AI perception include:
• Preprocessing is Perceptual Processing: Effective per-
ception requires active signal transformation, not passive
recording

Figure 7: Alternative Architecture Performance: AlexNet

• Feature Learning Enables Perception: Deep learning can
automatically discover perceptual features from sensory data

• Perceptual Errors Reveal Limitations: Confusion pat-
terns indicate what the system does/doesn’t perceive

• Perceptual Generalization Requires Diversity: Robust
perception needs exposure to varied sensory conditions

Our 97% F1-score demonstrates that RF-based gesture perception
is feasible and effective. This opens possibilities for:

• Privacy-preserving human-computer interaction
• Ambient intelligence in smart environments
• Through-wall sensing for security and healthcare
• Multi-modal perception systems combining RFwith vision/audio

As AI systems expand their perceptual capabilities, they can
engage with the world through increasingly diverse sensory modal-
ities, bringing us closer to truly intelligent machines that perceive
and interpret their environment as richly as biological organisms.

Future Work: We aim to expand dataset diversity, explore at-
tention mechanisms for resolving perceptual ambiguity, and de-
velop multi-modal perception systems that integrate RF sensing
with traditional modalities. Understanding and improving machine
perception remains a fundamental challenge in achieving robust,
generalizable artificial intelligence.
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