Joseph Dangelmaier

"Minesweeper," Artificial Intelligence Draft

11/28/2004

-- Current File List --

DRAFT_README.doc

You are reading this.

combin.c, combin.h

This is the code for finding different cominations of numbers.

mine_ai.c

This is the main implementation of the software.

mine_engine.c, mine_engine.h

This is the actual Minesweeper data structure.

point_list.c, point_list.h

This is an implementation of a queue of points.

normal_game_files/

This directory contains the source code for the Minesweeper game this project is based on.

This is the "draft" of my artificial intelligence project based on "Minesweeper." The code, for the most part, is incomplete, and does not "work" in any real sense yet. Instead, this short paper, alongside whatever code is completed by Sunday (11/28) night, should give you, the reviewer, enough information to understand what I am working on. In this draft, I expect the reviewer to know what Minesweeper is, and have an understanding of the rules. I have yet to find a computer on campus that does not have Windows Minesweeper, Gnome Mine, KMines or some other implementation if you are curious.

Before I explain my process, two things should be specified. First, it is logically impossible to win 100% of all Minesweeper games. Even if you cannot lose on your first click, one click is not always enough information to go through the entire game without guessing. This means any intelligence I develop will not be completely accurate. Second, while the intelligence plays on what is classically called "Expert" mode (a 30x16 grid, with 99 mines), the intelligence is not based on the size of the board. In fact, the entire board is broken down into sections before working on it. All information given during a game of Minesweeper in very localized; trying to consider the entire board at one time provides very little extra information, but increases complexity significantly.

Also, it is important to note the primary data structure used by the intelligence. It is a matrix with the same dimensions as the grid that the Minesweeper game is using. In each cell of this matrix, nine values are stored. First is the state of the space corresponding to the same coordinates in the game (covered, flagged, or showing 0 to 8). The other eight are "probabilities" derived from the adjacent squares on the grid (for example, the square to the right says there is a 50% chance that this square has a mine, and the square to the left says there is a 33% chance that this square has a mine).

So, here is the procedure:

1. "Differences"

This phase is simple. Basically, the game board is examined, and wherever a square in the game contradicts a square in the data structure, then the changes are noted, and put on a list to be examined. That is to say, if a square used to be covered, but now shows a number, just this square must be examined. If a square used to be covered, but now displays a flag, every square showing a number around it must be examined.

Also, if the game is over at this stage, if either because it has been won or lost, the process ends.

2. Determining Probabilities and Finding "Obvious" Squares

This phase is a little tricky, but not too bad. Every changed square from (1.) is examined. The number it is showing is compared to the number of flagged and covered spaces around it. If there are no covered spaces, then nothing further need be done. If there are covered spaces, then we try to find all the possible positions of mines within those covered spaces. Consider these two examples (1 through 8 represent displayed numbers, ? is a covered square, F is a flag, and blank is just blank).

?
?
?

2
2
2

1
F
1

There are three possible situations:

F

2
2
2

1
F
1

F

2
2
2

1
F
1

F

2
2
2

1
F
1

So, each of the covered squares would have a 1/3 probability of having a mine, according to this square (remember, in the data structure, we record probabilities from each surrounding mine).

Consider this situation:

?
?
?

1
2
1

Again, there are three possibilities:

F
F

1
2
1

F
F

1
2
1

F

F

1
2
1

In this situation, however, the first two possibilities are contradictory (there is no possible way for two flags to be next to ones). So, two squares have a probability of 1, and another has a probability of 0. Whenever a square has an absolute value like this, it is marked for either "uncovering" or "flagging," no matter what other probabilities it may have.

Also, if every covered square next to this number is also adjacent to another number, it is flagged for use in (3.).

Once all changes are accounted, every square that should be flagged or uncovered is flagged or uncovered. If either happens, return to (1.) to look for more obvious mines.

3. "Implication"

This is the trickiest part of this draft. This is basically when we know "there is definitely so many mines in these x squares, so let's judge the rest of the squares with this knowledge." That is not very descriptive, so here is an example:

F
F
F

2
4
?

1
1
?

?
?
?

When we examine the four, we notice that the two uncovered squares left are also adjacent to the one right below it (as well as possibly another number, but that is outside of our example). So, we consider that there is a mine in either of the two squares next to the four. So, first we give the different probability to these two squares, then we compare the rest of 1 in this new context. This is kind of like "half flagging." The situation for the one becomes this:

2
4
F/2

1
1
F/2

?
?
?

There is only one possible configuration of mines, which is that there are no mines in any of the remaining uncovered squares. These squares are given the new probabilities based on the new information, and as in (2.), if there are any certainties, they are marked to be "uncovered" or "flagged." Also, if this new information creates another "implication," then the appropriate square to check is added to the list of squares to check for this set of implications.

After everything is checked, like in (2.), if there are anything should be flagged or uncovered, it is, and we return to (1.).

4. "Guesswork"

If we reach this phase, the intelligence has no certainty as to what is on the field. So, it tries to derive the best guess it can. First, it will determine the probability of any given covered square having a mine, (flags – total mines) / covered squares. Then it goes through each covered square and finds the one with the lowest probability. Only mines adjacent to numbers will have probabilities. Also, the probability can be determined by an average, minimum, or maximum function of a square's probabilities. The intelligence will be able to use any of the three, and whichever proves more successful after testing will be used in the final project. If the square with the lowest probability has a lower probability than randomly clicking, it is uncovered. Otherwise, a covered square without a probability is uncovered at random (if there are any squares without probability). After this single square is uncovered, the process returns to (1.).

