Colin Stroud

12/17/2003

CIS 203

Final Project

Learning Pearl Game

Easy mode: The easy mode was quite simple to implement. The method was passed the game state and then randomly selected a row who’s pile wasn’t equal to zero. It then took the size of the pile and used that as the max for a random selection of how many items to take from that pile. It then did this and returned the resulting game state.

A link to the source of the Medium and Hard mode formulas:

Theory of Nim Explained

Medium mode: This was a bit more complicated of an algorithm. It was passed the game state and then examined the rows for any that might be 0, if there were none it automatically took out a full row and then returned the game state. If there was one row gone it then ordered the rows from greatest to least. It then made the sum of the two smaller rows equal to the size of the biggest row. If there were two rows it simply made them equal to each other. And if there was one row it automatically took all it’s items away to win the game.

Hard mode: Hard mode was ironically the hardest to create other than the learning system. This function took the amount of items in each row and converted that value to binary. It then XOR’d these numbers together. This XOR’d value was then AND’d with each of the binary values of the different rows, and find the greatest AND’d value. Once it has found this, it then takes the XOR’d value of all the rows but this one. The result of this will be the number we want the singled out row to be because if we XOR two binary numbers with the same value the result is 0 and that is when you enter the “Kernel” state (the kernel state is the winning game state, it is akin to X mod 3 = 0. in the take N < 3 stones game). Hard mode then takes this value and subtracts the difference of it and the row from the row (ie row = 5, # = 2, so: 5 – (5 – 2)) and then returns the game state.

AI mode: The AI mode is passed the game state entered by the user. It then proceeds to play against the hard mode X number of times (X being the AI mode you select * 25). For every move that it makes it stores the game state, the move, and after the game is over the updated value of this move (this part of the function is a bit hazy and may not work perfectly. It stores the values and reads them fine but may not update them, but instead append the new move to the end of the string). Once it has finished playing the hard mode X amount of times it checks the database for the game state that it was originally passed and if it is there it performs the move and if not it randomly selects a move much like the easy mode would.

AI’s practicality: The AI in this game is a fun, and interesting example of a learning system but obviously doesn’t have any worthy use in the real world. However, its simple algorithm of 1) make a choice, 2) evaluate this choice, 3) store the choice and its evaluation to your memory has infinite possibilities. Besides the fact that it is a simplified version of how our own minds work, it is also a very flexible and powerful algorithm. It has possible uses anywhere from a trial and error robot, to possibly creating software that could code other programs. The only limitations to this algorithm are that for many things in life, trial and error is unacceptable, in that, some things must be performed correctly the first time, and if they aren’t there could be bad consequences. Over all this has been an entertaining and enlightening experience, maybe one that I would even consider repeating some time in the future if I am allowed.

GUI: The design and implementation of the GUI provide a visual representation of the game and allows the user to compete against the computer in various difficulty modes. In addition, the design allows the user to navigate through different settings and offers convenient accessibility to the game rules at the click of a button. Due to the fact that the program is implemented through an applet, additional information, facts, and links to other resources are also convenient accessibility to all users.

Once the user selects the preferred difficulty settings and understands the rules of the game, they then click the “New Game” button to start a new game. To extend the playability of the game, each new game will create a randomly generated game board displaying four columns of varied amounts of objects. Once selected, the object will disappear and the remaining columns will be disabled until the turn has completed. Upon completing a game the user may return to the main menu to select different settings if desired and play the game again. The game states are represented by a 4x7 matrix which is constantly updated and passed between the user and the computer player. Although it is not part of the rules of the game, turns may also be skipped which allows the user to study the computer’s choices in moves.

The main goal of the GUI was to represent the game in a visually appealing and exciting way. We wanted to invite and challenge the user, and provide as much functionality and different options as possible to keep the game interesting and prevent stagnation. The flow and feel of the layout were also designed to be simple and functional as to aid the user. This project allowed plenty of room for creativity and fun, I had a great time designing and creating this game and I look forward to more interesting projects in the future.

