
Temple University

Artificial Intelligence: Project Report

Student :
Aayush Acharya
TUID: 916538863

Submitted to :
Pei Wang

Date: December 15, 2025



Assignment 7

1 Introduction
Large Language Models (LLMs) are trained on static corpora with a fixed knowledge
cutoff, which limits their ability to reason about up-to-date facts. Retrieval-Augmented
Generation (RAG) has emerged as a practical solution by grounding LLM outputs in
external knowledge sources. This project explores knowledge graphs as a structured and
interpretable retrieval substrate for RAG. Specifically, we study the problem of graph re-
trieval : how to select the most relevant nodes and edges from a large knowledge graph to
support multi-hop question answering. The project proposes and implements an LLM-
driven graph retriever that treats the LLM as a reasoning agent for iterative graph traver-
sal rather than a pure text generator. Beyond the final system, this report emphasizes
the learning process, design challenges, and lessons learned while building an end-to-
end graph retriever for KGQA. The code and resources for this project are available in
https://github.com/aayushacharya/graph-retriever.

2 Background

2.1 Graph Retrieval for KGQA

A graph retriever identifies and extracts a relevant subgraph from a large knowledge
graph given a natural language query. Instead of operating on the entire graph, which
is computationally infeasible, the retriever narrows down the search space to a query-
specific context consisting of selected entities and relations. This subgraph is then used
by downstream reasoning or answer-generation components.

Graph retrievers serve as a bridge between natural language queries and structured
data, and they are a core component in KGQA systems, fact verification pipelines, and
graph-augmented LLM frameworks.

2.2 Why Knowledge Graphs for RAG?

Compared to unstructured text, knowledge graphs offer:

• Explicit relational structure for multi-hop reasoning

• Reduced ambiguity through typed entities and relations

• Interpretability and traceability of reasoning paths

• Better support for logical and compositional queries

These properties directly address limitations observed in vector-based retrieval sys-
tems, which often retrieve semantically related but structurally irrelevant information.

3 Related Work
Traditional KGQA pipelines rely on entity linking and relation extraction followed by
symbolic graph traversal. While precise, these pipelines are brittle and struggle with
ambiguous or complex questions. Embedding-based retrievers project queries and nodes
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into a shared semantic space [1, 4], enabling scalable similarity-based retrieval but often
losing structural constraints.

More recent neural-symbolic approaches [2] integrate learning-based methods with
symbolic reasoning, improving robustness on compositional queries. LLM-based systems
such as text-to-SPARQL frameworks generate executable queries directly, but they are
highly sensitive to syntax errors and ontology mismatches, especially in large graphs like
Freebase.

This project builds on these ideas by using the LLM as a graph traversal planner
rather than a direct query generator.

4 Learning process
Curiosity Question 1: How can LLMs trained with a knowledge cutoff provide
insight on today’s data? LLMs are trained on static corpora and therefore cannot di-
rectly encode facts that emerge after their training cutoff. Through this project, I learned
that Retrieval-Augmented Generation (RAG) is the dominant paradigm for addressing
this limitation. In particular, grounding LLM outputs in external knowledge sources al-
lows the model to reason over up-to-date information at inference time. Among different
retrieval substrates, knowledge graphs stood out due to their structured representation of
entities and relations, which naturally support multi-hop and compositional reasoning.

Curiosity Question 2: How do you know which nodes and edges to retrieve
from a knowledge graph? This question exposed a central challenge in graph-based
RAG systems. Unlike text retrieval, graph retrieval requires selecting not just relevant
entities but also the correct relational paths. Through experimentation, I found that
embedding-based similarity alone is insufficient for this task. This motivated the idea of
using an LLM as a reasoning agent that iteratively proposes graph traversal strategies,
retrieves partial subgraphs, and reflects on what information is still missing.

Curiosity Question 3: How do you evaluate retrieval systems involving knowl-
edge graphs? While designing the retriever, it became clear that evaluating retrieval
quality in isolation is difficult. I discovered that the scientific community uses Knowledge
Graph Question Answering (KGQA) benchmarks which provide an end-to-end evalua-
tion framework, where retrieval quality is implicitly measured by downstream question
answering performance.

Curiosity Question 4: What are the popular KGQA benchmarks? Through a
survey of the literature, I identified several KGQA benchmarks, among which GrailQA
is one of the most prominent. GrailQA is specifically designed to test generalization and
multi-hop reasoning, making it well-suited for evaluating graph retrievers that aim to
move beyond simple pattern matching.

Curiosity Question 5: How can an LLM translate natural language into queries
without understanding the graph? A key insight from this project is that LLMs
cannot reliably generate correct formal queries without explicit knowledge of the graph
schema. To address this, the system provides structured context in the form of ontology
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specifications, including entity types and relation identifiers. By constraining the LLM
to reason only over the provided ontology, the system significantly reduces invalid queries
and hallucinated relations.

5 Dataset
We use the GrailQA [3] dataset, a large-scale KGQA benchmark built on Freebase with
approximately 64K questions. Each question is annotated with logical forms, enabling
precise evaluation. GrailQA is explicitly designed to test generalization under three set-
tings:

• i.i.d.: similar to training distributions

• Compositional: novel combinations of known patterns

• Zero-shot: unseen relations and structures

The dataset emphasizes multi-hop reasoning and is widely used to benchmark graph
retrievers and KGQA models, making it a suitable testbed for this project.

6 Methodology
The implemented system follows an LLM-driven, iterative graph retrieval paradigm. In-
stead of embedding-based similarity search, the LLM generates structural probes that
guide graph traversal. The full architecture is given in Figure 1.

6.1 Curiosity Question 2: How do you know which nodes and
edges to retrieve?

This question lies at the core of graph retrieval. The project addresses it by decomposing
retrieval into an iterative reasoning loop:

1. Translate the natural language question into abstract traversal plans (structural
probes).

2. Execute these probes deterministically against the KG to retrieve a partial subgraph.

3. Reflect on the completeness of the retrieved subgraph.

4. Generate new probes targeting missing relations or entities.

This loop continues until sufficient information is retrieved or a depth limit is reached.

6.2 System Components

• Structural Probe Generator: Converts a question into schema-aware traversal
instructions instead of rigid queries.

• Reflection-Based Executor: Executes probes as safe graph queries, ensuring
retrieved facts exist in the KG.
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Figure 1: Proposed architecture of the graph-retriever system

• Self-Consistent Subgraph Reconstructor: Uses LLM reflection to identify gaps
and guide further retrieval.

• Consistency Filtering: Runs multiple traversal strategies (e.g., BFS, DFS) and
intersects results to reduce hallucination.

7 Experiments and Results
Due to time and resource constraints, full-scale quantitative evaluation on the GrailQA
leaderboard was not completed. A small curated subset of 9 samples was created and
evaluated on the baseline and proposed methods. The result is shown in Table 1.

A qualitative comparison was conducted against a baseline text-to-SPARQL approach.
The baseline failed due to syntactic errors and incorrect relation usage, while the proposed
retriever was more robust by construction, as it relied on simple, deterministic graph
queries. An example of the comparison between two approaches is provided in Figure 2.

Model EM
Gemini 2.5 pro Baseline 44.44
Proposed architecture 55.55

Table 1: Results on a small curated subset of questions.(Not the dev set of GrailQA)
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Figure 2: Qualitative comparison of the baseline approach with proposed system
through an example.

8 Lessons Learned
This project was as much a learning exercise as a systems implementation. Key lessons
include:

• LLMs are better planners than executors: Asking LLMs to generate traversal
strategies is more reliable than asking them to generate full formal queries.

• Structure matters: Pure semantic similarity is insufficient for multi-hop reasoning
over KGs.

• Reflection improves retrieval: Iterative self-evaluation helps identify missing
information and reduces brittle failures.

• Engineering challenges dominate: Rate limits, ontology size, and query latency
significantly shape system design.

9 Limitations
The current system lacks large-scale quantitative evaluation and is limited by rate costs of
proprietary AI models. The approach also incurs higher inference cost than the baseline
to multiple LLM calls per query. Additionally, the system has been tested primarily on
Freebase-style graphs and may require adaptation for other KG schemas.

10 Conclusion
This project demonstrates that knowledge graphs are a powerful retrieval substrate for
grounding LLMs beyond their training cutoff. By framing graph retrieval as an iterative,
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LLM-guided reasoning process, the system avoids many pitfalls of direct query generation
and embedding-based retrieval. The project provides a strong foundation for future work
on robust, interpretable graph-augmented LLM systems.
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