
 Hybrid Chatbot
 CIS 5590 – Topics in Computer Science (AGI)
Professsor name: Pei Wang,

Team members name: Belede Shiva Chandan,

 Patel Maulesh Kalyan,

 Patel Harshkumar Vinodbhai

1. Abstract
The system brings together three arEficial intelligence principles which unite large
language models (LLMs) with fuzzy logic and symbolic logic implemented through Prolog.
A web-based interface aims to recreate mulEple types of cogniEon through integraEon of
neural reasoning and symbolic reasoning and probabilisEc reasoning. The chatbot
executes query responses through LLaMA-3 models hosted by Groq as well as performs
linguisEc uncertainty evaluaEon by scikit-fuzzy while using SWI-Prolog (accessed through
pyswip) for logical inference. The combined system demonstrates how separate AI
approaches generate human-level reasoning by working together.

2. IntroducEon
AI systems have experienced rapid progress as neural networks control natural language
operaEons but symbolic AI maintains proficiency in dealing with rule-based logic. Fuzzy
logic serves as an advantage between absolute reasoning methods by enabling the
representaEon of uncertain reasoning systems. This project evaluates methods through
which chatbot systems can combine their abiliEes regarding generaEve conversaEons and
uncertainty detecEon with symbolic logical reasoning. The Flask web applicaEon allows
user messages to experience parallel processing through a large language model (LLM) in
addiEon to fuzzy logic engines and Prolog-based logic modules..

3. System Design Overview
Within its structure the chatbot system uses a three-layered reasoning framework. The
system uses independent processing within different layers for idenEcal input and merges
their outputs for presentaEon to users through a web interface. A three-step reasoning
system makes up the logic framework for the following system:

• Groq Language Model (LLM): The system implements a large language model that
connects to the Groq API for operaEon. The system creates contextual natural language
responses which derive from paEent input. This part demonstrates neural staEsEcal
processing funcEons.

• Fuzzy Logic Engine: The scikit-fuzzy library powers this module to evaluate linguisEc
uncertain statements entered by users according to triangular fuzzy membership
funcEons. The implementaEon process grants membership values to expressions like
"maybe" or "probably" to determine the uncertainty classificaEon levels with triangular
fuzzy sets.

• The Prolog Reasoning Engine funcEons through SWI-Prolog accessed through pyswip to
apply logical rules for symbolic reasoning.
The architecture operates as follows:

An input submission from the user leads to data being transferred to a backend server
that uElizes Flask technology. The system sends the communicated input to every
reasoning component. The server merges outputs from all modules before sending the
prepared response to display on the web page.

A layered design structure enables the chatbot to operate through the combinaEon of
three AI methods including staEsEcal fluency from LLM and probabilisEc ambiguity
detecEon through fuzzy logic and rule-based inference thanks to Prolog.

4. Reasoning Modules
4.1 Neural Language Model (Groq API)

The LLM module supports user input transmission to the Groq API through which
it receives responses uElizing the llama3-8b-8192 model. Here's the Python
code:

from groq import Groq
import os
client = Groq(api_key=os.getenv("GROQ_API_KEY"))

def basic_groq_response(prompt):
 chat_compleEon = client.chat.compleEons.create(
 messages=[
 {"role": "system", "content": "You are a helpful assistant."},

 {"role": "user", "content": prompt}
],
 model="llama3-8b-8192" # Replace with your desired model
)
 return chat_compleEon.choices[0].message.content

4.2 Fuzzy Logic Engine
We use skfuzzy to assess uncertainty based on keyword scoring. If the input
contains words like “maybe” or “probably”, it’s scored higher on an uncertainty
scale from 0–10.

import numpy as np
import skfuzzy as fuzz

def fuzzy_response(user_input):
 uncertain_words = ["maybe", "probably", "not sure", "possibly"]
 score = sum(word in user_input.lower() for word in uncertain_words)

 x = np.arange(0, 11, 1)
 fuzziness = fuzz.trimf(x, [0, 5, 10])

 fuzzy_value = fuzz.interp_membership(x, fuzziness, score)

 if fuzzy_value > 0.7:
 return "High Uncertainty detected."
 elif fuzzy_value > 0.3:
 return "Moderate Uncertainty detected."
 else:
 return "Low Uncertainty."

5. Web ApplicaEon Interface
App.py

from flask import Flask, request, render_template
from fuzzy_logic import fuzzy_response
from logic_reasoning import logic_response

app = Flask(__name__)

@app.route("/", methods=["GET", "POST"])
def index():
 response = ""
 if request.method == "POST":
 user_input = request.form["user_input"]
 groq_reply = basic_groq_response(user_input)
 fuzzy_reply = fuzzy_response(user_input)
 logic_reply = logic_response(user_input)

 response = f"Groq: {groq_reply}\nFuzzy Logic: {fuzzy_reply}\nProlog Logic:
{logic_reply}"
 return render_template("index.html", response=response)

if __name__ == "__main__":
 app.run(debug=True)

index.html

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <Etle>Hybrid AI Chatbot</Etle>
</head>
<body>
 <h1>Hybrid AI Chatbot</h1>
 <form method="post">
 <input type="text" name="user_input" placeholder="Ask me anything..."
style="width: 400px;">
 <input type="submit" value="Send">
 </form>
 <h2>Response:</h2>
 <pre>{{ response }}</pre>
</body></html>

Azer execuEng command python app.py . There you will get a url link in terminal, just
copy that url link and paste in browser. So that you can interact with hybrid_chatbot and
it will give response to your quesEons. I have already pasted some screenshots of
hybrid_chatbot responses at last in the report.

6. Technologies Used
• Python 3.12
• Flask (web framework)
• Groq API (LLM)
• scikit-fuzzy (fuzzy logic)
• SWI-Prolog + pyswip (symbolic logic)
• HTML/CSS (interface)
• dotenv (for secure key management)

7. Challenges Encountered
• Users must set SWI_HOME_DIR correctly while adding swipl.exe to their PATH

environment variable.
• Secure key loading with .env files was mandatory to set up the Groq API.
• Python 3.12 users faced dependency problems when installing scikit-fuzzy.
• The process of matching asynchronous LLM results to determinisEc logic outputs

8. Future Work
• The system should save user interacEons for later use in follow-up processing.
• Users can enhance LLM responses by adjusEng its parameters for specific domains.
• The system requires an addiEon of meta-reasoning capability to both rank and

synthesize the three responses.
• The system should operate in the cloud environment with voice and vision

integraEon capabiliEes.

9. Conclusion

This project combines three reasoning systems through neural, fuzzy and symbolic elements
to shape a chatbot. The reasoning systems operate together by filling in the gaps of one
another to create an expanded framework of intelligent interacEon. The prototype
demonstrates a possible emergence of AGI from combining different reasoning systems
instead of developing a single comprehensive architecture.

10. Results(Output):

