Peter de Blanc

Learning Patterns in Go

The most successful Go programs have a lot of built-in knowledge, but I wanted to create a program without any built-in knowledge. There is a lot that you need to learn to play Go well, so my program only learns simple tactical patterns. Many Go programs have a large library of patterns, which are a certain specific arrangement of stones which adds some value to a board evaluation function or to a move suggester function. If a position is slightly different from a recorded pattern, then the only way to recognize it is with another recorded pattern.

My patterns are slightly more flexible. In addition to being able to specify the locations which must contain black and white stones, you can also have points which may contain stones, and the value of the pattern is adjusted depending on which stones are present. The pattern data structure consists of a grid specifying which points are allowed to be black, white, or empty, and adjustment values for each point depending on what type of stone is present. There are also base values which depend on whose turn it is to play.

For example, we could have a pattern like this:

. o *
o to move: +1 point for o

o x .
x to move: no value

. o .
*: +.5 point for o

This means that on white (o)'s turn, he can capture black for one point. If it is black's turn, he can escape, so there is no value for white. If the point showing a star contains a white stone, then he has a ladder, and black can not escape; however, the pattern data structure only has one adjustment value for turn, not a separate one for each grid point, so the value for the star is reduced because white gains no extra value for having the ladder available on his turn when he can capture anyway.

You may note that this evaluation is not very accurate, but it is the type of thing one might expect a naïve player to determine, and is better than no evaluation at all.

Go has one obvious board evaluation function: one point for each point of territory, and one point for each capture. My program plays the capture game, so I only gave it one point for each capture. It turns out that surrounding territory is still important in the capture game, but this is not the sort of thing that a beginner would know, so my program does not know either.

Now, if B is a board state, then its true value can be called v(B) and its heuristic value can be called u(B). If the game is over, then the formula I gave above is accurate. If the game is in progress, the formula above is merely an approximation of the board value. If a perfect game results in a 6-point victory for black, then v of an empty board would also be 6 points for black. This is because the ideal board-evaluation algorithm will return the same value throughout the entire game if both players are perfect.

The function we have is u. When the program learns, it changes u. If we could look at v, we would adjust u to make it more like v. Unfortunately, we can't do this. What we do have access to, however, is deeper evaluations of u.

So let us denote the non-recursive evaluation of a board as u0, the value returned by a depth-one search as u1, and so on. We think that u1 is a better approximation of v than u0 is, so we can improve our function by trying to make u0 produce results similar to those results currently produced by u1. For example, suppose we are playing black, and a white stone is currently in atari. Doing a depth-one search, we see that we can capture that stone on our turn, which is worth one point. So u0 of the current board is 0, but u1 is 1. Now we record the pattern of the stone in atari and give it a value of 1 point for the player about to capture. Now we know not to place our own stones in atari.


There are a few problems with this approach. One problem is that we don't know how much of the board is relevant for each pattern. My program just grabs a randomly-sized area centered on the selected move. The other major problem is that the learning process may learn something wrong, and produce more and more distorted results. This is because it is based on maximizing an evaluation function which is changing with each thing it learns, when its real goal is to win a game which does not necessarily match the evaluation function. To deal with this problem I used evolution: Several pattern-matching players learn independently and compete to weed out bad behaviors.

My program is a very weak player, but the learning method worked as expected. If you compile it, you can run demo to see it learn, or run play to play against it.
