Jeff Flanigan

CIS 203

12/14/04

Genetic Programming: A general approach to solving specific problems

Genetic programming is a relatively new area of artificial intelligence research.

The practical applications of this new technology are numerous, and many possibilities exist for discovery of new applications. The general concept is to provide the system with the set of variables, and the functions used to operate on those variables, and then allow the system to apply the selection model just as in Darwin’s concept of Natural Selection. In "The Origin of Species", Charles Darwin proposed the idea that beneficial traits are passed from generation to generation because those beneficial traits allow higher rates of growth, survival, and reproduction. According to Darwin, the likelihood of a parent producing viable offspring is referred to as its fitness. Genetic programming is an attempt to apply this model to the creation of computer programs. The fundamental challenge of genetic programming lies in the definition of the problem, and the method used to select superior generations. This method has been highly effective in development of logic circuits and radio antennas. There are also definite applications in the realm of networks, specifically dealing with routing and switching.

The basis of genetic programming is the genetic algorithm. In the genetic algorithm, fixed length character strings are used to represent a particular result of a problem. The fitness of each particular result is assigned a fitness based on it’s relative correctness, or closeness to a desired answer. This may be the maximum value found, the minimum value found, or the closest value to a predetermined answer. Reproduction is achieved by using part of the character string of one parent and part from the other parent to produce the offspring’s own character string. The genetic algorithm was initially developed by John Holland in 1975
, and has been applied to many problems, both abstract and concrete. A team at Purdue University is attempting to use the genetic algorithm to determine the appropriate material to use in chemistry, given the desired properties of the final product.
 This is an example of a problem that has a clearly defined fitness that can be easily compared to a desired quantitative result. Some problem do not allow for such a rigidly defined fitness function. For example, John Biles from the Rochester Institute of Technology has developed a jazz improvisation system that uses the genetic algorithm to create mutations that are the basis for musical improvisation.
 This is an example of a less strict implementation of the genetic algorithm, where the fitness values are based on a subjective evaluation by the programmer. Many problems in mathematics can be solved using the genetic algorithm. One such example is the traveling salesman problem.
 Representing each possible path as a character string with each node represented as a character allows exploration of a graph while only considering sub-paths that have a low travel “cost” and thus a high fitness. While there are many other problems that can be solved using the genetic algorithm, there are many problems that do not allow for an easy implementation of the genetic algorithm. The representation of problems involving complex data can be difficult when limited to fixed length strings. Steven Smith was one of the early proponents of variable length strings, which allowed for greater flexibility in representation and breeding. The messy genetic algorithm, introduced by Goldberg, Korb and Deb in 1989, attempted to solve the fixed length string problem by using variable length strings of fixed length substrings. However, even with variable length strings, the genetic algorithm could not accomplish simple recursion or iteration that is needed in most computer programs. The genetic classifier system applied the genetic algorithm simultaneous to the condition and the action of an if-then structure. The result was a flexible system for solving a problem. However, recursion and iteration were still not possible.
 In order to achieve these abilities, genetic computing would need to incorporate some form of language with control structures.

According to John Koza, genetic programming is the answer to one of the early questions in computer science, posed by Arthur Samuel in the 1950’s: “How can computers learn to solve problems without being explicitly programmed? In other words, how can computers be made to do what is needed to be done, without being told exactly how to do it?”
 His theory is that many problems from many different fields are actually variations of a single larger problem; the problem of discovery of a specific computer program that will solve the problem.
 In genetic programming, the problem to be solved is represented as a tree, and then different branches of high fitness individuals are combined to form new offspring. This is very similar to the genetic algorithm, except that the tree structure is more natural for problems involving complex input. Of course, the problem of representation is certainly still present with genetic programming. However, given the flexibility of modern programming languages, many representation problems are more a problem of language than a problem with genetic programming itself. Genetic programming can be applied to any language that uses some form of tree structure to represent its programs. While languages such as Lisp and Prolog use a tree representation on the surface, most other languages do rely on an underlying tree structure for operation.
 Koza suggests several reasons why Lisp is a good starting point for genetic programming. The previously mentioned fact that Lisp operates directly on a tree structure is one of the main reasons. The fact that Lisp programs and data have no distinction is another reason. A third major reason is that Lisp allows new programs to be tested very easily using the eval operator.
 While Lisp is perhaps the natural choice, Java provides some mechanisms that allow for the implementation of genetic programming. The use of objects allows for representation of complex data in a concise format. Through inheritance and interfaces a framework for working with genetic programming can be designed that is easy to apply to any problem, provided the proper representation and conceptualization can be achieved.

The Evolutionary Computing in Java library, developed at George Mason University (ECJ,http://cs.gmu.edu/~eclab/projects/ecj/), makes use of these features to provide a platform for learning and experimentation with the genetic algorithm and genetic programming. The complete documentation for ECJ can be found at the ECJ web page. The scope of this paper involves the genetic programming classes. Each problem is declared as a child class of the GPProblem class. This class contains methods for actually doing the problem, and any data that needs to be maintained throughout a problem. Critical parts of this class include the setup method, which determines the initial state, the evaluate method, which handles the actual work, and the protoClone method which defines any objects that needs to be cloned between instances of the class. The most important part of the problem class is the implementation of the KozaFitness class, which takes a raw score and translates it into a score from 0.0 to 1.0. It is important to note that while a low raw score is desirable, a translated score of 1.0 is optimal. In order to implement a problem in ECJ, the underlying tree must be considered during development. Each type of node is represented by subclass of the GPNode class. This class defines the action to take when that node is traversed. Once the proper classes are defined, a parameter file is used to control the interaction of the classes. It is in the parameter file that the structure of the tree is defined, by specifying the number of inputs to each type of node. Since the tree must end at some point, at least one type of node must be declared as a terminal node, with no input.

In Koza’s model of genetic programming, the general flow of operation is to first randomly choose a set of functions and terminals that will make up a program. This represents one individual. A given population will have many individuals, with each individual being a different composition of functions and terminals. Once the programs have been produced, they are run and the results are assigned a fitness that is used to select the best results to reproduce in the next generation. Once an ideal individual is achieved, or a given number of attempts have been made, the result is complete and the individual with the highest fitness in any generation is the solution to the problem.

ECJ follows this model very closely, making exceptions only where the language or practicality dictates. However, one significant issue with ECJ is that there is no direct way to actually output a generated program as actual Java code. While certainly a useful tool for experimentation, this limits the usefulness in practical applications. Furthermore, problems that require state to be maintained between operations can be difficult to implement as the operation at each node may depend upon the overall state of the problem. This issue is relatively easy to resolve through the use of object oriented design, however the definition of objects as nodes requires some planning. While some problems have a natural tree structure, for example mathematical calculations, programs with a more linear structure are not as natural in ECJ.

For the purposes of learning and evaluation, I have implemented the frogs and toads problem using ECJ’s genetic programming classes. While this is obviously not a great challenge conceptually, the focus is to understand the details involved more fully so that they can be applied to more advanced concepts. The principle issue in this implementation is the representation of the frogs and toads search tree in a format that is congruent with ECJ. It seemed at first that this would be remarkably easy, given the tree structure used for all genetic programming. However, the nodes of an ECJ tree are the GPNode objects, which represent the functions to be used to create the program. In this model, each node of the frog and toad problem has only one child, which is the previous state. ECJ generates its programs and stores them in a tree structure. The definition of the execution of each node is left to the programmer. The order does not matter much as long as all discussion and analysis of the problem maintain the same order. One issue with ECJ is that the raw output is displayed as an in order traversal. This is certainly a minor detail, and one that could be resolved with a few changes to the code, but it bears mentioning because it is one slight barrier to the use of ECJ, and genetic programming in general for problems involving procedure or control flow. Whichever order is chosen, the tree can be output in a format that can be viewed using LaTex(www.latex-project.org). An example of a program that does not solve the frog and toad problem for 5 frogs is shown here. A preorder traversal is used to evaluate the program. The Progn function is a standard genetic programming node that acts as a junction between other nodes. In the case of this problem, it is used to diversify the tree structure, which allows mutation to be more productive.

[image: image1.png]jump right) (jump right) (jump right) I_mm;.) left)

|slidv‘, left) |slidn‘ left) |_mmp.xigh1)

Two factors seem to be critical in achieving optimal results to this particular problem. The first factor is the number of moves allowed before a stuck condition is declared. This limit is needed due to ECJ’s handling of nodes. ECJ randomly chooses the assignment of nodes, which limits the ability to only use certain nodes in certain circumstances. This leads to the chance of ECJ creating a program that gets stuck, with no completion possible. For example, the pattern SFFTT is not solvable, and there needs to be a way to escape from any attempts or the ECJ program itself may become stuck. Although a move limit is maintained, flags are the primary method that I have used to escape from programs that get stuck. By simply setting a flag on an unsuccessful attempt at a particular move, and clearing all flags after a successful move, I can test after each operation if the problem has become unsolvable, and stop execution on that individual if needed. The second factor is the definition of the fitness function. An ideal individual will be one that solves the puzzle without trying any incorrect moves. For any less than ideal individuals, the number of mistakes, the number of out of place animals, and the number of moves are critical factors. Setting the fitness of individuals that become stuck somewhat lower than individuals that finish will promote the growth of complete programs and focus on optimizing them, rather than trying to mutate stuck programs into ones that complete. Also, a particular individual that is almost correct should be considered as potentially better than a correct individual that takes more moves. So far, the results are not near ideal, but it is clear that the issue lies in the definition of the fitness function. My further efforts will involve trying to implement some form of list sorting and to see if that can be optimized. The main difficulty seems to be in determining exactly what an ideal result is, and defining a suitable fitness function.

Another challenging factor is the pure randomness of the results obtained. ECJ uses a seed to generate the initial random set of nodes. This allows results that are desirable to be reproduced and investigated further. Many results obtained are completely useless, while others may not improve with further generations. This is a central issue with genetic programming, and is a critical point that must be considered when testing results. Using the integer representation of the current time as the seed, I found one usable result for every twenty tested. Only results that actually solved the puzzle in less than 100 generations were considered for further investigation. Of those, the best evolved into an ideal individual for 5 frogs in 5,470 generations. The creation and analysis of that many generations took several minutes on a 2.66 GHz Pentium 4. This length of time for such a simple problem indicates that any significant result in genetic programming will require some form of automation. Here is the best program that I found. It solves the 5 frog puzzle in 36 moves, and makes no mistakes.

[image: image2.png]() (et (fme i)

(proen) (o i) (wosn) (e i)

(oo rigp) (o) (funp 1et) (G rigin) (s 1) (o i) (orosn)

(1) (g 1) (o 1) (G 161) (G i) (amw 1on) (G i) (e 1) (1)

While the experimentation with sorting problems is interesting, it is likely that there is little chance for an efficient result in replicating standard sorting routines. The results are very hard to verify, given that they vary based on the size of input and the relative weight of comparison versus swap operations. However, sorting networks provide an approach to sorting that is more suited to genetic programming. Sorting networks are simple sorting functions that act on fixed size lists. They are useful because they finish in constant time, rather than exponential time. Also, since a sort on a given size list always requires the same operations in the same order, they are well suited to parallel processing.
 John Koza has been successful in replicating previously patented results for minimum sorting networks.
 Given the fact that a unique solution is needed for each possible list length, there are literally an infinite number of unsolved problems in this domain.

Genetic programming seems best suited to finding specific solutions to specific problems. While this precludes the use of genetic programming in a real time artificial intelligence decision system, it could be highly useful in a system that performs in a similar fashion to a human. A large amount of human knowledge is obtained by experiencing a particular situation, responding based on all available knowledge, and analyzing the result afterwards. The use of genetic programming to analyze previously obtained data and attempt to find a more desirable solution could have many applications. In robotics, a robot could record a map of where it travels and use genetic programming to determine a return route, or to determine a route for other robots to follow to get to its location. The applications in electronic circuit design are numerous, as a computer is simply faster at analyzing circuit configurations than a human. The present technology level allows computers to perform massive amounts of raw calculations in a very short period of time. Through genetic programming it should be possible to apply this computational power directly to the sort of trial and error development that has been responsible for a significant amount of human scientific development. One example of this random element present in scientific research is Fleming's discovery of Penicillin.
 If Fleming had not been careless when leaving for vacation, he would never have discovered this highly useful antibiotic. Although genetic programming is somewhat unpredictable, it certainly can safely be applied in situations where the results will be evaluated before they are implemented.

� Koza, John. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, 1992. 17

� “Knowledge Discovery”, California Computer News 10/20/04. www.ccnmag.com/?nav=headlines&id=3399

� Biles, John. “GenJam: Evolutiononary Computing gets a Gig” www.it.rit.edu/%7Ejab/CITC3/Paper.html

� “Genetic Algorithm” www.aaai.org/AITopics/html/genalg.html

� Koza 63-65

� Koza 1

� Koza 9

� Koza 71

� Koza 71

� ECJ Tutorial 4: Building a Multivalued Genetic Programming Symbolic Regression Problem. http://cs.gmu.edu/~eclab/projects/ecj/docs/tutorials/tutorial4/

� Koza 77

� Sekanina, Lukas, "Evolving Constructors for Infinitely Growing Sorting Networks and Medians" http://www.fit.vutbr.cz/~sekanina/publ/sofsem04/sofsem04.pdf

� Creation of a Sorting Network for Seven Items using Only 16 Steps

http://www.genetic-programming.com/hc/sorting.html

� Time 100: Alexander Fleming, http://www.time.com/time/time100/scientist/profile/fleming.html

