Notes for Optimization

Jiyao Liu

CIS Department (of Temple University)

Philadelphia, USA

jiyao.liu@temple.edu

Abstract—This note discusses optimization in federated learning, including properties of loss functions and some basic equations and inequalities.

I. ASSUMPTIONS

A. Smoothness

If function f is L-smooth, then, for $\forall x, \forall y \in \mathbb{R}^d, L > 0$,

$$f(y) \le f(x) + \langle \nabla f(x), (y - x) \rangle + \frac{L}{2} ||x - y||^2$$
 (1)

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \le L \|x - y\|^2 \tag{2}$$

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\| \tag{3}$$

B. Convexity

If function f is μ -convex, then, for $\forall x, \forall y \in \mathbb{R}^d, \mu > 0$,

$$f(y) \ge f(x) + \langle \nabla f(x), (y - x) \rangle + \frac{\mu}{2} ||x - y||^2$$
 (4)

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||^2$$
 (5)

$$\|\nabla f(x) - \nabla f(y)\| \ge \mu \|x - y\| \tag{6}$$

$$\alpha f(x) + \beta f(y) \le f(\alpha x + \beta y), \alpha + \beta = 1$$
 (7)

C. Bounded Gradient

If the datasets on all devices are IID, then we can assume, for any device i, loss function F_i , parameters \mathbf{x} , and dataset ξ , there exists G > 0,

$$\|\nabla F_i(\mathbf{x}; \xi)\|^2 < G^2 \tag{8}$$

D. Bounded Variance

Bounded stochastic gradient variance

$$f_i(\mathbf{x}) \triangleq \mathbb{E}[F_i(\mathbf{x})]||^2$$
 (9)

$$\mathbb{E}_{\xi \sim \mathcal{D}_i}[\|\nabla F_i(\mathbf{x}; \xi) - \nabla f_i(\mathbf{x})\| \le \sigma^2 \tag{10}$$

E. Bounded Dissimilarity

If the datasets on all devices are non-IID, we can assume, for all N devices, loss function f_i of device i, and any parameters \mathbf{x} , there exists $\kappa > 0$,

$$\|\nabla f_i(\mathbf{x}) - \nabla f(\mathbf{x})\|^2 \le \zeta^2 \tag{11}$$

II. EQUATIONS

A. Expectation of Squared Norm

For $\forall \mathbf{v} \in \mathbb{R}^n$,

$$\mathbb{E}[\|\mathbf{v}\|^2] = \mathbb{E}[\|\mathbf{v} - \mathbb{E}[\mathbf{v}]\|^2] + \|\mathbb{E}[\mathbf{v}]\|^2$$

Proof. See section IV-A.

B. Parallelogram Law

 $\forall \mathbf{u}, \forall \mathbf{v} \in \mathbb{R}^n$,

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$$
 (12)

C. Theorem 1

For $\forall a, \forall b, \forall c \in \mathbb{R}^n$,

$$2\langle a - b, a - c \rangle = ||a - b||^2 + ||a - c||^2 - ||b - c||^2$$

Proof.

$$\begin{split} &2\langle a-b,a-c\rangle\\ &=\langle a-b,a-c\rangle+\langle a-b,a-c\rangle\\ &=\langle a-c-(b-c),a-c\rangle+\langle a-b,a-b+(b-c)\rangle\\ &=\langle a-c,a-c\rangle+\langle b-c,c-a\rangle\\ &+\langle a-b,a-b\rangle+\langle a-b,b-c\rangle\\ &=\langle a-c,a-c\rangle-\langle b-c,b-c\rangle+\langle a-b,a-b\rangle\\ &=\|a-b\|^2+\|a-c\|^2-\|b-c\|^2 \end{split}$$

III. INEQUALITIES

A. Sum in Norm Expansion

$$\|\sum_{i} v_i\|^2 \le \sum_{i} \|v_i\|^2$$

This is easy to prove by hand so we omit the proof here.

B. Cauchy-Schwarz Inequality

Cauchy-Schwarz inequality in \mathbb{R}^n states that for $\forall \mathbf{u}, \forall \mathbf{v} \in \mathbb{R}^n$,

$$\|\langle \mathbf{u}, \mathbf{v} \rangle\|^2 < \|\mathbf{u}\|^2 \|\mathbf{v}\|^2$$

Proof. See section IV-C.

C. AM-GM Inequality

AM-GM inequality in \mathbb{R}^n states that for $\forall \mathbf{u}, \forall \mathbf{v} \in \mathbb{R}^n$,

D. Young's Inequality

 $\forall \mathbf{u}, \forall \mathbf{v} \in \mathbb{R}^n, p > 1,$

$$\mathbf{u}\mathbf{v} \le \frac{p-1}{p}\mathbf{u}^{\frac{p}{p-1}} + \frac{1}{p}\mathbf{v}^p$$

When p = 2,

$$2\mathbf{u}\mathbf{v} \leq \mathbf{u}^2 + \mathbf{v}^2$$

Proof: link (only for real numbers currently).

IV. APPENDIX

A. Proof of Expectation of Squared Norm

Here we prove

$$\mathbb{E}[\|\mathbf{v}\|^2] = \mathbb{E}[\|\mathbf{v} - \mathbb{E}[\mathbf{v}]\|^2] + \|\mathbb{E}[\mathbf{v}]\|^2$$

According to the definition of $\|\cdot\|$,

$$\mathbb{E}[\|\mathbf{v}\|^2] = \mathbb{E}[\sum_i v_i^2] \tag{13}$$

$$\|\mathbb{E}[\mathbf{v}]\|^2 = \sum_{i} (\mathbb{E}[v_i])^2 \tag{14}$$

Then,

$$\mathbb{E}[\|\mathbf{v} - \mathbb{E}[\mathbf{v}]\|^{2}]$$

$$= \mathbb{E}[\sum_{i} (v_{i} - \mathbb{E}[v_{i}])^{2}]$$

$$= \mathbb{E}[\sum_{i} v_{i}^{2} - 2\sum_{i} v_{i} \mathbb{E}[v_{i}] + \sum_{i} (\mathbb{E}[v_{i}])^{2}]$$

$$= \mathbb{E}[\sum_{i} v_{i}^{2}] - 2\mathbb{E}[\sum_{i} v_{i} \mathbb{E}[v_{i}]] + \mathbb{E}[\sum_{i} (\mathbb{E}[v_{i}])^{2}]$$

$$= \mathbb{E}[\sum_{i} v_{i}^{2}] - 2\sum_{i} (\mathbb{E}[v_{i}])^{2} + \sum_{i} (\mathbb{E}[v_{i}])^{2}$$

$$= \mathbb{E}[\sum_{i} v_{i}^{2}] - \sum_{i} (\mathbb{E}[v_{i}])^{2}$$

$$(15)$$

Combine (13), (14), (15), we get the result.

B. Proof of Parallelogram Law

The equation is equivalent to

$$\sum_{i} (u_i + v_i)^2 + \sum_{i} (u_i - v_i)^2 = 2\sum_{i} u_i^2 + 2\sum_{i} v_i^2$$
$$\sum_{i} 2(u_i^2 + v_i^2) = 2\sum_{i} u_i^2 + 2\sum_{i} v_i^2$$

C. Proof of Cauchy-Schwarz Inequality

Proof. It is equivalent to prove

$$\left(\sum_{i=1}^n u_i v_i\right)^2 \le \left(\sum_{i=1}^n u_i^2\right) \left(\sum_{i=1}^n v_i^2\right).$$

Consider

$$\sum_{i=1}^{n} (u_i x + v_i)^2 \ge 0$$

$$\left(\sum_{i=1}^{n} u_i^2\right) x^2 + 2 \left(\sum_{i=1}^{n} u_i v_i\right) x + \sum_{i=1}^{n} v_i^2 \ge 0$$

This quadratic polynomial in x has at most 1 real root, thus, its discriminant $\Delta \leq 0$. That is

$$4\left(\sum_{i=1}^{n} u_{i} v_{i}\right) - 4\left(\sum_{i=1}^{n} u_{i}^{2}\right) \left(\sum_{i=1}^{n} v_{i}^{2}\right) \leq 0$$