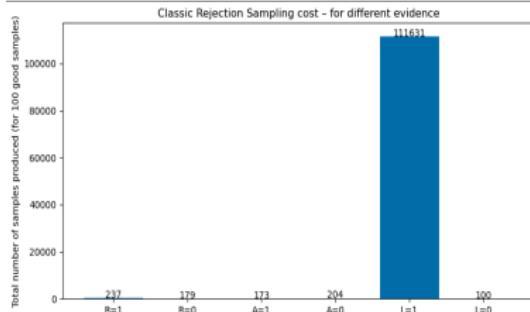
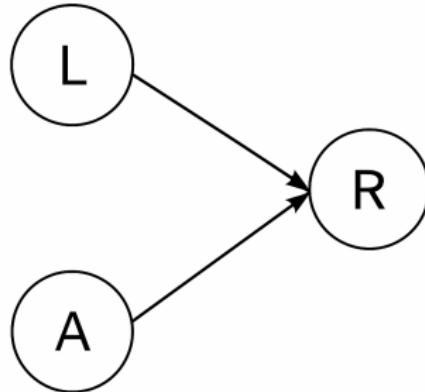


Quantum Bayesian Inference on Rejection Sampling: Grover-Accelerated Rare Event Amplification

Temple University — CIS 5603 Project Presentation

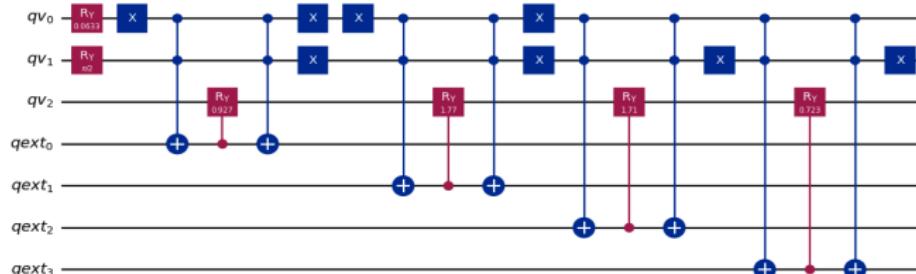
Murathan Akman



Temple University

Bayesian Network Problem

Why Classical Inference Fails for Rare Events

- ▶ Marginalization becomes expensive: $P(L) = \sum_{A,R} P(L, A, R)$
- ▶ Rejection sampling is extremely inefficient for rare evidence:
 $P(L = 1) = 0.001 \Rightarrow$ requires $\sim 100,000$ samples
- ▶ Reason:
 - ▶ Almost all samples are discarded
 - ▶ Classical inference becomes too slow


Quantum Solution: Grover Amplitude Amplification

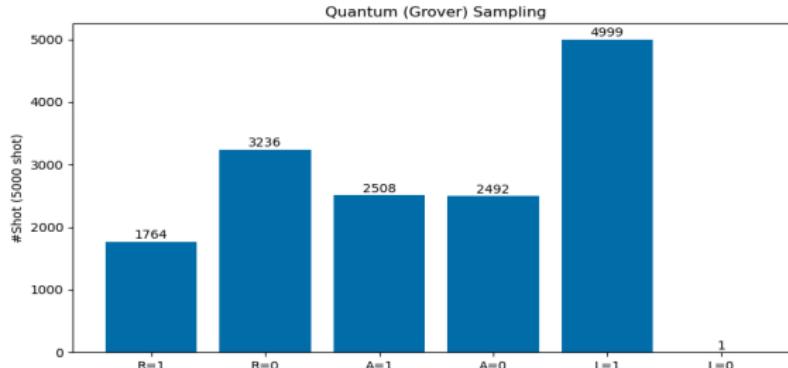
Turning a Rare Event Into a High-Probability Outcome

- ▶ The Bayesian Network state is encoded into a quantum register
- ▶ An oracle is defined that marks the state where $L = 1$
- ▶ Grover behavior after k iterations:

$$\mathcal{Q}^k |\Psi_{\text{init}}\rangle = \sin\left(\frac{(2k+1)\theta}{2}\right) |\text{Good}\rangle + \cos\left(\frac{(2k+1)\theta}{2}\right) |\text{Bad}\rangle$$

- ▶ Required number of Grover iterations: $k \approx \frac{\pi}{4\sqrt{p}} \approx 24$

Simulator Results

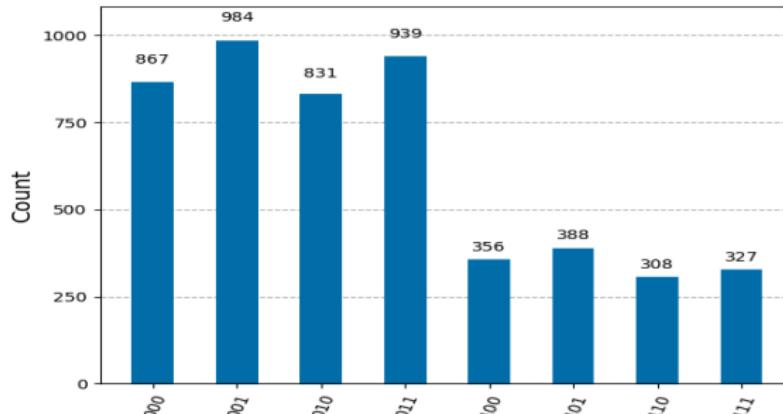

Noise-free Qiskit Simulator (5000 shots)

- ▶ 5000 shots were executed
- ▶ The target rare event $L = 1$ is amplified to **over 99%**
- ▶ Clear quantum speedup:

Classical requires $\sim 100,000$ samples

Quantum requires just 1 shot per sample

- ▶ Number of Grover iterations used: **24**


Real Quantum Hardware Results

IBM Torino (133 qubits — Free Tier)

- ▶ Circuit transpilation expanded the gates to over 1000 operations
- ▶ Hardware noise significantly degrades amplitude amplification
- ▶ Measured result:

$$P(L = 1) \approx 0.27$$

- ▶ Despite noise, still **better** than classical rejection sampling
- ▶ Grover iteration count: **24**

Conclusion: Quantum Speedup Demonstrated

For our test case (rare evidence with $P(L = 1) = 0.001$), producing just 100 good samples requires either:

- ▶ Classical rejection sampling → **100,000 total samples**
- ▶ Quantum amplitude amplification → **24 Grover iterations**

- ▶ Simulator result: **99% success for L=1**
- ▶ Real hardware: **27% success** (noise effects), still far above classical
- ▶ Project success: Bayesian inference demonstrated on both simulator and real quantum hardware

References

- M. de Oliveira and L. S. Barbosa.
Quantum Bayesian decision-making.
Preprint, 2023.
- G. H. Low, T. J. Yoder, and I. L. Chuang.
Quantum inference on Bayesian networks.
Physical Review A, 89(6):062315, 2014.
- P. Sakkaris.
QuDot Nets: Quantum Computers and Bayesian Networks.
arXiv preprint arXiv:1601.07035, 2016.
- M. Steffen, D. P. DiVincenzo, J. M. Chow, T. N. Theis, and M. B. Ketchen.
Quantum computing: An IBM perspective.
IBM Journal of Research and Development, 55(5):13:1–13:11, 2011.
- Qiskit Documentation.
<https://qiskit.org>