Muntasir Khandkar

Artificial Intelligence

Prof. Pei Wang

CIS - 203
Diagrams and Text as Computer Input
Introduction

Diagrams are both natural and economical as a means of describing spatial objects and relationships. The use of relatively free form diagrams, as input to computer programs is potentially attractive. However, understanding diagrams involves understanding natural language. Diagram elements and relationships are often ambiguous, and a diagram may not directly indicate essential properties. Context and world knowledge must be used to resolve ambiguities and to infer missing information. BEATRIX can understand textbook physics problems specified by a combination of English text and a diagram. The result of the understanding process is a unified internal model that represents information derived from both the text and the diagram. The process of interpreting diagram elements and relationships is described; a central problem is establishing coreference, that is, determining when parts of the text and diagram refer to the same object. Constraints supplied by the text, by the diagram, and by world knowledge are used to reduce ambiguity of diagram elements until unique interpretations are obtained.

It is difficult to find physics problems that involve complex geometry and are specified entirely by natural language text. Most textbook physics problems are specified by a combination of natural language text and a diagram, neither of which is a complete description by itself. In understanding such a problem, the human reader must produce a single, unified model of the problem that incorporates information from both the natural language text and the diagram. The BEATRIX system is capable of understanding a physics problem specified by a combination of English text and a diagram; it produces a unified model of the problem as output. The process of understanding text and diagram together must be opportunistic: it is important to use all the clues that are available, but it is not possible to predict which clues will be present in a particular problem, nor which order of processing will allow correct interpretations to be made. For this reason, the BEATRIX system has been implemented within blackboard architecture, using the blackboard system and GLISP.

Diagram Input

This interface allows the user to construct a diagram by selecting drawing components and moving, scaling, and rotating them as desired. The interface also allows the user to enter bits of text within the diagram and to enter and edit the English problem statement. The diagram is displayed in a window as it is constructed. The interface also constructs a symbolic description of the items in the diagram; this description is the input to the understanding program. The input to BEATRIX contains only descriptions of basic geometric elements such as lines and circles. This kind of input could be derived automatically from a printed diagram by a scanner and vision preprocessor. The [image: image1.png]CONTACT1

wobes

CONTACT8

TOUCH21
MASS1

SURFACE3

[image: image2.png]THETA

H1

use of machine vision for input would be useful in understanding the existing diagrams such as circuit diagrams. Examples of the kinds of problems understood by BEATRIX are shown in Figures 1 and 2.

[image: image3.png]GRAPHIC

INTERFACE
Picture- English-
parsing parsing
KS’| KS’s
~ PICTURE TEXT ~

()

“{PICTURE-MODEL| TEXT-MODEL |/

Corcference-
resolving KS's
PROBLEM-MODEL

[image: image4.png]45

e

THET,

A human may look briefly at the picture, then read some text, then look back at the picture, and so forth, until the problem has been understood. In a computer program for understanding physics problems, it is unlikely that any fixed order of processing would be sufficient for all problems. A problem might be specified entirely by text, or entirely by a diagram, or by some combination of text and diagram. Therefore, BEATRIX is organized using co-parsing of the two input modalities. The parsing of the English text and parsing of the diagram are done in parallel. The final interpretation of objects depends on information from both the parsed text and the parsed diagram. This control strategy allows the understanding process to be opportunistic, taking advantage of clues to understanding that arise from diverse knowledge sources.

Blackboard Architecture

A blackboard system provides architecture for organizing a set of relatively independent programs, called knowledge sources, for cooperative and opportunistic problem solving. Each knowledge source is a program that performs a single specific task. Knowledge sources communicate by means of a central data structure called the blackboard. A knowledge source is triggered when data that matches its triggering pattern is posted on the blackboard. The blackboard may be divided into levels. Each level contains data of a particular kind and represents a stage of perceptual processing. The domain blackboard of the system is organized into five levels [image: image5.png]

.

Fig. 3: Domain Blackboard Organization
The lowest levels of the blackboard are called TEXT and PICTURE. The TEXT level contains the English sentences of the problem statement. The PICTURE level contains symbolic descriptions of the diagram elements, such as BOX, LINE, or CIRCLE. In addition, the PICTURE level contains a set of objects, created by a preprocessor program, that represents points of contact between diagram elements. The intermediate blackboard levels, TEXT-MODEL and PICTURE-MODEL, represent hypotheses created by the parsing of the text and diagram. Objects on the PICTURE-MODEL level represent elementary physical objects, such as MASS or PULLEY. These are recognized independently from the text, before coreference resolution is performed. TEXT-MODEL objects represent physical objects and relations that have been tentatively identified from the TEXT by the English parser. The most abstract level of the blackboard is the PROBLEM-MODEL level. Objects at this level represent physical objects in the final interpretation of the problem. These objects have links connecting them to the corresponding objects on the TEXT-MODEL and PICTURE-MODEL levels.

Knowledge Sources

The Control of knowledge source is used to set up code for calculating execution priorities of the other knowledge sources. The Identified knowledge source operates between the PICTURE and PICTURE-MODEL levels; they perform syntactic recognition of related groups of diagram elements. The single Parse knowledge source calls an augmented transition network parser written in Lisp to parse the sentences of the English text. Match knowledge source's perform coreference matching, finding objects on the PICTURE-MODEL and TEXT-MODEL blackboard levels that correspond and making objects on the PROBLEM-MODEL level that encompass them. Knowledge source's whose names begin with Retrieve- move information to higher levels of the blackboard when other knowledge source's fails to do so. Of the Special knowledge source's, Post-the-Problem initiates blackboard action by placing the text and diagram on their respective blackboard levels; the remaining knowledge source's perform default reasoning when more specific knowledge source's cannot act because of insufficient input information.
The diagram is parsed by a set of knowledge sources that recognize combinations of picture elements that have special meaning. A two-dimensional diagram is inherently ambiguous because it is a projection of a three-dimensional scene onto two dimensions. Graph matching has been suggested as a means of scene understanding, but graph matching is computationally expensive and has difficulty with missing or extra diagram components. Instead, we have developed knowledge sources that opportunistically combine related elements based on expectations of typical combinations. Other knowledge sources eliminate partial interpretations that do not make sense. As parts of the diagram are interpreted, they trigger additional knowledge source's that are associated with the interpretations. When a knowledge source can make a clear interpretation of a part of the diagram, it obviates any other knowledge source's that might have been triggered to attempt alternative interpretations. The diagram parsing knowledge sources not only triggers knowledge sources to interpret related parts of the diagram, but also trigger knowledge source's that implement expectations for later processing. The process of diagram ``parsing'' continues until no further interpretations can be made at that level.

The Understanding Module
A major task is to establish coreference between the text and diagram inputs in order to produce a unified model of the problem. Each object that appears in either the text or the diagram must be present on the PROBLEM-MODEL blackboard level. If features of an object appear in both text and diagram, the features must be collected on the same object in the problem model; the text and diagram are said to co-refer to this object. The knowledge sources that perform coreference resolution are triggered when their corresponding types of objects are posted on the PICTURE-MODEL or TEXT-MODEL blackboard levels. The presence of parsed diagram elements on the PICTURE-MODEL level is necessary for finding the referent of a phrase. Otherwise, the phrase would be incoherent. The text may contain a definite reference to an object or to a feature of a relationship that is not otherwise mentioned in the text and could not be understood properly without the presence of the corresponding elements from the diagram. In effect, forward inferences are made to attempt to match things that might occur in the other modality.

The knowledge source's of the understanding module also perform inferences that add to the representation of the problem; in some cases these can be considered to be based on common-sense physics. For example, BEATRIX will infer that the rotation of an object is the same as the rotation of the object on which it rests, or that an object that is hanging from a rope hangs directly below it. A contact between an object and a surface is assumed to be a frictional touch contact, while a contact between a rope and an object that the rope supports is assumed to be an attachment. Such inferences are important for understanding, since both natural language text and diagrams often omit things that an intelligent reader should be able to infer.

Control of the process of understanding text and diagrams must be flexible, since no fixed order of processing is likely to succeed for a wide variety of problems. Some problems contain all of the necessary information in the text. Other problem descriptions rely heavily on a diagram. Control must be opportunistic, so that clear identifications can be made first. Expectations must be posted so that they can be matched with corresponding references that will appear later. Defaults need to be performed when no other knowledge source can operate.

Blackboard architecture provides a scheduling mechanism that allows many knowledge sources to be triggered; the same knowledge sources can be triggered multiple times for different data. In the blackboard system, a dynamically calculated priority is associated with each triggered knowledge sources; the knowledge sources with the highest priority are executed first. If knowledge sources make a clear identification, it can obviate any remaining knowledge sources for the same task. These methods are used to achieve opportunistic control.

The Diagram Understanding
Understanding a diagram is not a passive process of absorbing what is plainly in the diagram, but is an active process of model construction and inference, using the diagram as an outline of the model to be constructed. Both natural language and diagrams can be seen as communication media that directly represent only the outline of a message. It presents a challenge for diagram understanding by computer. A given diagram element could potentially be interpreted in many different ways. It must be possible to resolve the ambiguities and to produce the most likely interpretation of the diagram.

Parsing of English sentences can be done in left-to-right order by a simple parsing algorithm, since English has a fairly strong sequential ordering of words and phrases. Diagrams have no clear rules of grammaticality. Therefore, a blackboard system appears to us to be a good method for control of a diagram-understanding program. The blackboard architecture allows opportunistic processing. Opportunistic identification can be based not only on syntactic relationships, but also on semantic relationships governed by world knowledge. Although reasoning about relations between diagram elements can reduce ambiguity, it cannot always remove ambiguity entirely. Some blackboard systems use numerical certainty factors to represent the estimated certainty of identifications; these systems allow multiple possible identifications to coexist on the blackboard. Later semantic processing can sometimes choose the better identifications based on how well they fit into a global interpretation. Although BEATRIX does not use such certainty factors, it seems clear that they would be useful in a larger diagram understanding system. For example, the association of a variable name with an ANGLE object could be given a higher score if the variable name is a name typically used for angles, such as THETA.

Conclusions

I have described a particular program that understands diagrams in the domain of textbook physics problems. I described the problems of ambiguity and missing details that are found in this domian. The blackboard architecture was discussed as a method of organizing diagram-understanding knowledge so that the knowledge can be used opportunistically. Some of the features of the BEATRIX program are specific to the domain of physics problems. However, we expect that many of the techniques used by BEATRIX will be applicable in understanding other kinds of diagrams. We hope that our experience with the BEATRIX program will prove helpful to others who implement diagram-understanding programs.

References
1. (With W. Bulko) ``Diagrams and Text as Computer Input'', Journal of Visual Languages and Computing 4 (1993), pp. 161-175.

2. ``Computer Understanding of Physics Problems Stated in Natural Language,'' American Journal of Computational Linguistics, Microfiche 53, 1976. Reviewed in Computing Reviews, Vol. 19, No. 1 (Jan. 1978).

3. ``Diagrams for Solving Physical Problems,'' in Janice Glasgow, N. Hari Narayanan, and B. Chandrasekaran, eds., Diagrammatic Reasoning: Cognitive and Computational Perspectives, AAAI Press / MIT Press, 1995, pp. 753-774.

4. ``Generating Programs from Connections of Physical Models'', Proc. Tenth Conference on Artificial Intelligence for Applications (CAIA-94), San Antonio, Texas, March 1994, pp. 224-230

((TWO MASSES ARE CONNECTED BY A LIGHT STRING AS SHOWN IN THE FIGURE)

(THE INCLINE AND PEG ARE SMOOTH)

(FIND THE ACCELERATION OF THE MASSES AND THE TENSION IN THE STRING FOR THETA = 30 DEGREES AND M1 = M2 = 5 KG))

Fig. 2: Test Problem P3

((TWO MASSES ARE CONNECTED BY A CABLE AS SHOWN IN THE FIGURE)

(THE STRUT IS HELD IN POSITION BY A CABLE)

(THE INCLINE IS SMOOTH , AND THE CABLE PASSES OVER A SMOOTH PEG)

(FIND THE TENSION IN THE CABLE FOR THETA = 30 DEGREES AND M1 = M2 = 20 KG)

(NEGLECT THE WEIGHT OF THE STRUT))

Fig. 1: Test Problem A2

[image: image6.png]

_1131813293.doc
[image: image1.png]

