
DE-AI CIPHER
D E C O D I N G T H E L A N G UAG E O F

M AC H I N E S

By: Hardik Sharma

Introduction

1. The rise of AI language models has blurred the lines between machine-generated and human-

generated text.

2. This project aims to explore the possibility of separating AI-generated text from human-

written text by analyzing a comprehensive set of various linguistic and statistical metrics.

3. By examining features such as perplexity, stylometric patterns, syntactic structures, semantic

coherence, and others, the project will evaluate which metrics are most effective in

distinguishing between the two types of text.

4. The ultimate goal is to deepen our understanding of the characteristics that differentiate AI-

generated content from human writing and assess the feasibility of accurately separating them.

Motivation

The ability to differentiate between AI-generated and human-written text is increasingly important

for several reasons:

1. In an era where information is abundant, verifying the authenticity of content is crucial for

maintaining trust in digital communications.

2. AI-generated texts can be used to spread fake news or propaganda. Identifying such content

helps mitigate the impact of disinformation.

3. As AI tools become accessible, there is a risk of misuse in academic settings. Detecting AI-

generated submissions is essential to uphold academic standards.

4. Understanding how AI-generated text differs from human writing contributes to responsible

AI development and deployment.

Dataset

DAIGT | Catch The AI (Link): This data consists of different LLMs , such as: Mistral-7B(v1&v2) ,

Llama 70b , Falcon180b ,GPT(3.5 & 4), Claude.

Training Records: 25969 ,Validation Records: 2730 and Testing Records: 2730

DAIGT - Mixed Paragraph Dataset v1 (Link):

All Records: 74868 unique records

LLM - Detect AI Generated Text Dataset (Link): The dataset comprises of a mixture of 28,000

student-written essays and essays generated by a variety of LLMs.

All Records: 27340 unique records

https://www.kaggle.com/datasets/zeyadusf/daigt-all-data-for-competition
https://www.kaggle.com/datasets/serjhenrique/daigt-mixed-paragraph-dataset-v1
https://www.kaggle.com/datasets/sunilthite/llm-detect-ai-generated-text-dataset

Methodology

1. Take raw text data 2. Calculate features/LLM Metric Score

for each text record

3. Preprocess the resultant data

• Remove any missing value

• Normalize all the features

4. Divide the data into Training,

Validation and Testing

5. Apply various machine learning

algorithms on the validation dataset

and store the one with best performance.

Apply that model on the test data.

LLM Metrics : Perplexity (1/17)

In this function we calculate the perplexity of a given

text using a pre-trained language model. (in my case, I

used bert-base-uncased). Perplexity is a measure of

how well a language model predicts the text. Lower

perplexity indicates the text is more predictable or

aligned with the language model's training, while

higher perplexity suggests the text is harder to

predict.

Explanation:

1. Tokenization: The text is tokenized into

numerical inputs using a pre-trained tokenizer.

2. Compute loss: The model calculates the loss

based on how well it predicts the given text.

3. Perplexity calculation: Perplexity is calculated as

the exponential of the loss: e loss

LLM Metrics : Entropy (2/17)

In this function, we calculate the word-wise entropy and character-

wise entropy of a text. Each entropy metric measures the

randomness or diversity of word/character usage by evaluating the

probability distribution of words/characters in the text. Higher

entropy indicates greater variation in word/character choice, while

lower entropy suggests repetitive or predictable language.

Key Points:

1. Word-wise entropy captures the variation in word choice (e.g.,

high entropy in diverse vocabulary).

2. Character-wise entropy captures the diversity in character

usage (e.g., high entropy in text with varied characters).

LLM Metrics : Burstiness (3/17)

In this function we calculate the burstiness of words in a

text. Burstiness measures the unevenness or irregularity in

the occurrence of words across the text. If a word appears in

quick bursts (closely clustered positions) rather than evenly

spread, it has higher burstiness. The metric is calculated

based on the intervals between occurrences of the same

word.

Key Points:

1. Low Burstiness: Words are evenly spaced, resulting in a

score that is close to 0.

2. High Burstiness: Words cluster together, creating

irregular intervals and a higher burstiness score.

LLM Metrics : Type Token Ratio & Moving-Average Type Token Ratio (4/17)

This function calculates the Type-Token Ratio (TTR),

which measures the diversity of a text by comparing the

number of unique words (types) to the total number of

words (tokens). A higher TTR indicates greater lexical

diversity.

The problem is that the TTR of a text sample is affected

by its length; obviously, the longer the text goes on, the

more likely it is that the next word will be one that has

already occurred.

Solution? Moving-Average Type Token Ratio.

In that, we choose a window length (say 500 words) and

then compute the TTR for words 1–500, then for words

2–501, then 3–502, and so on to the end of the text. The

mean of all these TTRs is a measure of the lexical

diversity of the entire text and is not affected by text

length nor by any statistical assumptions. Further, the

individual TTRs can be compared to detect changes

within the text. This helps smooth out fluctuations caused

by varying text lengths.

LLM Metrics : Average Sentence Length (5/17)

This metric gives the average sentence length of an input

text. It is calculated by dividing the total number of words in

the text by the total number of sentences. This metric is

useful for analysing the complexity of writing style — longer

sentences might indicate more complex or formal writing.

Key points:

1. Shorter sentences lead to a lower average sentence length,

often indicating simple or informal writing.

2. Longer sentences lead to a higher average sentence

length, often indicating complex or academic writing.

LLM Metrics : Stopwords Frequency (6/17)

This is used to calculate the frequency of function words (e.g.,

prepositions, conjunctions, articles, and pronouns) in each text.

Function words, often called stopwords, are essential for

grammatical structure but carry less semantic meaning. The

function computes the ratio of function words to the total

number of words, helping analyze writing style and formality.

Key Points:

1. Higher function word frequency: Often found in formal,

dense, or descriptive texts.

2. Lower function word frequency: Indicates more content

words, typical of creative or informal texts.

LLM Metrics : N-Grams Calculation (7/17)

Bi-grams are consecutive pairs of words, and we identify the top 5

most frequently occurring bi-grams in the text. Tri-grams are

consecutive sequences of three words. This analysis helps uncover

common word pairs, which can provide insights into writing

patterns or repetitive phrases.

Key Points:

1. Bi-grams focus on pairs of words and are useful for detecting

common phrases or adjacent word usage.

2. Tri-grams provide more contextual patterns and are helpful

in applications like language modeling and text generation.

LLM Metrics : Semantic Coherence (8/17)

Semantic coherence of a given text measures how

closely related consecutive sentences are. It is done by

using embeddings generated from a pre-trained

transformer model (in this case, I used Sentence

Transformer). Semantic coherence indicates the flow

and logical connection between sentences.

Key Points:

1. High coherence: Sentences flow logically and are

semantically connected.

2. Low coherence: Sentences lack logical flow or are

unrelated in meaning.

LLM Metrics : POS Tagging (9/17)

Part-of-Speech (POS) tagging on a given text categorizes the

counts of different POS tags into predefined categories (e.g., nouns,

verbs, modifiers). POS tagging identifies the grammatical role of

each word in the text (like noun, verb, adjective), and categorizing

these tags helps in understanding the structure and style of the text.

Key Points:

1. POS tagging reveals the grammatical structure of the text.

2. Categorizing POS tags helps in studying patterns, such as the

use of descriptive modifiers, action verbs, or formal nouns.

3. Useful for tasks like style analysis, genre classification, or text

complexity evaluation.

LLM Metrics : Word Repetition Analysis (10/17)

I performed word repetition analysis to find word

repetitions in each text. It identifies words that occur more

than once and calculates the repetition ratio, which is the

proportion of repeated word occurrences to the total

number of words. This helps in understanding the

redundancy or emphasis in the text.

Key Points:

1. Repeating words: Indicates which words are repeated,

potentially showing emphasis or redundancy.

2. Repetition ratio: Quantifies the extent of repetition in

the text.

This function is useful for analyzing text styles, identifying

redundancy in writing, or detecting emphasis in speech

transcripts or creative writing.

LLM Metrics : Readability Score (11/17)

In this function, I calculate the Flesch-Kincaid readability

score of a given text. The score measures how easy a text

is to read, based on the average number of words per

sentence and syllables per word. A higher score indicates

easier readability, while a lower score suggests the text is

more complex.

Key Points:

1. Higher score: Easier to read (e.g., children's books or

simple instructions).

2. Lower score: More complex text (e.g., academic

papers or legal documents).

LLM Metrics : Sentiment Polarity and Subjectivity (12/17)

In this function, I perform sentiment analysis on a given

text. I calculated:

• Polarity: A value between -1 and 1 that indicates the

sentiment of the text. Negative values represent

negative sentiment, positive values represent positive

sentiment, and 0 represents neutral sentiment.

• Subjectivity: A value between 0 and 1 that indicates

how subjective or opinionated the text is. Higher

values represent more subjective or personal

opinions, while lower values represent more factual

content.

Key Points:

1. Polarity identifies the emotional tone (positive,

neutral, or negative).

2. Subjectivity measures how opinionated or fact-

based the content is.

LLM Metrics : Interrogative Content (13/17)

In this function, I analyze the interrogative content of a given

text by identifying and counting the number of questions. It

uses two criteria to detect questions:

1. Sentences ending with a question mark (?).

2. Sentences that start with common question words or

subject-auxiliary inversion patterns (e.g., "What,"

"Why," "Is," "Can").

Key Points:

1. Questions often indicate inquiry or engagement in a

text.

2. The function is robust, detecting questions even if the

text lacks a question mark but follows typical

interrogative patterns.

LLM Metrics : Cognitive Verbs (14/17)

In this function, I count the occurrences of cognitive
verbs in each text. Cognitive verbs are action words
associated with mental processes like thinking,
analysing, evaluating, or creating. These verbs are often
indicators of higher-order cognitive activity and are
useful for assessing the cognitive load or complexity of
the text.

Key Points:

1. Cognitive verbs: Words like "analyze," "compare,"
and "summarize" reflect critical thinking or
problem-solving.

2. Higher count: Indicates texts that demand
intellectual effort, like instructions, academic
papers, or problem statements.

3. Applications: Useful for assessing instructional
materials, academic writing, or evaluating the
complexity of tasks in a text

LLM Metrics : Special Characters (15/17)

In this function, I calculate the number of special

characters in each text. Special characters include symbols

like @, #, $, %, ^, &, *, (,), _, +, =, and -. These characters

are often used in technical documents, code snippets, or

casual text (like social media posts).

Key Points:

1. Special characters often appear in:

1. Emails (e.g., @)

2. Hashtags or handles (e.g., #)

3. Currency values (e.g., $)

4. Equations or programming (e.g., +, -, *, /)

2. Higher count: May indicate technical, informal, or

casual text.

3. Applications: Useful for text classification, detecting

technical content, or filtering out noisy text.

LLM Metrics : Spelling Errors (16/17)

In this function, I identify and count the number of spelling

errors in each text. It compares each word in the text against

a dictionary of correctly spelled words. Words not found in

the dictionary are considered misspelled. This helps evaluate

the grammatical quality of the text.

Key Points:

1. Spelling errors often indicate informal writing, typos, or

low text quality.

2. Higher error count: Indicates poor grammar or

carelessness.

LLM Metrics : Grammar Errors (17/17)

In this function, I count the number of grammatical errors in

each text using the LanguageTool library. It scans the text for

grammar issues, such as incorrect verb tense, subject-verb

agreement errors, or improper punctuation, and returns the

total number of detected errors.

Key Points:

1. Captures a variety of issues, such as tense mismatches,

punctuation errors, or spelling mistakes in context.

2. Used for Evaluating the grammatical correctness of

datasets for NLP tasks.

3. Useful for both formal and casual writing to ensure

clarity and correctness.

Feature Correlation

1. The heatmap reveals significant

correlations among linguistic features,

particularly within groups like

grammatical components (e.g.,

Pronouns, Verbs, Determiners, etc.),

where values exceed 0.7.

2. Perplexity and Character Entropy

exhibit relatively weak correlations with

most other features, suggesting they

capture distinct aspects of the data.

3. Certain feature clusters, such as those

related to sentence structure (Sentence

Length, Stopwords Frequency) and

grammatical categories, show cohesive

patterns, indicating logical grouping

based on shared linguistic functions.

Results (DAIGT|Catch The AI)

Classification Algorithms Accuracy F1-score

Logistic Regression 0.9344 0.9353

K-Nearest Neighbor 0.9322 0.9335

SVM (Linear) 0.9516 0.9523

SVM (Polynomial) 0.9766 0.9766

SVM (Gaussian) 0.9722 0.9722

Naïve Bayes Classifier 0.8300 0.8426

Decision Tree 0.9498 0.9502

Random Forest 0.9326 0.9334

XGBoost 0.9806 0.9806

Multilayer Perceptron 0.9813 0.9813

Multilayer Perceptron 0.9758 0.9758

BERT (for baseline) 0.9765 0.9770

V
a
li
d
at

io
n

T
es

ti
n
g

Results (DAIGT - Mixed Paragraph Dataset v1)

Classification Algorithms Accuracy F1-score

Logistic Regression 0.8449 0.8446

K-Nearest Neighbor 0.7860 0.7863

SVM (Linear) 0.8540 0.8538

SVM (Polynomial) 0.8676 0.8674

SVM (Gaussian) 0.8617 0.8615

Naïve Bayes Classifier 0.7003 0.6965

Decision Tree 0.8023 0.8023

Random Forest 0.8088 0.8058

XGBoost 0.8738 0.8736

Multilayer Perceptron 0.8710 0.8698

XGBoost 0.8669 0.8665

V
a
li
d
at

io
n

T
es

ti
n
g

Results (LLM - Detect AI Generated Text Dataset)

Classification Algorithms Accuracy F1-score

Logistic Regression 0.9415 0.9415

K-Nearest Neighbor 0.9242 0.9243

SVM (Linear) 0.9602 0.9603

SVM (Polynomial) 0.9744 0.9745

SVM (Gaussian) 0.9650 0.9650

Naïve Bayes Classifier 0.8840 0.8847

Decision Tree 0.9689 0.9690

Random Forest 0.9538 0.9536

XGBoost 0.9885 0.9885

Multilayer Perceptron 0.9832 0.9832

XGBoost 0.9871 0.9871

V
a
li
d
at

io
n

T
es

ti
n
g

Results (Website): Shows AI generated text to any grammatically correct input text. Input text was copied from Wikipedia.

Results (Website): Shows Likely not AI only when we have grammatical errors in the provided input text

Challenges

1. Working with large language models (LLMs) require significant computational resources,

including high-performance GPUs. Training large models can take hours/days, depending on

the dataset size and model complexity, causing delays. Limited availability of advanced

hardware made it challenging for me to prepare the derived features and run BERT for

baseline.

2. To achieve fair and robust performance, the dataset used for training or evaluation must

accurately represent the diversity and generality of real-world scenarios. A biased or

unrepresentative dataset can lead to models that fail to generalize across different use cases or

domains. Example. Kaggle Dataset 1, 2 and 3 had grammatical errors as a major deciding factor

when it comes for human written text vs LLM generated text. In real-world, if a human is

well versed with English language and makes no grammatical errors, his/her text will be

marked as generated by AI.

3. Differentiating between AI-generated and human-generated text is an emerging problem with

limited research. Therefore, it is challenging to develop benchmarks or metrics for reliably

distinguishing them.

Future Scope

1. Enhance the analysis by using multiple variations of the Type-Token Ratio (TTR) to gain

deeper insights into lexical diversity. For example: Root TTR, Corrected TTR etc. These

variations provide complementary perspectives on lexical diversity, making the analysis more

comprehensive and adaptable to different text types or lengths.

2. Expand the evaluation framework by incorporating additional readability metrics to capture

the complexity of text from various angles. For example: Coleman-Liau Index, Automated

Readability Index (ARI), SMOG Index (Simple Measure of Gobbledygook) etc. By using

multiple algorithms, you can offer a more nuanced evaluation of text readability and adapt the

analysis to different target audiences or domains.

3. Test the robustness, scalability, and generalizability of the methodology by applying it to a

larger dataset. A larger dataset provides a "big-picture" view of my methodology, revealing

potential limitations, edge cases, or areas for improvement. Recently found dataset : Human vs.

LLM Text Corpus consisting of 788922 unique records. (Link)

https://www.kaggle.com/datasets/starblasters8/human-vs-llm-text-corpus

References

1. GitHub Repository : LLMMetricResearch

(Currently a private repository. Will make it public after submitting the project)

https://github.com/hrdikshrma/LLMMetricsResearch

	Slide 1: De-AI Cipher Decoding the Language of Machines
	Slide 2: Introduction
	Slide 3: Motivation
	Slide 4: Dataset
	Slide 5: Methodology
	Slide 6: LLM Metrics : Perplexity (1/17)
	Slide 7: LLM Metrics : Entropy (2/17)
	Slide 8: LLM Metrics : Burstiness (3/17)
	Slide 9: LLM Metrics : Type Token Ratio & Moving-Average Type Token Ratio (4/17)
	Slide 10: LLM Metrics : Average Sentence Length (5/17)
	Slide 11: LLM Metrics : Stopwords Frequency (6/17)
	Slide 12: LLM Metrics : N-Grams Calculation (7/17)
	Slide 13: LLM Metrics : Semantic Coherence (8/17)
	Slide 14: LLM Metrics : POS Tagging (9/17)
	Slide 15: LLM Metrics : Word Repetition Analysis (10/17)
	Slide 16: LLM Metrics : Readability Score (11/17)
	Slide 17: LLM Metrics : Sentiment Polarity and Subjectivity (12/17)
	Slide 18: LLM Metrics : Interrogative Content (13/17)
	Slide 19: LLM Metrics : Cognitive Verbs (14/17)
	Slide 20: LLM Metrics : Special Characters (15/17)
	Slide 21: LLM Metrics : Spelling Errors (16/17)
	Slide 22: LLM Metrics : Grammar Errors (17/17)
	Slide 23: Feature Correlation
	Slide 24: Results (DAIGT|Catch The AI)
	Slide 25: Results (DAIGT - Mixed Paragraph Dataset v1)
	Slide 26: Results (LLM - Detect AI Generated Text Dataset)
	Slide 27: Results (Website): Shows AI generated text to any grammatically correct input text. Input text was copied from Wikipedia.
	Slide 28: Results (Website): Shows Likely not AI only when we have grammatical errors in the provided input text
	Slide 29: Challenges
	Slide 30: Future Scope
	Slide 31: References

