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Abstract

Postcard dataset is uncommon for computer vision domain. In order to help an
online postcard business, Signed Cards, to improve their search an recommen-
dation system, this project tried to solve three vision tasks: image classification,
object detection and image retrieval. This project is the initial work for evalu-
ating computer vision models on this SignedCard dataset. In terms of method
innovation, I improved the CLIP model with dual-input structure and a variety of
aggretation methods.

1 INTRODUCTION

Online greeting card business SignedCards.com has a growing collection of greeting cards.
To improve the search system and the recommendation system, the company has spent
significant efforts in annotating cards with related labels, including labels for objects and
abstract visual concepts, such as "Girly" and "Romantic". In the current practice, annotations
are created by card designers with low consistency. In addition, the created annotations
are often incomplete with missing labels. As the result, for SignedCard company, correctly
categorizing the cards is non-trivial, error-prone, and labor intensive.

In this project, with the dataset my team gathered from SignedCard, I aimed to improve the
existing annotation system and the recommendation system with computer vision models. In
specifics, I explored and modified the state-of-the-art models in solving three vision tasks: 1)
image classification, 2) object detection, and 3) image retrieval.
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From the computer vision perspective, my data contains multiple challenges. First, unlike
the popular vision dataset, my dataset is sparse with great variety. Most of the existing labels
only have small amount of samples. For instance, in the special occasion category, more than
60% of the unique labels have less than 20 samples. In addition, the appearance of the visual
objects is often diverse with stylistic drawing depiction. Thus, I expect regular supervised
algorithms to have hard times in learning the general representation with this limited and
sparse dataset.

The second challenge comes from classifying the abstract visual concepts. Abstract concepts
classification is a fairly new computer vision domain. Ahres et al. [1] used supervised VGG-16
on predicting abstract concepts in the FLICKR dataset and reported precision less than 10%.
Abstract concepts labels are usually more challenging than object labels because abstract
concepts labels represent a larger variety of images than object labels.

The contribution of this project comes in three-fold. First, this is the initial work for building
the postcard dataset. Also, this is the initial work for evaluating performance of common
computer vision tasks on this dataset. Second, this project extends the research efforts in
solving the abstract visual concepts challenging with the recent state-of-the-art models. Third,
I further explained the reasons behind the strong performance of CLIP [2]. I also improved the
CLIP structure with aggregator module to leverage the combination of image and text inputs.

2 DATA

The data set was collected directly from SignedCards and I have no authority to share with the
public or the reviewers. The data set consists of a catalogue of greeting cards. Near duplicates,
such as the same card image with different text on it, were removed to prevent over training.
The data set comprises 8033 unique cards.

For each sample, cover image and cover text are provided as input of the visual tasks. There
are two types of annotations: single-label and multi-label. Single-label categories include
Holiday, Special Occasions, Messages, and Relationship. Each sample has one label for each
single-label category. The top-10 labels and the number of unique labels for each single-
label category is shown in Fig. 2.1. As shown, all categories are significantly imbalanced. For
example, in the Special Occasion category, ’birthday’ label has more than 200x samples than
the remaining labels.

Features is the only multi-label category, which has a list of labels for each sample. Fea-
tures category contains not only the object labels, but also the abstract labels, though often
incomplete. There are 1334 unique labels for Features. However, many labels are unique in
the dataset and are over-specified, such as "1950_FORD_CUSTOM". Thus, for the Features
category, I focused only on the labels with 5 or more examples in the data set and discarded
those labels with less than 5 examples.

Table 2.1 shows the summary of all categories, with the size of not-none samples (N) and the
number of unique labels. Unless otherwise specified, all the reported results are the testing
results from all N samples.
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Figure 2.1: Top-10 labels for each single-label category. Total number of unique labels for
each category is shown in the subtitles. Horizontal axis represents the sample counts for each
labels.

Table 2.1: Summary of all annotation categories

Category N #Labels

Holidays 2427 29
Special Occasions 2735 29

Relationships 1847 83
Messages 2196 34

Object features 6699 500

3 METHODS

In this project, I tried to solve for three visual tasks: image classification, object detection and
image retrieval.

Label classifications are performed with the single-label categories, which are Holiday,
Special Occasions, Messages, and Relationship. For each target category, I classify each image
with one label under that category.

Object detection is performed with the multi-label category: Features. I try to detect the
top-5 most likely objects present in the image. For this task, objects labels are derived from
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Figure 3.1: Summary of my approach. First, I obtain an input embedding with pre-trained
image encoder, pre-trained text encoder and an aggregator. Second, I convert the target
labels into sentence and obtain related target embedding. Lastly, I predict labels based on the
similarity between input embedding and target embedding.

Features. I keep only object-related labels and remove abstract visual concepts labels. Unlike
traditional object detection, no location will be predicted as the location information is not
needed for the online retailer to annotate its cards.

For image retrieval, given a query image, I try to retrieve the images in the dataset with the
same labels. Experiments are done for the single-value categories. I also try to retrieve images
using text queries containing abstract concepts.

For all visual tasks, I used the general structure as illustrated in Fig. 3.1, which is inspired by
CLIP [2]. CLIP is a model with an image encoder and a text encoder. It efficiently learns visual
concepts from natural language supervision. Since CLIP was trained on an enormous dataset
with 400 million (image, text) pairs, it has learnt a large variety of concepts and able to produce
useful image representations for a large variety of tasks, without any dataset specific training.
As the signedcards dataset also contains a large variety of objects, scenes and abstract visual
concepts, I expect CLIP to be advantageous for the proposed vision tasks.

At the core of my approach is the idea of leveraging well-trained encoders, including CLIP
and Universal Sentence Encoder [3], to obtain representative embedding for the input image,
input cover text and the target labels. Unlike CLIP which only allows image input, I utilize both
image and cover text. I modify the original CLIP structure by adding an aggregator function
for building a more representative embedding than the original image embedding.
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3.1 IMAGE ENCODER

For image encoder, I tested with pre-trained CLIP’s image encoder and Resnets [4]. CLIP’s
image encoder follows the ResNet50 [5] structure. I directly used the pre-trained weights
downloaded from GitHub and did no fine-tuning on specific targets. In terms of preprocess-
ing, I first resized them to 224 x 224 pixels. Then, I performed center cropping on images.
Lastly I normalized images with the mean and standard deviation provided by CLIP. After
pre-processing, I passed the preprocessed images into CLIP’s encoder and obtain the image
embeddings

Besides using the pre-trained image encoder, I also tested including ResNet-18 and ResNet-
152 [5] with no pre-trained weights. Due to the outstanding intra-class variability of visual
content in these images, I expect it has a worser performance than CLIP’s pretrained encoder.

3.2 TEXT ENCODER

For text encoder, I tested with CLIP’s text encoder and Universal Sentence Encoder (USE) [3].
CLIP’s text encoder is based on the Transformer [6]. Again, no fine-tuning was done with

the CLIP’s text encoder. In terms of preprocessing, labels are first converted to sentences. For
single-value categories, the sentence for each label is constructed as "This is a photo of label,
a type of category". For Features categories, I first manually derived the group of each label.
For example, the group of "dog" label, is "animal". The sentence for each label is constructed
as "This is a photo of label, a type of group", when group is available. For labels without any
group, or itself is a group, for example "animal", the sentence is simply constructed as "This is
a photo of label".

After that, all sentences, including cover text and the label sentences, are tokenized, brack-
eted with [SOS] and [EOS] tokens, and then mapped to unicodes. Lastly, sentences are passed
into CLIP’s text encoder and then a text embedding is obtained for each target label and each
input cover text.

For Universal Sentence Encoder (USE) [3], which is also based on transformer. It is pre-
trained on textual data from Wikipedia, web news, web question-answer pages and discussion
forums. Using a similar preprocessing process, I used USE to generate a text embedding for
each cover text.

3.3 AGGREGATOR

Besides directly using either image embedding or text embedding as the input, aggregator
module is experimented for combining the image embedding and text embedding. Due to
the time limitation, I only tested two aggreagator methods. One is averaging the selected
embedding, for example averaging CLIP’s image embedding and CLIP’s text embedding.

The second aggregator method is TRIG. I modified the original network [7] by removing
the original resnet and LSTM layers and replacing them with pretrained visual and textual
embedding. Then, I computed gated residual features as described in the original work.
The TIRG layers are then trained with triplet marginal loss and with semi-hard triplet batch
formation for each category.
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Table 4.1: Classification accuracy of the single-value categories.

holidays special occasions relationships messages
Input embedding Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

image 0.632 0.950 0.531 0.877 0.338 0.565 0.278 0.509
cover text 0.775 0.891 0.595 0.942 0.449 0.732 0.336 0.508

image & text (avg.) 0.810 0.969 0.657 0.964 0.530 0.768 0.397 0.608

4 EXPERIMENTS AND RESULTS

4.1 IMAGE CLASSIFICATION

I tested with three types of input embedding: image embedding only, cover text embedding
and the aggregated feature, which is the average feature of image and text embedding. TIRG
is not tested for this task because of time limitation. USE is not tested because it can’t map
CLIP’s imaging embedding trained directly with related USE target label embedding as they
are trained with different feature spaces.

All the embedding are obtained with CLIP’s encoders. Table 4.1 shows the average classifica-
tion accuracy for all the single-value categories. As demonstrated, by using a simple average
aggregation function, I significantly improved accuracy for all categories. The results matched
expectation as the combined embedding provides more semantic contents than the individual
embedding. Another observation is that, the Top-5 accuracy is significantly higher than Top-1
accuracy. This means that, for most cases, when the predicted label is not the ground truth
label, the ground truth label is still one of the predicted top-5 most likely labels.

I also tested a baseline network, ResNet with no pre-trained weights. I used a split of 80%
and 20% data for training and evaluation. ResNet-18 and ResNet-152 gives me around 32% and
34% accuracy for Holiday classification. The epoch-wise training and validating evaluation
for ResNet-18 and ResNet-152 is shown in Fig.4.1. As expected, the dataset is too limited
for training a network to learn such sparse label representations and thus causing a bad
performance. Since the preliminary results on classifying Holidays were bad, I did not use it
for image encoder for the following experiments.

4.2 OBJECT DETECTION

Since object detection is highly dependent on the semantic embedding and textual embedding
provide very little information, I only used image embedding as the input embedding. For
each image, I predicted the top-5 most related object labels. For post-processing, I expanded
the predicted labels with related group label and relevant labels. For example, if one of the
predicted label is "dog", I then add "animal" into the predicted labels.

Before post-processing, 62.4% of the samples have at least one object label being predicted
correctly. After post-processing, the rate increased to 81.1%.
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Figure 4.1: ResNets performance on classifying Holidays

(a) ResNet-18 (b) ResNet-152

Sample-wise accuracy is calculated as follows:

Acc = mi n(T P,5)

mi n(leng tho f l abel s,5))
(4.1)

Average accuracy is 34.1% before post-processing, and is 61.5% after post-processing. Fig. 4.3
visualize object detection results for 4 samples. As demonstrated, the model can detect objects
on a wide variety of images, including the cartoonistic images, stylized images and natural
images. Even for the case it missed the ground truth labels, it still predicted highly relevant
object labels. Also, by examining the predicted results, I discover that the ground truth object
labels are often incomplete, as it misses objects that appear on the images. Thus, even the
average accuracy number is low, but I think the object detection performance with CLIP’s
embedding is solid.

Figure 4.3: Object detection sample results. The label list on top of each images are the ground
truth object labels. Red-color means before post-processing, none of its predicted labels is
one of the ground truth, and green-color means at least one is the ground truth. Predicted
labels with its softmax probabilities are plotted as bar graph.
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4.3 IMAGE RETRIEVAL

For image retrieval, unlike other tasks, I evaluated on the test samples only, which is 20% of all
the available samples. This is because methods required training also being evaluated. For
each evaluated single-value categories, I used each sample’s input embedding as the query
and retrieved K images. For each sample, recall is calculated based on if the ground truth label
of the query image appears in the top-K retrieved images. Table 4.2 shows the average recall.
For the listed input types: "im." represents CLIP’s image embedding; "text" represents CLIP’s
cover text embedding. "USE" represents USE’s cover text embedding. "(A)" denotes that it is
using average as the aggregator function. "(T)" denotes that it is using TRIG as the aggregator
function.

For embedding generated without the need of training, using image embedding obtained
from CLIP image encoder and text embedding obtained from USE text encoder performed
the best across all aggregation schemes, and it is even better than the combination of all
three types of embedding. One of the possible reason is the CLIP text encoder and the CLIP
image encoder are both trained to capture the same set of semantic features. Since USE is
trained separately, it is able to enhance CLIP’s image embedding space by providing additional
semantic features and thus allow a better performance.

For embedding generated with the need of training, four models are trained with triplet
marginal loss and with semi-hard triplet batch formation for each category. The first model
is CLIP, which I fine-tuned on original embedding. With fine-tuning, performance increased
for Holidays category but not the other categories. The second model is the original TRIG
model with its own LSTM text encoder and ResNet encoder. For all categories, it had a lower
recall rate than the modified TRIG with non-original encoders. The third and forth model
are the models which froze the encoder layer and only fine-tuned the TRIG’s gated residual
layers. The best performance came with using CLIP’s image embedding and USE cover text
embedding. Interestingly, except the third model, all other trained model performed worser
than non-trained models for Messages category, which is a highly sparse category.

4.4 ABSTRACT CONCEPT RETRIEVAL

I also explored the possibility of retrieving images with abstract-concept text queries. The
text queries were first encoded by CLIP’s text encoder and compared to CLIP’s encoded image
embedding for all samples. USE text encoder was not used because it maps embedding into
different feature space than CLIP’s image embedding. No quantitative evaluation was done
because most of the samples in the dataset has no abstract concept labels. Fig. 4.4 shows
sample outputs. Overall, the retrieved results are highly impressive as most of them are highly
relevant with the abstract concepts specified, even for the non-English query "bon voyage".

4.5 EMBEDDING ANALYSIS

Since both CLIP and USE show impressive results in the analyzed vision tasks without fine-
tuning, thus I would like investigate the underlying feature spaces of the pre-trained embed-
dings. I used t-SNE to reduce all the 512-dimensional embedding obtained from the discussed
encoders to 2 dimensions. Fig. 4.5 plots the t-SNE components for the samples with the top-10
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Table 4.2: Top-K retrieval recall rate for all embedding generation method

Holidays Special Occasions Messages

Embedding 1 5 10 1 5 10 1 5 10

without training

USE 0.679 0.648 0.605 0.889 0.839 0.822 0.502 0.466 0.415
text 0.687 0.69 0.647 0.871 0.844 0.832 0.478 0.414 0.368
im. 0.711 0.636 0.566 0.835 0.804 0.799 0.347 0.316 0.28
im. & USE (A) 0.77 0.717 0.66 0.877 0.828 0.819 0.5 0.462 0.417
im. & text (A) 0.785 0.741 0.702 0.866 0.828 0.814 0.485 0.406 0.374
im.&text&USE(A) 0.782 0.736 0.683 0.877 0.824 0.813 0.485 0.433 0.387

with training

CLIP 0.799 0.733 0.7203 0.755 0.724 0.718 0.171 0.111 0.102
original TRIG 0.734 0.719 0.708 0.713 0.682 0.677 0.129 0.094 0.088
im. & USE (T) 0.831 0.777 0.754 0.85 0.815 0.802 0.728 0.707 0.697
im. & text (T) 0.767 0.741 0.713 0.712 0.687 0.674 0.134 0.105 0.1

Figure 4.4: Retrieval with text queries containing abstract concepts. The leftmost column
shows the text queries used. The subtitles shows the probabilities.

labels in each category. Generally, Holidays category’s embedding is the most well-separated.
This gives a hint why the performance of all visual tasks have the highest accuracy on the
Holiday category.

Since the aggregated embedding from CLIP’s image embedding and USE’s text embedding
gives the highest image retrieval accuracy, I wanted to visualize how this aggregated embedding
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map similar images into similar semantic feature space. As shown in Fig. 4.6, I embedded 1000
sample images in 2-dimension using t-SNE on the aggregated embedding. As demonstrated,
without fine-tuning, the aggregated embedding are able to map images which share the same
semantic meaning to be neighbors. For example, in Fig. 4.6, the images with dogs are mapped
to the upper left corner and the images with the romantic theme are mapped to the upper
right section.

5 CONCLUSIONS

In conclusion, I have evaluated visual tasks that are crucial for SignedCard website’s recom-
mendation system and searching system, including image classification, object detection
and image retrieval. I demonstrated that CLIP and USE, which are both pre-trained on large
variety of images, are useful for improving the performance. Also, I proved that CLIP’s pre-
trained embedding has learnt about abstract visual concepts and thus allowed good retrieval
performance with abstract queries.

In terms of model improvement, I improved the original CLIP model by accepting dual-
inputs: image embedding and text embedding. I also experimented a naive aggregation
method, averaging, and an advanced gated residual method, TRIG. In the image retrieval
evaluation, I noticed that by combining CLIP’s pre-trained image embedding and USE’s pre-
trained cover text embedding, and fine-tuning the TRIG layers was the best model choice with
highest recall rate.

Due to time constraint, some of the visual tasks are not evaluated completely. For example,
for the retrieval experiments, only three categories are evaluated instead of all four single-value
categories. As future works, to demonstrate the capability of proposed aggregation method,
evaluation on bench mark datasets, such as ImageNet, can be done.
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Figure 4.5: t-SNE components for samples with the top-10 labels in each single-value category.
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Figure 4.6: Embed 1000 images in 2d using the t-SNE on the aggregated embedding.
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