Joseph Dangelmaier

"Minesweeper," Artificial Intelligence Final Paper

12/14/2004

Before I continue, I feel I must apologize. My actual implementation of my Minesweeper AI does not run properly. Unfortunately, while my plans seemed relatively simple on paper, coding them proved to be more and more complicated and error prone. While I hope my source code may prove to be a helpful guide for what I had physically hoped to achieve, trying to run it will either lead to the computer clicking on something that is obviously a mine, or with a segmentation fault.

Also, if you want a full description of what my theory was, and how it theoretically worked, please refer to my draft. You can find it in the directory with my source code. It would be named "DRAFT_README.doc".

The first thing you may notice is that this project is not "artificial intelligence" in the modern sense. It is very classical, very "teaching a computer to play checkers." There is no capacity for learning. It will keep making the same mistakes over and over, if the situation arises. I admit this part freely.

Upon closer inspection, you may start to think that this program is not even really "classical" artificial intelligence. With classical game intelligence, you expect some alpha-beta searches. You expect some complicated heuristics. Heck, even a simple little decision tree would really make this feel like a proper AI project.

Unfortunately, all these classic game playing strategies are meant to be applied to perfect-information games. Minesweeper is in no sense of the word perfect-information. This means most classical strategies are ineffective. It is almost impossible to construct a decision tree, unless you consider every possible arrangement of mines. This would be C(30*16, 99) possibilities. That is a pretty big number. Much bigger than software should have to deal with to play Minesweeper.

Instead, my software breaks down the playing field into manageable 3x3 grids. I like this approach for two reasons. First, it significantly scales down the number of possibilities to check. The worst case scenario for any given grid would be a 4 with blank spaces all around it, or C(8,4). This is many orders of magnitude lower than C(30*16, 99). Even when this check has to be done multiple times, it is smaller and faster than dealing with the entire field. Second, it is closer to how I personally play Minesweeper. I cannot wrap my brain around the whole field at once, but I can easily find free spaces and mines within small sections of the field.

Then, we have the problem of guessing. I felt the only rational way to do this was by calculating probabilities. This, again, is close to how I play Minesweeper. At least, this is how I would like to play Minesweeper. Lord knows, if I had some decent math hardware in my brain, I would utilize it to figure out the exact probabilities of each square before guessing. It is also in this portion of the game where it is possible for the intelligence to lose. That, however, is the nature of Minesweeper, no matter who is playing.

Upon writing and examining the implementation of this intelligence, I've found two potential weaknesses.

The first is the problems that might arise by not considering how many mines are left unflagged in most situations. What do I mean? Well, it occurred to me that, when this situation arose in the lower right-hand corner, and these were the only unknown spots left on the field:

F
2
1

2
?
?

1
?
?

I would look at how many mines were left to find. If there was only one mine left, I would know it would be in the center, and if there were three mines left, they would be everywhere but the center. With my algorithm, if there was one mine left it would know to click the left-hand corner, but would then be forced to completely guess the other three squares. If there were three mines left, it would have to guess completely.

The other weakness I found is in the "Implications Phase." I came to realize that it would be possible for a square to receive implications from more than one square. Granted, this situation is a little rare. However, it is just as simple for a person to see as it is for them to see a single implication.

In all, with this project, I found two things. The first is very practical. I've realized that "teaching" a computer to do a task, like playing Minesweeper, forces you to not only exactly specify the task, but also gain a better understanding of it. Even though I was not able to complete the code for my intelligence, I find myself using the algorithm when I play the game myself (well, except for the guessing part, I am not that fast mathematically). I really believe this has helped me play the game better.

What I also found was a greater appreciation for the idea of "intelligence." It seems like the only solid aspect people can agree with when it comes to intelligence is that it is intrinsic to man. Other than that, no one can really agree. A computer that can play chess is not intelligent, it is just following predefined paths. A computer that can have a conversation with a human is not intelligent, it is just accepting input and constructing replies from its database. A computer that solves a problem using a genetic algorithm is not intelligent, it is just following instructions until it finds a solution. I am reminded of Kurt Vonnegut's Slaughterhouse Five, where he says human beings are the only species in the universe that does not accept the fact that they are machines. Because we do not want to admit that we are just biological constructions, we do not want to deem any other construction intelligent, even if it does play a mean game of Minesweeper.

