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Abstract. Can ChatGPT or GPT-4 [1] do logic reasoning? Many people
have doubts on this question. Instead of answering it, let us consider a
more general question – Can a neural network do logic reasoning? My
answer implied in the tittle is of course yes. A neural network in a general
sense can do logic reasoning, though it depends on the architecture or
structure of a neural network. I will defend my answer by proposing and
testing a neural network which can acquire logic rules through learning.
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1 Introduction

There is an intense debate on the question: Can ChatGPT do reasoning? The
major positive arguments are

P1) You can see a bunch of reasoning tasks in which ChatGPT performs
well.

P2) You can tell it an inference rule, and it seems able to do something like
logical reasoning (see Fig. 1).

A possible objection to P2 is
N0) The instance you gave to ChatGPT involves some common words, in-

cluding robin, bird, and animal. These special cases might be encountered in its
training stage, and ChatGPT just somehow memorizes it, and it does not really
do reasoning.

A response to N0 is
P0) OK, let’s use some randomly generated words, such as “qwelkke”, “xad-

fasdf”, and “lkjwerk”. They are most probably not encountered in the training
set. ChatGPT still works well (see Fig. 2). This provides a positive evidence
that ChatGPT is doing something which is irrelevant to concrete contents but
is relevant to the transformation of the abstract form.

Nevertheless, P0 is not convincing enough. The major negative arguments
are

N1) You can see a bunch of reasoning tasks in which ChatGPT performs
badly.
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N2) I agree that ChatGPT can do reasoning in some sense. What it can do
is merely statistical reasoning, meaning that the conclusion is influenced by the
specific contents of the premises. However, what it cannot do is logical reason-
ing, in which it performs purely formal transformations that are independent of
specific contents. Though P0 provides an evidence that it seems to do formal
transformation in that case, but there are still a bunch of cases which provides
negative evidences. There is no such a principle or mechanism which makes
ChatGPT do logical reasoning.

I believe debating on P1 and N1 is boring, and the valuable part is on P2
and N2. Consequently, the meaningful question is whether it is possible for a
neural network to learn something called logical reasoning. In this project, I am
trying to prove that a certain neural network can do logical reasoning, by looking
for a mechanism based on which a neural network indeed does logical reasoning.

A by-product will be the (partial) answer to a more interesting question:
How does logic emerge from biological/artificial neural networks? I believe there
are two possible answers:

(a) There is something innate which is called a logic, which justifies that “{A,B} ⊢
Z”.

(b) There is nothing innate as a logic, but a logic is an acquired skill. “{A,B} ⊢
Z” is something learned by a neural network.

The key difference between these two answers is the representations to be adopted.
The former one adopts a logical representation, while the latter one adopts a neu-
ral representation. Although the result of this project would probably support
answer (b), this does not mean that answer (a) is not reasonable.

Fig. 1. ChatGPT learns the rule “{R(A,B), R(B,C)} ⊢ R(A,C)”.

The goal of this paper is trying to answer a theoretical question: can neural
networks do logical reasoning?

To answer this question, I firstly considered the general from of logical rules;
then I tried to generate a number of input-output instances for each of the rules;
finally, neural networks learned from the instances, extracting abstract formal
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Fig. 2. A case to support that ChatGPT learns the rule “{R(A,B), R(B,C)} ⊢
R(A,C)”.

relations (i.e., logical rule). The key point here is that how to examine the neural
networks really know the relations, rather than pretend to know the relations.

To solve this issue, firstly, I assume each of elements in an embedding is in
[−1, 1]. This is a justifiable assumption. Secondly, I propose an hypothesis (H1)
that

if the training data is highly biased (C1), while the test data is uniformly
distributed in the whole space (C2), and a neural network can reach 100%
accuracy on both training set and test set (C3), then the neural network
successfully obtains the formal relations (D1).

Thirdly, a neural network is trained on a highly biased training set and tested
on a uniformly distributed test set.

The preliminary results show that a Transformer [5] network gets 100% accu-
racy on both the data sets, implying that Transformer can learn formal relations
(rather than merely statistical correlation). An extended conclusion is that neu-
ral networks have potential to learn formal relations.

2 Related Works

Many researchers tried to enable neural network to do reasoning. The field mainly
on this issue is Neural Symbolic Reasoning [2], where most of the key ideas had
been proposed more than 15 years ago. They interpreted some neurons or layers
to be logical component (e.g., AND gate) and trained networks given some input-
output samples. The intuition in this project is the same, but the motivations
are different. In the previous work, they aim to simulate logic in neural network.
However, this project aims to address a theoretical issue, i.e., whether neural
networks can really do logical reasoning. Besides, the structures to be chosen is
different from the previous ones. Some of them made some special designs or
constraints on the neural network, as a result, some of their neural networks
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are quite different from the commonly used neural networks, which sum up all
inputs then pass the summation to an activation function and update weights by
back-propagation and gradient descent algorithms. The structure adopted in this
project is either the mainstream network (see Fig. 8) or a special network which
is novel in the high-level structure (see Fig. 9), while keeping the fundamental
mechanisms of deep neural networks unchanged. As a result, this project is more
suitable for answering the questions raised above, since ChatGPT might do the
similar things as the networks used in this project. There are also much recent
work on neural symbolic reasoning, such as IBM’s Logic NN [4], RNNLogic [3]
and so on.

3 Methodology

The goal of this project is to prove that a neural network can do logical reason-
ing. To achieve that, the overall strategy is as the following: first, a logic rule
is a formal transformation from premises to a conclusion; second, if a neural
network is doing a formal transformation, it is doing logical reasoning; third, let
a neural network learned the transformation, and prove that the transformation
is independent of the concrete contents of its input. I aware that such a neural
network, strictly speaking, can do logical inference, meaning a single step of a
reasoning process, however, it is sufficient to prove the potential of the neural
network to do (multi-steps) logical reasoning, by adding some addition parts.

3.1 General Form of Logic Rules

More concretely, the general form of a logic rule is as follows. Given some
premises,

Relation1(Term1,1, . . . , T erm1,n) ⟨tv1⟩
Relation2(Term2,1, . . . , T erm2,n) ⟨tv2⟩
. . .

Relationm(Termm,1, . . . , T ermm,n) ⟨tvm⟩

(1)

through a single step inference with a logic rule, a conclusion is made

Relationm+1(Termm+1,1, . . . , T ermm+1,n)⟨tvm+1⟩ (2)

A special case in Non-Axiomatic Logic (Wang) is the syllogistic deduction
rule , where the premises are

isa(M,P )⟨f1; c1⟩
isa(S,M)⟨f2; c2⟩

(3)

and the conclusion is
isa(S, P )⟨f1f2; f1f2c1c2⟩ (4)

The hypothesis in this project is that it is possible for a neural network to
learn the rule. There should be an operator to judge whether the two relations
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of the premises are equal (both are “isa”), as well as whether the first term of
the first premises is equal to the second term of the second premises (both are
“M”). Then a conjunction operator is used to determined whether two premises
can match the rule. If so, a copy operator transits the corresponding parts to
the output. There can be a mapping to compute the truth-value. The schematic
diagram is shown in Fig. 3.

Fig. 3. The formal transformation from premises to a conclusion

3.2 Dataset

The tricky part is how to test whether a rule is irrelevant to special contents of
input or not. We have a hypothesis that if the neural network can generalize to
the test data whose distribution is different from that of the training data, then
it learns the formal transformation.

I suggest to use some synthetic dataset, so that the distributions can be well
controlled. Let us assume each element of an embedding (i.e., an input content
of the neural network) is in [-1, 1]. The data in training set should be highly
biased (see Fig. 4(a)), while the data in test set should be uniformly in the whole
space (see Fig. 4(b)). If a neural network can generalize to this test dataset, then
it learns the abstract transformation, i.e., the logic rule.

3.3 Logic Rules

I consider a list of logic rules in Non-Axiomatic Logic [6]:
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(a) Distribution of train-
ing data (highly biased)

(b) Distribution of test
data (uniformly dis-
tributed in the whole
space)

Fig. 4. Data distribution

Rules in NAL-1:

{⟨M → P ⟩, ⟨S → M⟩} ⊢ ⟨S → P ⟩(Fded)

{⟨P → M⟩, ⟨M → S⟩} ⊢ ⟨P → S⟩(F ′
ded)

{⟨M → P ⟩, ⟨M → S⟩} ⊢ ⟨S → P ⟩(Find)

{⟨M → P ⟩, ⟨M → S⟩} ⊢ ⟨P → S⟩(F ′
ind)

{⟨P → M⟩, ⟨S → M⟩} ⊢ ⟨S → P ⟩(Fabd)

{⟨P → M⟩, ⟨S → M⟩} ⊢ ⟨P → S⟩(F ′
abd)

{⟨P → M⟩, ⟨M → S⟩} ⊢ ⟨S → P ⟩(Fexe)

{⟨M → P ⟩, ⟨S → M⟩} ⊢ ⟨P → S⟩(F ′
exe)

(5)

Rules in NAL-2:

{⟨M ↔ P ⟩, ⟨S ↔ M⟩} ⊢ ⟨S ↔ P ⟩(Fres)

{⟨M ↔ P ⟩, ⟨M ↔ S⟩} ⊢ ⟨S ↔ P ⟩(Fres)

{⟨P ↔ M⟩, ⟨S ↔ M⟩} ⊢ ⟨S ↔ P ⟩(Fres)

{⟨P ↔ M⟩, ⟨M ↔ S⟩} ⊢ ⟨S ↔ P ⟩(Fres)

{⟨M → P ⟩, ⟨M → S⟩} ⊢ ⟨S ↔ P ⟩(Fcom)

{⟨P → M⟩, ⟨S → M⟩} ⊢ ⟨S ↔ P ⟩(F ′
com)

{⟨M → P ⟩, ⟨S ↔ M⟩} ⊢ ⟨S → P ⟩(Fana)

{⟨M → P ⟩, ⟨M ↔ S⟩} ⊢ ⟨S → P ⟩(Fana)

{⟨P → M⟩, ⟨S ↔ M⟩} ⊢ ⟨P → S⟩(Fana)

{⟨P → M⟩, ⟨M ↔ S⟩} ⊢ ⟨P → S⟩(Fana)

{⟨M ↔ P ⟩, ⟨S → M⟩} ⊢ ⟨S → P ⟩(F ′
ana)

{⟨P ↔ M⟩, ⟨S → M⟩} ⊢ ⟨S → P ⟩(F ′
ana)

{⟨M ↔ P ⟩, ⟨M → S⟩} ⊢ ⟨P → S⟩(F ′
ana)

{⟨P ↔ M⟩, ⟨M → S⟩} ⊢ ⟨P → S⟩(F ′
ana)

(6)
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where the symbol “→” intuitively means “is a”, and “↔” intuitively means “is
similar to”.

3.4 Data Generation

For each of the rules, some corresponding instance are generated. For example,
with the deduction rule {⟨M → P ⟩, ⟨S → M⟩} ⊢ ⟨S → P ⟩ 1, an instance could
be {⟨bird → animal⟩, ⟨robin → bird⟩} ⊢ ⟨robin → animal⟩, meaning that if “bird
is an animal” and “robin is a bird” are true, then “robin is an animal” is true.

To generate more instances, I define a dictionary, in which there are around
20, 000 words, marked by ‘obj(1)’, ‘obj(2)’, ..., ‘obj(20000)’. Word ‘obj(i)‘ where
i ∈ {1, 2, ..., 10000} are only used in training set, and ‘obj(j)‘ where j ∈ {10000, 10001, ..., 20000}
only in test set. The word embeddings in the training set are distributed a “cube
shell”. For example, if the dimension of an embedding is 2, then the data points
are shown in Fig. 5. However, in the test set, data points corresponding to their
word embeddings are uniformly distributed.

(a) Word embeddings of training
set in 2-D space

(b) Word embeddings of training
set in 3-D space

Fig. 5. The distribution of training data is highly biased.

Given the dictionary as well as a single rule, some words are randomly picked
up to instantiate the rule. For example, one instance looks like

(((‘ → ’, ‘obj4827’, ‘obj1255’), (‘ → ’, ‘obj1732’, ‘obj4827’)),

(‘ → ’, ‘obj1732’, ‘obj1255’))
(7)

where the first line contains the input words, and the second line contains the
output words.

This instance is then converted to vectors, as shown in

1 Here, the truth-values are omitted.
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<BOS> → obj4827 obj1255 → obj1732 obj4827

<BOS> → obj1732 obj1255

<EOS>

<EOS>

Input (Premises)

Output (Conclusion)

Fig. 6. Vector representation of the instance in Eq. 7

Taking all the input words as a whole embedding, it is checked whether the
distributions in the training set and the test set are significantly different (see
Fig. 7). We can see that the experimental setting satisfies the conditions (C1)
and (C2) in the hypothesis (H1).

Fig. 7. Data distributions of training set and test set

3.5 Neural Networks

I use a Transformer network (see Fig. 8) to induce the logic rules from the
instances.

Another structure of neural network is attempted in this paper (see Fig. 9).
There is a list of sub-networks (i.e.,RuleNets), each of which represents a logic
rule. There is a selection network which produce masks for selecting rules. There
is also a scalar (indicator) to indicate whether any rules are applicable. All the
RuleNets and the Selection Network are Fully Connected neural networks, each
of which composed of 3 layers.

The full code is attached in the supplementary materials.
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Fig. 8. The Transformer – model structure [5]

4 Results

The Transformer model is trained for 4 epochs, and the loss curve is shown
in Fig. 10. The accuracy on the training set and the test set are both 100%.
Consequently, the condition (C3) is satisfied. The LogicANN model is trained
for 10 epochs, and the loss curve is shown in Fig. 11. The training accuracy is
97.1%, and the test accuracy is 72.7%.

Transformer LogicANN

Training Acc 100.0% 97.1%

Test Acc 100.0% 72.7%
Table 1. Accuracy

Without doubt, to display some internal states of the neural networks and
explain how the formal transformation happens inside the network, it is valuable
and may give us some deeper understandings. Why the merely Fully-Connected
neural networks does not successfully learn the formal relation but the Trans-
former can learn it deserves further experiments and research. However, consid-
ering the aim of this paper, I do not continue the research since it is sufficient
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RuleNet 1

RuleNet 2

RuleNet n

…

Selection 
Network

Embedding

Instance

Indicator

Embedding

Interpreter

Fig. 9. The structure of LogicANN

Fig. 10. Loss curve of Transformer in the training set

to get the answer we want. I have other issues to research so that I have to stop
this work that is not so intriguing for me.

5 Conclusion

From the dataset setting, we know that the training set is highly biased, and the
test set is uniformly distributed. From Tab. 1 we can see that the Transformer
network obtains 100% accuracy in both training and test dataset. Therefore,
according to the hypothesis (H1), we can draw a conclusion that the Transformer
network successfully obtains the formal relations.

Since the formal relations in this paper are the logical rules, the Transformer
network actually does logical inference in this experiment. Hence, the experi-
mental result support that a neural network, especially a Transformer network,
can do logical reasoning. By contrast, the LogicANN network does not satisfy
the third condition (C3), thus it is not really able to do logical reasoning.



Logic Acquisition and Inference by Neural Networks 11

Fig. 11. Loss curve of LogicANN in the training set

Nevertheless, there are still some fundamental limitations for a neural net-
work to learn or acquire a logic. The Transformer network summarizes its ex-
perience from instances, as a result, it learns some formal mappings between its
input and output. The input is interpreted as the premises, while the output is
interpreted as conclusions of logic rules. However, human beings learn or acquire
a logic in a quite different way. Humans propose some logic rules from hypothe-
ses, and then design semantics and give solid justifications for those hypotheses.
In the current paradigm of deep learning, as well as neural symbolic reasoning,
we do not see a possibility for a neural network to think and acquire a logic in
this way. This implies a potential research direction for neural symbolic reason-
ing, and we might as well call it neural logic acquisition, which aims to model
the procedure of humans to learn a logic.
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