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Abstract—This note discusses optimization in federated learn-
ing, including properties of loss functions and some basic equa-
tions and inequalities.

I. ASSUMPTIONS
A. Smoothness
If function f is L-smooth, then, for Vz,Vy € R%, L > 0,

L
F) < f@) + (V@) (= 2D + Slle—yl* D)
(V@)= Vf(y),x—y) < Lz —y|? 2)
IVf(z) =Vl < Lz -y 3)
B. Convexity
If function f is p-convex, then, for Va,Vy € R%, > 0,

Fo) > f@) + (V@) —2) + Sz —yl? @
(V@)= V), z—y) > ple—yl? (5)
IVf(@) =V > ple -yl (6)
af(x)+Bf(y) < flax + By),a+ B =1 (7N

C. Bounded Gradient

If the datasets on all devices are IID, then we can assume,
for any device i, loss function Fj;, parameters x, and dataset
&, there exists G > 0,

IVF;(x:6)|* < G* (8)
D. Bounded Variance

Bounded stochastic gradient variance

fi(x) £ E[F,(x)]|1? ©)
VEi(x;€) — Vfi(x)] < o? (10)

E. Bounded Dissimilarity

E5~Di [

If the datasets on all devices are non-IID, we can assume, for
all N devices, loss function f; of device i, and any parameters
x, there exists Kk > 0,

IV£i(x) = V)I* < ¢

II. EQUATIONS

Y

A. Expectation of Squared Norm
For Vv € R",

E[|vI] = E[llv — E[v][I*] + E[v]|?
Proof. See section [V-Al

B. Parallelogram Law
Yu,Vv € R",
o+ [ + lu = v = 2[ul® + 2| v|? (12)
C. Theorem 1
For Va,Vb,Vc € R",
2(a=b,a—c) =lla—0]*+la—cl* b - ¢l
Proof.
2(a —b,a — ¢)
={a—ba—c)+{a—ba—c)
={(a—c—(b—c),a—c)+{a—ba—b+ (b—c))
={a—c,a—c)+ {b—c,c—a)
+{a—b,a—0b)+ (a—bb—c)
={a—ca—c)—(b—c,b—c)+ (a—b,a—b)
= lla—bl* +lla —c* = [[b — ]
III. INEQUALITIES

A. Sum in Norm Expansion

1D will> < D lailf?
i %

This is easy to prove by hand so we omit the proof here.

B. Cauchy-Schwarz Inequality

Cauchy-Schwarz inequality in R™ states that for Vu, Vv €
R™,
[(a, v) [ < [luf?]v][

Proof. See section [V-Cl

C. AM-GM Inequality
AM-GM inequality in R"™ states that for Vu, Vv € R",

D. Young’s Inequality
Yu,Vv € R”, p > 1,
-1 » 1
uv < Luﬁ 4+ —vP

When p = 2,
2uv < u? + v2

Proof: link (only for real numbers currently).


https://www2.math.upenn.edu/~brweber/Courses/2011/Math361/Notes/YMandH.pdf
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IV. APPENDIX
A. Proof of Expectation of Squared Norm
Here we prove

Eflv]*] = Ellv - EVII*] + | E[v]|”

According to the definition of || - ||,

Efl|v|?] Zv (13)
[EM]P = (E[vi]f (14)

%

Then,

E{llv — E[v]|?)
= B[3 (vi ~ Bl

Zv —221;2 v; +Z

Zv —QEZ% vil +EZ(E[ )7

Zv —22 28

Zv Z [v:])? (15)
Combine @p [T, @ we get the result.

B. Proof of Parallelogram Law

The equation is equivalent to

Z(ui—l—vi)Q—i—Z(ui—vi)2:22u?+220i2
ZQ(uf—H}?) :2Zu?+22v?

C. Proof of Cauchy-Schwarz Inequality
Proof. It is equivalent to prove

(£0) = (54) (52)

Consider N

Z (uiz +v,)* >0

i=1

(iuf) 2 +2 (ium) x—l—zn:v? >0
i=1 i=1 i=1

This quadratic polynomial in = has at most 1 real root, thus,
its discriminant A < 0. That is

(Ee) o5 (£
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