/ﬁé\:\ \

DE-AT CIPHER

DECODING THE LANGUAGE OF
MACHINES

+

By: Hardik Sharma

Introduction

1. The rise of Al language models has blurred the lines between machine-generated and human-

generated text.

2. This project aims to explore the possibility of separating Al-generated text from human-
written text by analyzing a comprehensive set of various linguistic and statistical metrics.

3. By examining features such as perplexity, stylometric patterns, syntactic structures, semantic
coherence, and others, the project will evaluate which metrics are most effective in
distinguishing between the two types of text.

4. The ultimate goal 1s to deepen our understanding of the characteristics that differentiate Al-

generated content from human writing and assess the feasibility of accurately separating them.

Motivation
The ability to differentiate between Al-generated and human-written text is increasingly important

for several reasons:

1. In an era where information is abundant, verifying the authenticity of content is crucial for

maintaining trust in digital communications.

2. Al-generated texts can be used to spread fake news or propaganda. Identifying such content

helps mitigate the impact of disinformation.

3. As Al tools become accessible, there is a risk of misuse in academic settings. Detecting Al-

generated submissions is essential to uphold academic standards.

4. Understanding how Al-generated text differs from human writing contributes to responsible

Al development and deployment.

Dataset

DAIGT | Catch The AI (Link): This data consists of different LLMs , such as: Mistral-7B(v1&v2) ,
Llama 70b , Falcon180b ,GPT (3.5 & 4), Claude.

Training Records: 25969 ,Validation Records: 2730 and Testing Records: 2730

DAIGT - Mixed Paragraph Dataset v1 (Link):
All Records: 74868 unique records

LLM - Detect Al Generated Text Dataset (Link): The dataset comprises of a mixture of 28,000
student-written essays and essays generated by a variety of LLMs.

All Records: 27340 unique records

https://www.kaggle.com/datasets/zeyadusf/daigt-all-data-for-competition
https://www.kaggle.com/datasets/serjhenrique/daigt-mixed-paragraph-dataset-v1
https://www.kaggle.com/datasets/sunilthite/llm-detect-ai-generated-text-dataset

Methodology

Repeating N "
. Read
- - 6 N Notebook i if Wor N . _ .
DAIGT - Mixed Paragraph Dataset v1 lew Notebool text label prompt_name source RDizzI3_seven Cl Py =Count Polarity Subjectivity H
DataCard Code (3) Discussion (0) Suggestions (0)
Dear
Principleninl - Community g False 1.200325 4244699 7.101270 -0.539608 .. 13 0108205 0514580 72.9¢
R . think that the service
train.csv (156.13 MB) KA parents sh...
Itis
Detail Compact Column 5 of 5 columns v extremely G it
important 0 iy mixed False 1.334061 4.263190 6.143157 -0.686598 ... 0 0091919 0630952 69.4:
is fi [£) Add Suggestion that children
About this file make t...
Essays for the competition Although if
—’ they were out e —
wunning 0 ooy mixed False 1.237661 4.276494 6.600905 -0.539013 ... 7 0216288 0.473674 60.9(
& text = # label = 4 prompt_name = 2 source = ~ RDizzI3_saven around
essay text 1for Al generated, O for original persuade prompt source dataset doing...
human
e ‘With wanting
Distance learning 10% mixed 40% true to make the Commuﬂity .
h 204k worlda 0 " mixed False 1.203834 4.282497 6.428945 -0.710539 ... 6 0190417 0505069 76.5¢
74868 Seeking multiple ... 10% persuade_corpus 35% better place service
unique values false
0 1 Other (60138) 80% Other (18872) 25% 54.4k
) Community service mixed false SO",-'E
community
service -, Community oy False 1.326604 4.268661 6.356883 -0.796713 ... 2 0226736 0428472 69.4¢
o involves service
i to o, suen T
tu...

1. Take raw text data 2. Calculate features/ LLM Metric Score
for each text record

3. Preprocess the resultant data

* Remove any missing value

5. Apply various machine learning
algorithms on the validation dataset
and store the one with best performance.
Apply that model on the test data.

4. Divide the data into Training,
Validation and Testing

e Normalize all the features

LLM Metrics : PerpleXIt?y (1/17)

In this function we calculate the perplexity of a given
text using a pre-trained language model. (in my case, I
used bert-base-uncased). Perplexity is a measure of
how well a language model predicts the text. Lower
perplexity indicates the text is more predictable or
aligned with the language model's training, while
higher perplexity suggests the text is harder to
predict.

Explanation:

1. Tokenization: The text is tokenized into
numerical inputs using a pre-trained tokenizer.

2. Compute loss: The model calculates the loss

based on how well it predicts the given text.

3. Perplexity calculation: Perplexity is calculated as

the exponential of the loss: e 1o

Example:

python (P Copy code

from transformers import AutoTokenizer, AutoModelForCausallLM
import torch

tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausallLM.from_pretrained("gpt2")

text = "The quick brown fox jumps over the lazy dog."

perplexity = calculate_perplexity(text)
print("Perplexity:", perplexity)

Output:

plaintext (P Copy code

Perplexity: 22.34

LLM Metrics : Entropy e

In this function, we calculate the word-wise entropy and character-
wise entropy of a text. Each entropy metric measures the
randomness or diversity of word/character usage by evaluating the
probability distribution of words/characters in the text. Higher
entropy indicates greater variation in word/character choice, while

lower entropy suggests repetitive or predictable language.
Key Points:

1. Word-wise entropy captures the variation in word choice (e.g.,
high entropy in diverse vocabulary).

2. Charadter-wise entropy captures the diversity in character
usage (e.g., high entropy in text with varied characters).

Example:

python (P Copy code
from collections import Counter
import math
text = "hello world hello world hello universe"
word_entropy = calculate_word_entropy(text)
print("Word Entropy:", word_entropy)
Output:
plaintext (P Copy code
Word Entropy: 1.4591479170272448
Explanation:
1. Word probabilities:
+ Words: ["hello", "world", "universe"]
* Frequencies: {"hello": 3, "world": 2, "universe": 1}
* Probabilities: pyeilo = 3/6: DPworld = 2/6, Puniverse = 1/6
2. Entropy formula:
-~
Example:
python (@ Copy code
text = "hello world"
char_entropy = calculate_char_entropy(text)
print(“Character Entropy:", char_entropy)
Output:
plaintext (P Copy code
Character Entropy: 3.180832987270779
Explanation:
1. Character probabilities:
« Characters: ["h", "e", "', "o, " ", My, wpn, nge]
» Frequencies: {"h": 1, “e": 1, "1": 3, "o": 2, " ": 1, "w": 1, "r": 1, "d": 1}

+ Probabilities: E.g., py = 3/11

2. Entropy formula:

H=—- Zp, -log,y(p;) =~ 3.18

LLM Metrics : Burstiness o1

In this function we calculate the burstiness of words in a
text. Burstiness measures the unevenness or irregularity in
the occurrence of words across the text. If a word appears in
quick bursts (closely clustered positions) rather than evenly
spread, it has higher burstiness. The metric is calculated
based on the intervals between occurrences of the same

word.
Key Points:

1. Low Burstiness: Words are evenly spaced, resulting in a

score that 1s close to 0.

2. High Burstiness: Words cluster together, creating
irregular intervals and a higher burstiness score.

Example:

python

from collections import defaultdict
import numpy as np

text = "dog cat dog cat dog dog cat cat cat"

burstiness_score = calculate_burstiness(text)
print("Burstiness Score:", burstiness_score)

Output:

plaintext

Burstiness Score: ©.88333333333333331

Explanation:

1. Track word positions:

« Words: ["dog", "cat", "dog", "cat", "dog", "dog", "cat", "cat",

* Positions: {"dog": [@®, 2, 4, 5], "cat": [1, 3, 6, 7, 8]}
2. Calculate intervals for each word:
* For "dog": Intervals = [2, 2, 1]
» For"cat": Intervals = [2, 3, 1, 1]
3. Compute burstiness:
« For "dog™:
+ Mean interval: 1.67

« Standard deviation: 0.47

std—mean
std+mean

* Burstiness =
» Similar for "cat."

4. Average burstiness:

* Final score: 0.0833

(3 Copy code

(P Copy code

"cat"]

LLM Metric : TypeToken Ratio & Moving-Average TypeToken Ratio w1

This function calculates the Type-Token Ratio (TTR),
which measures the diversity of a text by comparing the
number of unique words (types) to the total number of
words (tokens). A higher TTR indicates greater lexical
diversity.

The problem i1s that the TTR of a text sample 1s affected
by its length; obviously, the longer the text goes on, the
more likely it is that the next word will be one that has
already occurred.

Solution? Moving-Average Type Token Ratia

In that, we choose a window length (say 500 words) and
then compute the TTR for words 1-500, then for words
2—501, then 3-502, and so on to the end of the text. The
mean of all these TTRs is a measure of the lexical
diversity of the entire text and is not affected by text
length nor by any statistical assumptions. Further, the
individual TTRs can be compared to detect changes
within the text. This helps smooth out fluctuations caused
by varying text lengths.

python (P Copy code

text = "hello world hello"
ttr = calculate_ttr(text)
print(ttr)

Output:

plaintext (P Copy code

0.6666666666666666

Explanation:
« Words: ["hello", "world", "hello"]
« Total tokens: 3
= Unique words (types): 2 ("hello", "world")
« TTR:2/3 = 0.6667

Example:
python (P Copy code
text = "hello world hello world hello world"
mattr = calculate_mattr(text, window_size=3)
print{mattr)
Output:

plaintext (P Copy code

8.6666666666666666

Explanation:
+ Window size: 3
* Windows: ["hello", "world", "hello"], ["world", "hello", "world"], ["hello",
"world", "hello"]
+ TTR for each window: 2/3 for all windows (each window contains "hello" and "world" as

unique words).

» MATTR: Average of all TTRs = (0.6667 + 0.6667 + 0.6667)/3 = 0.6667

LLM Metrics : Average Sentence Length

This metric gives the average sentence length of an input
text. It 1s calculated by dividing the total number of words in
the text by the total number of sentences. This metric is
useful for analysing the complexity of writing style — longer

sentences might indicate more complex or formal writing.
Key points:

1. Shorter sentences lead to a lower average sentence length,

often indicating simple or informal writing.

2. Longer sentences lead to a higher average sentence

length, often indicating complex or academic writing.

(/17)

Example:

python (P Copy code

from nltk.tokenize import sent_tokenize, word_tokenize
text = "Hello world. This is a test sentence. Let's see how it works."

avg_sentence_length = calculate_avg_sentence_length(text)
print(avg_sentence_length)
Output:

plaintext (P Copy code

5.333333333333333

Explanation:

1. Splitinto sentences:

* Sentences: ["Hello world.", "This is a test sentence.", "Let's see how it

works."]
2. Count total words:
e Words in each sentence: 2, 5, 7 (total =14 words)

3. Calculate average sentence length:

_ Total Words 14
* Average= Number of Sentences — 3 ~5.33

LLM Metrics : Stopwords Frequency o,

This is used to calculate the frequency of function words (e.g.,
prepositions, conjunctions, articles, and pronouns) in each text.
Function words, often called stopwords, are essential for
grammatical structure but carry less semantic meaning. The
function computes the ratio of function words to the total

number of words, helping analyze writing style and formality.
Key Poaints:
1. Higher function word frequency: Often found in formal,

dense, or descriptive texts.

2. Lower function word frequency: Indicates more content

words, typical of creative or informal texts.

Example:

python

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize
import nltk

nltk.download('punkt')
nltk.download('stopwords")

text = "The cat sat on the mat and looked at the dog."

frequency = calculate_function_word_frequencies(text)
print(freguency)

Output:

plaintext

@.5

Explanation:

1. Tokenize words:

(3 Copy code

(3 Copy code

« Words: ["the", "Cat", "Sat", "Dn", "the", "mat", "and", HIDDked", "at",

"the", "dog"]

2. Identify function words:

« Function words in the text: ["the", "on", "the", "and", "at",

3. Count total words:

* Total words: 11

4. Calculate frequency:

_ Function Word Count __ 6 .,
» Frequency = G i wod ~ — 11 ~ 0.5

"the"] (6 total)

LLM Metrics : N-Grams Calculation o1,

Bi-grams are consecutive pairs of words, and we identify the top 5
most frequently occurring bi-grams in the text. Tri-grams are
consecutive sequences of three words. This analysis helps uncover
common word pairs, which can provide insights into writing

patterns or repetitive phrases.

Key Poaints:

1. Bi-grams focus on pairs of words and are useful for detecting

common phrases or adjacent word usage.

2. Tri-grams provide more contextual patterns and are helpful

in applications like language modeling and text generation.

Example:

python (P Copy code

from nltk import word_tokenize
from collections import Counter
import nltk
nltk.download('punkt')

text = "The quick brown fox jumps over the lazy dog. The fox is quick."

top_bigrams = calculate_bigrams(text)
print(top_bigrams)

Output:

plaintext (P Copy code
[('the', 'guick'), ('quick', 'brown'), ('brown', "fox'), ('fox', 'jumps'), ('jumps

Explanation:

¢ Tokenized words: ["the", "quick", "brown", "fox", "jumps", "over", "the", "lazy",
“dog", "the", "fox", "is", "quick"]
* Generated bi-grams: [("the", "quick"), ("quick", "brown"), ...l

+ Most frequent bi-grams: Top 5 based on frequency.

Example:

python (P Copy code

text = "The quick brown fox jumps over the lazy dog. The fox is quick."

top_trigrams = calculate_trigrams(text)
print(top_trigrams)
Output:

plaintext (P Copy code
[("the', 'quick', 'brown'), ('quick', 'brown', 'fox'), ('brown', 'fox', 'jumps'),

Explanation:

¢ Tokenized words: ["the", "quick", "brown", "fox", "jumps", "over", "the", "lazy",
“dog", "the", "fox", "is", "quick"l

s Generated tri-grams: [("the", "quick", "brown"), ("quick", "brown", "fox"), ...l

¢ Most frequent tri-grams: Top 5 based on frequency.

LLM Metrics : Semantic Coherence

Semantic coherence of a given text measures how
closely related consecutive sentences are. It is done by
using embeddings generated from a pre-trained
transformer model (in this case, I used Sentence
Transformer). Semantic coherence indicates the flow

and logical connection between sentences.
Key Poaints:

1. High ooherence: Sentences flow logically and are

semantically connected.

2. Low ooherence: Sentences lack logical flow or are

unrelated in meaning.

Example:

python (P Copy code

from sentence_transformers import SentenceTransformer, util

text = "The weather is beautiful today. It's a perfect day for a picnic. The sun it

coherence_score = calculate_coherence(text)
print(coherence_score)
Output:

plaintext (P Copy code

.85

Explanation:

1. Split sentences:

¢ Sentences: ["The weather is beautiful today.", "It's a perfect day for a

picnic.", "The sun is shining brightly."]
2. Generate sentence embeddings:

* Each sentence is converted into a numerical representation (embedding) using the

SentenceTransformer model.

3. Calculate cosine similarity:

* Cosine similarity is calculated for consecutive sentence embeddings to measure their
semantic relatedness.

¢ Example: Similarity between "The weather is beautiful today." and "It's a perfect day for a
picnic."

4. Compute average coherence:

* Average the similarities to determine the overall semantic coherence of the text.

LLM MCtI'lCS . POS Tagglng 9/17)

Part-of-Speech (POS) tagging on a given text categorizes the
counts of different POS tags into predefined categories (e.g., nouns,
verbs, modifiers). POS tagging identifies the grammatical role of
each word in the text (like noun, verb, adjective), and categorizing
these tags helps in understanding the structure and style of the text.

Key Poaints:
1. POS tagging reveals the grammatical structure of the text.

2. Categorizing POS tags helps in studying patterns, such as the

use of descriptive modifiers, action verbs, or formal nouns.

3. Usetul for tasks like style analysis, genre dassification, or text
complexity evaluation.

Example:

python

import spacy
import pandas as pd

nlp = spacy.load("en_core_web_sm")

text = "The quick brown fox jumps over the lazy dog."

pos_counts = categorize_pos_counts(text)
print(pos_counts)

Output:

plaintext

{
'Mouns': 3,
'Verbs': 1,
'Modifiers': 2,
'Pronouns’': @,
'Determiners_Particles': 1,
'Conjunctions': @,
'Adpositions': 1,
'Punctuation_Symbols': 1,
'Spaces': @

'

Explanation:

1. Tokenize text:

+ Words: ["The", "quick", "brown", "fox", “jumps", “over", "the",

"dUg" » Hot]
2. Identify POS tags:
» For example, "fox" is a noun, "jumps" is a verb, "quick" is an adjective.
3. Categorize POS counts:
* Nouns: 3 ("fox", "dog", "brown")
« Verbs: 1 ("jumps")
* Modifiers: 2 ("quick", "lazy")

* Other categories as per the tagging.

(F Copy code

(3 Copy code

"lazy",

LLM Metrics : Word Repetition Analysis o ...

from nltk.tokenize import word_tokenize
.« . . from collections import Counter
[performed word repetition analysis to find word impore miek
nltk.download('punkt')

repetitions in each text. It identifies words that occur more
thal’l OnCG and CalCUIateS the repetition ratio, WhiCh ls the text = "The quick brown fox jumps over the lazy dog. The fox is quick and very guis
proportion of repeated word occurrences to the total

repeating_words, repetition_ratio = word_repetition_analysis(text)

number of words. This helps in understanding the print (“Repeating Words:", repeating_words)
. . print{"Repetition Ratio:", repetition_ratio)
redundancy or emphasis in the text.
Output:
plaintext (P Copy code

Repeating Words: {'the': 3, 'guick': 3, 'fox': 2}
Repetition Ratio: 0.5

Key Poaints:

1. Repeating words: Indicates which words are repeated,

potentially showing emphasis or redundancy. Explanation
1. Tokenize the text:
2. Repetition ratio: Quantifies the extent of repetition in + Words: ["the", "quick", “brown, “fox", “Junps", "over", “the", "lazy",
the text. "dog", "the", "fox", "is", "quick", "and", "very", "quick"]

2. Count word frequencies:

This function is useful for analyzing text styles, identifying r Worelcounts: TERTE 3, Tauekts 3, o't B o)

3. Identify repeating words:

redundancy in writing, or detecting emphasis in speech

= Words occurring more than once: {'the': 3, 'quick': 3, 'fox': 2}
transcripts or creative Writing. 4. Calculate repetition ratio:

+ Total words: 16

+ Repeated occurrences: 3+ 3+ 2 =8

*+ Ratio: 8/16 = 0.5

LLM Metrics : R@dablllty S core (11/17) Bxample

python (3 Copy code

from textblob import TextBlob

In this function, I calculate the Flesch-Kincaid readability import syllapy

score of a given text. The score measures how easy a text

text = "The quick brown fox jumps over the lazy dog. It is a sunny day."

is to read, based on the average number of words per

fk_score = flesch_kincaid(text)

sentence and syllables per word. A higher score indicates print ("Flesch-Kincaid Score:", fk_score]
easier readability, while a lower score suggests the text is Output
plaintext (9 Copy code

more complex.

Flesch-Kincaid Score: 104.1

Key P d.nts : Explanation:

1. Text analysis:

1. Higher soore: Easier tO read (e'g" Children's bOOkS or . :::-ti;lces: ["The quick brown fox jumps over the lazy dog.", "It is a sunny
Simple lnstructions). * Words: ["The", "quick", "brown", "fox", "jumps", "over", "the", "lazy",

"dﬂg", "It", "is", "a", "sunny", "day"]
R = Number of sentences: 2
2. Lower score: More complex text (e.g., academic

» Number of words: 14

* Number of syllables: 18 (e.g., "quick" = 1 syllable, "brown" = 1 syllable, "sunny" = 2

papers or legal documents).

syllables)

2. Flesch-Kincaid formula:
FK Score = 206.835 — 1.015 - (Average Words per Sentence) — 84.6 - (Average Syllables per Word)
= Average words per sentence: 14/2 = 7

= Average syllables per word: 18/14 ~ 1.29
» Score: 206.835 — 1.015- 7 — 84.6 - 1.29 =~ 104.1

LLM Metrics : Sentiment Polarity and Subjectivity o)

In this function, I perform sentiment analysis on a given
text. I calculated:

* Polarity: A value between -1 and 1 that indicates the
sentiment of the text. Negative values represent
negative sentiment, positive values represent positive
sentiment, and O represents neutral sentiment.

* Subjectivity: A value between 0 and 1 that indicates
how subjective or opinionated the text is. Higher
values represent more subjective or personal
opinions, while lower values represent more factual
content.

Key Points:

1. Polarity identifies the emotional tone (positive,
neutral, or negative).

2. Subjectivity measures how opinionated or fact-
based the content is.

Example:

python (3 Copy code

from textblob import TextBlob

text = "I absolutely love this product! It works wonderfully and exceeds expectatii

polarity, subjectivity = sentiment_analysis(text)
print("Polarity:", polarity)
print("Subjectivity:", subjectivity)

Output:

plaintext (3 Copy code

Polarity: @.9
Subjectivity: 1.8

Explanation:

1. Polarity:

* The text is overwhelmingly positive, with phrases like "absolutely love" and "exceeds

expectations," resulting in a high polarity score of 0.9.

2. Subjectivity:

* The text reflects personal opinions and feelings, making it highly subjective with a
subjectivity score of 1.0.

LLM Metrics : Interrogative Content w1,

In this function, I analyze the interrogative content of a given
text by identifying and counting the number of questions. It

uses two criteria to detect questions:
1. Sentences ending with a question mark (?).

2. Sentences that start with common question words or
subject-auxiliary inversion patterns (e.g., "What,"
"WhY " "IS " "Can")

Key Pants:
1. Questions often indicate inquiry or engagement in a

text.

2. The function is robust, detecting questions even if the
text lacks a question mark but follows typical

interrogative patterns.

Example:

python (¥ Copy code

import re
from nltk.tokenize import sent_tokenize
import pandas as pd

text = "What is your name? I like this product. Can you help me? Why is this happei

num_guestions = count_questions(text)
print("Number of Questions:", num_questions)
Output:

plaintext (¥ Copy code

Number of Questions: 3

Explanation:

1. Splitinto sentences:

* Sentences: ["What is your name?", "I like this product.", "Can you help me?",

"Why is this happening?"]
2. Identify questions:
« Sentence 1: Ends with "?" = Question
« Sentence 2: Does not meet criteria - Not a question
* Sentence 3: Starts with "Can" and ends with "?" - Question
* Sentence 4: Starts with "Why" and ends with "?" = Question
3. Count questions:

» Total guestions: 3

LLM MCtI'lCS . CognitiVCVerbS (14/17)

In this function, I count the occurrences of cognitive
verbs in each text. Cognitive verbs are action words
associated with mental processes like thinking,
analysing, evaluating, or creating. These verbs are often
indicators of higher-order cognitive activity and are
useful for assessing the cognitive load or complexity of
the text.

Key Points:

nmn

1. Cognitive verbs: Words like "analyze," "compare,"
and "summarize" reflect critical thinking or
problem-solving.

2. Higher count: Indicates texts that demand
intellectual effort, like instructions, academic
papers, or problem statements.

3. Applications: Useful for assessing instructional
materials, academic writing, or evaluating the
complexity of tasks in a text

Example:

python (¥ Copy code

from nltk.tokenize import word_tokenize
import nltk
nltk.download('punkt')

text = "The student needs to analyze the data and compare the results. Then, they !

cognitive_count = cognitive_verbs_count(text)
print("Cognitive Verbs Count:", cognitive_count)

Output:

plaintext (3 Copy code

Cognitive Verbs Count: 4

Explanation:

1. Tokenize the text:

« Words: ["the", "student", "needs", "to", "analyze", "the", "data", "and",
"compare", "the", "results", "then", "they", "should", "summarize", "their",

"findings", "and", "propose", "solutions"]
2. Identify cognitive verbs:

« \Verbs: ["analyze", "compare", "summarize", "propose"]

3. Count occurrences:

= Total cognitive verbs: 4

LLM MCtI'lCS . SpeClal Charad:ers (15/17)

In this function, 1 calculate the number of special
characters in each text. Special characters include symbols

like @, #, $, %, ™, &, *, (,), _, +,=,and -. These characters
are often used in technical documents, code snippets, or
casual text (like social media posts).
Key Points:
1. Spedal characters often appear in:

1. Emails (e.g., @)

2. Hashtags or handles (e.g., #)

3. Currency values (e.g., $)

4. Equations or programming (e.g., +,-, %, /)
2. Higher count: May indicate technical, informal, or

casual text.

3. Appliations: Useful for text classification, detecting
technical content, or filtering out noisy text.

Example:

python (P Copy code

import re

text = "Email me at hello@example.com or call #12345 for details! Cost: $100."

special_char_count = character_level_features(text)
print("Special Character Count:", special_char_count)

Output:

plaintext (9 Copy code

Special Character Count: 6

Explanation:

1. ldentify special characters:

« Special characters in the text: ["@", "#", "$", "(", ")", "-"]

2. Count occurrences:

» Total special characters: 6

LLM Metrics : Spelling Errors w1 -

python (P Copy code

In this function, I identify and count the number of spelling S
rom spelilchecker impor pe eCcker

errors in each text. It compares each word in the text against T
a dictionary of correctly spelled words. Words not found in
text = "The qwick brown fox jmps over the lazi dog."
the dictionary are considered misspelled. This helps evaluate
the grammatical quallty Of the text error_count = spelling_errors(text)

print("Number of Spelling Errors:", error_count)

Output:
plaintext (9 Copy code

Key Poaints:

Number of Spelling Errors: 5

1. Spelling errors often indicate informal writing, typos, or
low text quality.

. . Explanation:
2. Higher error ocount: Indicates poor grammar or

1. Tokenize and preprocess text:

Carelessness. s Words: [Ilthell' "quCk", llbrown", lIfDxII, lljmpsll' "DVEI’", Ilthell, Il'lazill'
"dog"]

2. Check against dictionary:
* Misspelled words: ["gwick", "jmps", "lazi"]
3. Count errors:

s Total errors: 3

LLM Metrics : Grammar Errors w1

In this function, I count the number of grammatical errors in
each text using the LanguageTool library. It scans the text for
grammar issues, such as incorrect verb tense, subject-verb
agreement errors, or improper punctuation, and returns the

total number of detected errors.

Key Poaints:

1. Captures a variety of issues, such as tense mismatches,

punctuation errors, or spelling mistakes in context.

2. Used for Evaluating the grammatical correctness of
datasets for NLP tasks.

3. Useful for both formal and casual writing to ensure

clarity and correctness.

Example:

python (3 Copy code

import language_tool_python
import pandas as pd

tool

language_tool_python.LanguageTool('en-US")

text = "The cat climb the tree quickly. She dont like the rain."

error_count = grammar_errors_count(text)
print("Number of Grammar Errors:", error_count)

Output:

plaintext (3 Copy code

Number of Grammar Errors: 2

Explanation:
1. Analyze the text:

+ Text: "The cat climb the tree quickly. She dont like the rain."
2. Identify grammar issues:

* Error1: "climb" should be "climbed" (incorrect verb tense).

« Error 2: "dont" should be "doesn't" (missing apostrophe).

3. Count errors:

* Total errors: 2

1.

Feature Correlation

The

correlations among linguistic features,

heatmap reveals significant

particularly ~ within ~ groups like
grammatical components (e.g.,
Pronouns, Verbs, Determiners, etc.),

where values exceed 0.7.

and Character
exhibit relatively weak correlations with

Perplexity Entropy
most other features, suggesting they
capture distinct aspects of the data.

Certain feature clusters, such as those
related to sentence structure (Sentence
Length, Stopwords Frequency) and
grammatical categories, show cohesive
patterns, indicating logical grouping
based on shared linguistic functions.

CharacterEntropy --0.11
‘WordEntropy - -0.27
Burstiness - -0.20

TTR - 0.39

MATTR - 0.04
SentenceLength - 0.08
StopwordFrequency --0.01
SemanticCoherence - -0.05
Nouns --0.29

Verbs -0.33

Modifiers —-0.31

Pronouns - 0.25
Determiners_Particles - -0.27
Conjunctions - -0.31
Adpositions --0.29
Punctuation_Symbols --0.35

Spaces --0.24

Repetition Ratio . £0.11

Repeating N-grams Count - -0.37
Sentiment Polarity --0.01
Sentiment Subjectivity - -0.00
Readibility Score - -0.10
Num_Questions - -0.11
Cognitive_Verbs --0.18
Special_Char --0.11
Spelling_Errors - 0.04

Grammar_Errors - 0.08

Perplexity -

Correlation Heatmap

-0.27 -0.20 039 0.04 0.08 -0.01 -0.05 -0.29 0.33 0.31 -0.25 -0.27 0.31 -0.29 0.35 -0.24.‘0.37 <0.01 -0.00 -0.10 -0.11 -0.18

031 -0.15 0.23 0.32 -0.25 0.33 0.17 010 -0.01 0.07 -0.02 -0.03 -0.05 005 035 022 -0.11 -0.02 -0.01 -0.03 014 0.18 -0.01

0.15 0.03 B -0.24 gk 0.59 0.65 LECH 0.56

o

-0.65 -0.60 -0.56 -0.

0.29 -0.00 0.03 -0.16 -0.12 -0.00 0.19 024

0.15 0. 1.00 SO6T . -0.02 0.17 032 003 001 021 011 013

0.23 0. =0.61 1.00 [OU N 4 -0.17 0.29 -0.24 <0.10 0.03 -0.17 -0.05 -0.24
0.32 0.66 N 0. . -0.12 0.08 0.16 0.10 -0.29 -0.18 -0.20 0.02 016 -0.02 -0.35 0.15 -0.08 -0.19 0.04 -0.00
011 -0.15 0.03 0.08 003 010 010 014 0.06 -0.15 -0.06 0.06 0.01 -0.00 O.UOE-O.Il 0.02
-0.33 0.28 ! . pRsLN -0.15 -0.20 0.27 -0.07. 0.23 030 -0.00 -0.25 -0.01 045 011 012 014 039 0.07 -0.09
.17 0.24 -0.02 -0.17 -0.12 0.03 -0.15

.01 -0.21 -0.06 0.14 010 022 004 0.02 -0.25 -0.19 0.16

0.10 0.31 -0.39 0.08 0.03 -0.20 -0.15 -0.17 0.02 041
0.01 -0.04 017 019 032
0.07 0.29 039 044 -0.03 0.04 0.05 014 030

-0.02 0. i 3 X 1.00 NENSE

D.Z?EMB 0.08 0.07 034 026 014

-0.03 L . . L .8 E BISEN 1.00 0.31 047 043 -0.04 -0.03 0.07 0.14 034
-0.05 . 3 . . i . b 075 071 A 0.16 0.30
0.05 0.06 0.34
0.35 0.29 0.29
0.22 -0.14 032 032 029 027 031 027 030 037 027 025 0.03 -0.00 013 016 0.15

010 0.30 0.36 0.18

0.39 m 0.47

40.02 0.22 0.41 0.44 043 043 0.47 0.27

-0.01 -0.16 0.03 -0.10 -0.15 0.00 012 0.04 -0.09 -0.01 -0.03 0.08 -0.04 -0.02 -0.06 -0.05 -0.01

£0.03 .12 -0.01 -0.03 -0.08 0.00 0.14 0.02 -0.15 -0.04 -0.04 0.07 -0.03 -0.01 -0.10 -0.04 0.01
0.14 -0.00 021 -0.17 -0.19 BXEY 0.39 -0.25 0.17 0.17 0.05 0.34 007 011 -0.08 0.10 -0.15

0.18 019 011 -0.05 0.04 -0.11 0.07 -0.19 0.02 019 0.14 026 014 016 006 029

0.05 -0.04
-0.01 0.24 0.13 -0.24 -0.00 002 -0.09 016 041 032 030 014 034 030 034 029 015 018 027 -0.01 001 -0.15

023 030 000 -0.00 0.14 -0.01 0.25 0.01 041 017 023 -0.00 022 014 030 043 018 -0.00 011 -0.04 -0.06 -0.14

013 037 015 -0.05 0.01 0.06 -0.01 -0.26 040 028 024 016 036 023 031 029 010 0.03 -0.01 -0.11 -0.09 0.09
-0.11 019 032 -0.23 0.22 018 026 0.25 026 035 021 035 034 032 022 0.09 015 018 002 -0.05 -0.07 014 011 -0.05
= =) [x = = 1] w 7] w]) n o] w
§ FIEE S F L EE L EEE 2L EEEEE EE
g2 2 g i § 3 ¢ 3 2 £ & € g g E B = & 3 § @& g 3
S 5 € 3 F @ s s £ § 5 @& g 5 & & x @ |
§ £ 3 T 5 £ £ & 2 2 O 2 E 2 = £ 3 2
S 8 T 5 B p 5§ ¥ g £ & & & 2 =
8 £ 5 & g © 2 = ¢ E 2 B E =8
g & § 8 E E ¢ 3 g g & 2 8
(] B E B o £ 0 g
3 £
& & g g
o (0]
w
-

0.11

023

0.30

0.00

<0.00

0.14

0.01

0.25

0.01

0.41

0.17

0.23

-0.00

0.22

0.14

0.30

043

0.18

-0.00

0.11

0.04

013

0.37

015

-0.05

0.01

0.06

-0.01

0.26

0.40

0.28

0.24

0.16

0.36

0.23

0.31

0.29

0.10

0.03

-0.01

0.04 0.11

0.06

0.14

ecial_Char - o
Special_! r- 3

<0.09

0.09

el
g
i)
H
T
&

0.08

-0.11

0.19

0.32

-0.23

-0.22

o018

0.26

-0.25

0.26

0.35

0.21

0.35

0.34

0.32

0.22

0.09

0.15

0.18

0.02

-0.05

-0.07

0.14

Grammar_Errors

1.00

0.75

- 0.50

-0.25

- 0.00

- -0.25

-0.50

-0.75

Validation

Testing

Results (DAIGT | Catch The Al

Classification Algorithms

Accuracy

F1-score

Logistic Regression

0.9344

0.9353

K-Nearest Neighbor

0.9322

0.9335

SVM (Linear)

0.9516

0.9523

SVM (Polynomial)

0.9766

0.9766

SVM (Gaussian)

0.9722

0.9722

Naive Bayes Classifier

0.8300

0.8426

Decision Tree

0.9498

0.9502

Random Forest

0.9326

0.9334

XGBoost

0.9806

0.9806

Multilayer Perceptron

0.9813

0.9813

Multilayer Perceptron

0.9758

0.9758

BERT (for baseline)

0.9765

0.9770

Feature Importance for Decision Tree Classifier

Grammar_Errors
Spelling_Errors
special_Char
Cognitive_Verbs
Num_Questions

Readibility Score

Sentiment Subjectivity
Sentiment Polarity
Repeating N-grams Count
Repetition Ratio

Spaces
Punctuation_Symbols
Adpositions

S Conjunctions
k] Determiners_Particles
fid Pronouns
Modifiers

Verbs

Nouns

SemanticCoherence
StopwordFrequency
Sentencelength

MATTR

TTR

Burstiness
WordEntropy
CharacterEntropy
Perplexity

0.2 0.3 0.4

Importance

Feature Importance for Random Forest Classifier

Grammar_Errors
spelling_Errors.
Special_Char
Cognitive_Verbs
Num_Questions
Readibility Score
Sentiment Subjectivity
Sentiment Polarity
Repeating N-grams Count
Repetition Ratio
Spaces
Punctuation_Symbols
Adpositions
Conjunctions
Determiners_Particles
Pronouns

Modifiers

Verbs

Nouns
semanticCoherence
StopwordFrequency
SentenceLength

Feature

TTR

Burstiness
WordEntropy
CharacterEntropy
Perplexity

0.00 0.05

0.10 0.15 0.20 0.25

Importance

Feature Importance for XGBoost Classifier

0.30

Grammar_Errors
Spelling_Errors
Special_Char
Cognitive_Verbs
Num_Quéstions
Readibility Score
Sentiment Subjectivity
Sentiment Polarity
Repeating N-grams Count
Repetition Ratio
Spaces
Punctuation_Symbols

Adpositior
Conjunctions
Determiners_Particles
“Pronouns
Modifiers
Verbs
Nouns
SemanticCoherence
StopwordFrequency
SentencelLength

T

Feature

TTR

Burstiness
WordEntropy
CharacterEntropy
Perplexity

0.2 0.3 0.4
Importance

Validation

Testing

Results (DAIGT - Mixed Paragraph Dataset vl)

Classification Algorithms

Accuracy

F 1-score

Logistic Regression

0.8449

0.8446

K-Nearest Neighbor

0.7860

0.7863

SVM (Linear)

0.8540

0.8538

SVM (Polynomial)

0.8676

0.8674

SVM (Gaussian)

0.8617

0.8615

Naive Bayes Classifier

0.7003

0.6965

Decision Tree

0.8023

0.8023

Random Forest

0.8088

0.8058

XGBoost

0.8738

0.8736

Multilayer Perceptron

0.8710

0.8698

XGBoost

0.8669

0.8665

The best model is: XGBoost Classifier with a validation accuracy of @.8738

Feature Importance:

Feature
27 Grammar_Errors
22 Readibility Score
10 Verbs
16 Punctuation_Symbols
7 StopwordFrequency
4 TTR
17 Spaces
18 Repetition Ratio
19 Repeating N-grams Count
26 Spelling_Errors
9 Nouns.
13 Determiners_Particles
12 Pronouns
15 Adpositions
3 Burstiness
6 Sentencelength
24 Cognitive_Verbs
8 SemanticCoherence
14 Conjunctions
23 Num_Questions
11 Modifiers
] Perplexity
5 MATTR
1 CharacterEntropy
2 WordEntropy
25 Special_Char
21 Sentiment Subjectivity
20 Sentiment Polarity

Importance

=

e L L L L L L L L L R L R

.421843

041550
038701
038278
038030
037842
033999
033853
033188
028001
020656
019307
018120
017254
016847
014980
013952
013658
013603
012856
012786
012628
012392
012280
011649
011301
010730
009714

Feature Importance

Grammar_Errors
Readibility Score
Verbs
Punctuation_Symbols
StopwordFrequency
TTR

Spaces

Repetition Ratio
Repeating N-grams Count
Spelling_Errors

Nouns
Determiners_Particles
Pronouns

Adpositions
Burstiness
Sentencelength
Cognitive_Verbs
SsemanticCoherence
Conjunctions
Num_Questions
Modifiers

Perplexity

MATTR
CharacterEntropy
WordEntropy
Special_Char
Sentiment Subjectivity
Sentiment Polarity

Features

0.00

0.05

0.10

0.15

0.20 0.25
Importance

0.30

0.35

0.40

Validation

Testing

Results (LLM - Detect Al Generated Text Dataset)

Classification Algorithms

Accuracy

F 1-score

Logistic Regression

0.9415

0.9415

K-Nearest Neighbor

0.9242

0.9243

SVM (Linear)

0.9602

0.9603

SVM (Polynomial)

0.9744

0.9745

SVM (Gaussian)

0.9650

0.9650

Naive Bayes Classifier

0.8840

0.8847

Decision Tree

0.9689

0.9690

Random Forest

0.9538

0.9536

XGBoost

0.9885

0.9885

Multilayer Perceptron

0.9832

0.9832

XGBoost

0.9871

0.9871

The best model is: XGBoost Classifier with a validation accuracy of 0.9885

Feature Importance:

27
22
5
7
26
2
6
17
19
10
3
25
[}
23
13
18
20
4
14
12
11
21
9
8
16
15
1
24

Features

Feature
Grammar_Errors
Readibility Score
MATTR
StopwordFrequency
Spelling_Errors
WordEntropy
Sentencelength

Spaces

Repeating N-grams Count
Verbs

Burstiness
Special_Char
Perplexity
Num_Questions
Determiners_Particles
Repetition Ratio
Sentiment Polarity
TTR

Conjunctions

Pronouns

Modifiers

Sentiment Subjectivity
Nouns
SemanticCoherence
Punctuation_Symbols
Adpositions
CharacterEntropy
Cognitive_Verbs

Importance

=)

PO PO

608644

288213
875044
033593
918995
e172e7
014661
913730
013367
911568
010628
008654
208555
007012
906596
006543
006281
005964
005814
005387
2085329
004344
e04275
004250
004231
004227
9083533
003365

Feature Importance

Grammar_Errors
Readibility Score
MATTR
StopwordFrequency
Spelling_Errors

. WordEntropy
SentenceLength
Spaces

Repeating N-grams Count
Verbs

Burstiness
Special_Char
Perplexity
Num_Questions
Determiners_Particles
Repetifion Ratio
Sentiment Polarity
TTR

Conjunctions

Pronouns

Modifiers

Sentiment Subjectivity
Nouns
SemanticCoherence
Punctuation_Symbols
Adpositions
CharacterEntropy
Cognitive_Verbs

0.0

01

0.2 0.3 0.4 0.5 0.6
Importance

Al generated text to any grammatically correct input text. Input text was copied from Wikipedia.

De-Al Cipher: Decoding the Language of Machines

Enter text

The PlayStation is a home video game console developed and marketed by Sony Computer Entertainment. It was released in Japan on 3 December 1994, and most of the world in 1995. Sony began developing it after a failed venture with Nintendo to create a
CD-ROM add-on in the early 1990s. The console was primarily designed by Ken Kutaragi and his team in Japan, while additional development was outsourced in the United Kingdom. An emphasis on 3D pelygon graphics was placed at the forefront of the
console's design. The PlayStation signalled Sony's rise to power in the video game industry. It received acclaim and sold strongly; in less than a decade, it became the first computer entertainment platform to ship more than 100 million units. Its use of (6]
compact discs heralded the game industry's transition from cartridges. The PlayStation's success led to a line of successors, beginning with the PlayStation 2 in 2000.

Input Text LLM Metrics Score Additional Details Prediction

Burstiness Score:

The PlayStation is a home video game console developed Top 10 Most RepeatEd Words Text Analysis Result: Al generated content

and marketed by Sony Computer Entertainment. It was Word Entropy:

released in Japan on 3 December 1994, and most of the

world in 1995. Sony began developing it after a failed Character Entropy: Disclaimer: Al plagiarism detector apps can assist in

venture with Nintendo to create a CD-ROM add-on in the . identifying potential instances of plagiarism; however, it is
Type Token Ratio: J

early 1990s. The console was primarily designed by Ken important to note that their results may not be entirely

Kutaragi and his team in Japan, while additional flawless or completely reliable. These tools employ

Moving Average Type Token Ratio:

development was outsourced in the United Kingdom. An advanced algorithms, but they can still produce false

emphasis on 3D polygon graphics was placed at the Average Sentence Length: positives or false negatives. Therefore, it is recommended

forefront of the console's design. The PlayStation signalled to use Al plagiarism detectors as a supplementary tool
Sony's rise to power in the video game industry. It received Function Word Frequency:] alongside human judgment and manual verification for
acclaim and sold strongly; in less than a decade, it became i accurate and comprehensive plagiarism detection.
3 3 Semantic Coherence:
the first computer entertainment platform to ship more
than 100 million units. Its use of compact discs heralded Repetition Ratio:
the game industry's transition from cartridges. The N
PlayStation's success led to a line of successors, beginning Repeating Tri-grams:
with the PlayStation 2 in 2000. 0

Readability Score: .
Oy, & Vg, o, So, 0, Ho, %y M,
Yot e 0 Mo, U Mp, Omg Sl gy, lop
{3%0@ =" 01,2.6’ e oﬂ@d " » ’?;y,%’s
i/

Sentiment Polarity: 3

Words
Sentiment Subjectivity:

No. of questions: POS Tagging = Bar Chart

Congnitive Verb Count:)

De-Al Cipher: Decoding the Language of Machines

Enter text

The PlayStation is a home video game console developed and ma..

Results (CbSite): Shows Likely not Al only when we have grammatical errors in the provided input text

rketed by Sony Computer Entertainment. It was released in Japan on 3 December 1994, and most of the world in 1995. Sony began developing it after a failed venture with

Nintendo to create a CD-ROM add-on in the early 1990s. The console was primarily designed by Ken Kutaragi and his team in Japan, while additional development was outsourced in the United Kingdom. An emphasis on 3D polygon graphics was placed at the

forefront of the console's design. T.........| he PlayStation signalled..................

<eeeenee. SONY's rise to power in the video game industry. It received /.

acclaim and sold strongly; in less than a decade, it became the first computer entertainment platfom?>

to shio more than 100 million units. Its use of compact discs heralded the game industrv's transition from cartridees. The PlavStation's success led to a line of successors. beginning with the PlavStation 2 in 2000.

Input Text

The PlayStation is a home video game console developed
rketed by Sony Computer

Entertai t. It was rel
1994, and most of the world in 1995. Sony began
developing it after a failed venture with Nintendo to create
a CD-ROM add-on in the early 1990s. The console was
primarily designed by Ken Kutaragi and his team in Japan,
while additional development was outsourced in the

d in Japan on 3 December

United Kingdom. An emphasis on 3D polygon graphics was
placed at the forefront of the console's design. T........ he
PlayStation signalled ...

in the video game industry. It received

Sony's rise to power

esesssssssnssnnnenn@cclaim and sold strongly; in less than a
decade, it became the first computer entertainment
platform to ship more than 100 million units. Its use of
compact discs heralded the game industry's transition
from cartridges. The PlayStation's success led to a line of
successors, beginning with the PlayStation 2 in 2000.

LLM Metrics Score

Burstiness Score:
Word Entropy:
Character Entropy:

Type Token Ratio:

Moving Average Type Token Ratio:

Average Sentence Length:
Function Word Frequency:
Semantic Coherence:
Repetition Ratio:
Repeating Tri-grams:
Readability Score:
Sentiment Polarity:
Sentiment Subjectivity:
No. of questions:

Congnitive Verb Count:

Additional Details

Top 10 Most Repeated Words

3

[} “IIIIIIII

2, (7 5 & I [s
%,f%@ %oty sy, O, ome Sropy .. Plery,
o, 9 (8 Deg ™ ",

e SOp
ooy T
k@,ev

Words

POS Tagging - Bar Chart

60

50

Prediction

Text Analysis Result: Likely not generated by Al

Disclaimer: Al plagiarism detector apps can assist in
identifying potential instances of plagiarism; however, it is
important to note that their results may not be entirely
flawless or completely reliable. These tools employ
advanced algorithms, but they can still produce false
positives or false negatives. Therefore, it is recommended
to use Al plagiarism detectors as a supplementary tool
alongside human judgment and manual verification for
accurate and comprehensive plagiarism detection.

Challenges

1.

Working with large language models (LLMs) require significant computational resources,
including high-performance GPUs. Training large models can take hours/days, depending on
the dataset size and model complexity, causing delays. Limited availability of advanced
hardware made it challenging for me to prepare the derived features and run BERT for
baseline.

To achieve fair and robust performance, the dataset used for training or evaluation must
accurately represent the diversity and generality of real-world scenarios. A biased or
unrepresentative dataset can lead to models that fail to generalize across different use cases or
domains. Example. Kaggle Dataset 1, 2 and 3 had grammatical errors as a major deciding factor
when it comes for human written text vs LLM generated text. In real-world, if a human is
well versed with English language and makes no grammatical errors, his/her text will be
marked as generated by Al.

Differentiating between Al-generated and human-generated text is an emerging problem with
limited research. Therefore, it is challenging to develop benchmarks or metrics for reliably
distinguishing them.

Future Scope

1.

Enhance the analysis by using multiple variations of the Type-Token Ratio (TTR) to gain
deeper insights into lexical diversity. For example: Root TTR, Corrected TTR etc. These
variations provide complementary perspectives on lexical diversity, making the analysis more
comprehensive and adaptable to different text types or lengths.

Expand the evaluation framework by incorporating additional readability metrics to capture
the complexity of text from various angles. For example: Coleman-Liau Index, Automated
Readability Index (ARI), SMOG Index (Simple Measure of Gobbledygook) etc. By using
multiple algorithms, you can offer a more nuanced evaluation of text readability and adapt the

analysis to different target audiences or domains.

Test the robustness, scalability, and generalizability of the methodology by applying it to a
larger dataset. A larger dataset provides a "big-picture" view of my methodology, revealing
potential limitations, edge cases, or areas for improvement. Recently found dataset : Human vs.
LLM Text Corpus consisting of 788922 unique records. (Link)

https://www.kaggle.com/datasets/starblasters8/human-vs-llm-text-corpus

References

1. GitHub Repository : LLMMetricR esearch

(Currently a private repository. Will make it public after submitting the project)

https://github.com/hrdikshrma/LLMMetricsResearch

	Slide 1: De-AI Cipher Decoding the Language of Machines
	Slide 2: Introduction
	Slide 3: Motivation
	Slide 4: Dataset
	Slide 5: Methodology
	Slide 6: LLM Metrics : Perplexity (1/17)
	Slide 7: LLM Metrics : Entropy (2/17)
	Slide 8: LLM Metrics : Burstiness (3/17)
	Slide 9: LLM Metrics : Type Token Ratio & Moving-Average Type Token Ratio (4/17)
	Slide 10: LLM Metrics : Average Sentence Length (5/17)
	Slide 11: LLM Metrics : Stopwords Frequency (6/17)
	Slide 12: LLM Metrics : N-Grams Calculation (7/17)
	Slide 13: LLM Metrics : Semantic Coherence (8/17)
	Slide 14: LLM Metrics : POS Tagging (9/17)
	Slide 15: LLM Metrics : Word Repetition Analysis (10/17)
	Slide 16: LLM Metrics : Readability Score (11/17)
	Slide 17: LLM Metrics : Sentiment Polarity and Subjectivity (12/17)
	Slide 18: LLM Metrics : Interrogative Content (13/17)
	Slide 19: LLM Metrics : Cognitive Verbs (14/17)
	Slide 20: LLM Metrics : Special Characters (15/17)
	Slide 21: LLM Metrics : Spelling Errors (16/17)
	Slide 22: LLM Metrics : Grammar Errors (17/17)
	Slide 23: Feature Correlation
	Slide 24: Results (DAIGT|Catch The AI)
	Slide 25: Results (DAIGT - Mixed Paragraph Dataset v1)
	Slide 26: Results (LLM - Detect AI Generated Text Dataset)
	Slide 27: Results (Website): Shows AI generated text to any grammatically correct input text. Input text was copied from Wikipedia.
	Slide 28: Results (Website): Shows Likely not AI only when we have grammatical errors in the provided input text
	Slide 29: Challenges
	Slide 30: Future Scope
	Slide 31: References

