Path searching using AI methods

Developed by Leo Flyamer

I. Program Overview
Automated path search software’s primarily usage is to find a path between two points in closed or open space. It uses 3 distinctive algorithms to come up with alternate solutions to a given problem. First search, called “Blind Search” uses methods similar to depth and thread first search algorithms and doesn’t depend on any additional information to find its target. It will search the maze or open space by exploring all possibilities till it can reach the final result, if its unable to find a path, it will explorer every possibility and terminate with a message that path was not found. Second search, “Smart Search”, uses a heuristic function to find its path. In this case, the search algorithm knows where its target is, and looks for the most direct root to its final goal. In the open space situation, Smart Search usually picks close to perfect path to its destination. However, when barriers are involved that prevent the search from taking a direct path, Smart Search will search for alternative possibilities with a priority of shortest distance to its target. Since neither search algorithm knows anything about its environment except for smart search that actually knows where it’s going, neither can adapt to complications presented by the maze. Even though, smart search is more likely to make a better guess in what direction to go then a blind search. Overall, Smart Search will find its destination 90% faster than a Blind search. Third search, “Perceptive search”, is similar to the smart search, but has a more adaptive and advanced algorithm that determines its decision making. Perceptive search uses same information as the smart search to find its target, but also looks for patterns in its movement to select the best option by studying its environment. For example, Perceptive Search can sense a barrier in front of it that prevents any movement further and walk around it instead of calculating the shortest distance to the target and causing backtracking. Its most effective when put against a line of barriers that separate it from the target, making intuitively good choices as it tries to avoid the obstacles and finding a shortest path without any knowledge about its environment except for location of its destination. Perceptive Search also is more complex algorithm than others and serves as a good starting stage for development of a more complex system that uses various tactics to study its environment and making the best moves possible. Unfortunately, testing smart and perceptive algorithms in a labyrinth didn’t prove to be very effective because of complexity and unpredictable nature of a maze makes it impossible to develop an algorithm that would work in different environment settings with no knowledge of its surroundings. However, I did achieve my goal of developing a system that would use systematic decision making process in generating a logical solution to a given problem even though not a perfect one, which wasn’t the goal anyhow. 
II. My project’s relevance to the AI 

My main purpose of developing this program was to create an algorithm that would make logical decisions to achieve its goal without user intervention. For this reason, I created software that is capable of learning its environment in order to achieve a certain goal, in this case finding a path from one point to the next. I also wanted to test various methods to solve this problem and come up with alternative solutions. The three unique algorithms that I developed approach a path finding problem from different perspectives. I wanted my program to have multiple purposes in solving various types of problems in a real world application. All of my searches can be used as software to power movable devices such as robots. My “Blind Search” could be used to develop a cleaning tool that would drive around in any setting and clean the surrounding area. Since final goal may or may not exist and blind search’s independency of that goal would be a perfect application in moving around in environment with a lot of obstacles that my search would have no problem of avoiding. Also during the runtime you can notice that blind search uses a sweeping tactic to find its goal, perfect for comprehensively covering a large area without leaving any unvisited spots behind. This could also be useful in developing a mine searching machine in a military application.

My “Smart Search” applicable in situations when knowing location of your final goal is essential. It can be useful in powering a robot that needs to complete various tasks by moving from one location to the next without encountering complex obstacles on its way, which wouldn’t make this search very efficient, but still capable of resolving the issue. Example of this usefulness is a robot in a warehouse that would use smart search algorithm to move around the storage facility and reposition various objects from one location to the next.

Perspective Search, which uses a more advanced logic, can function in movable devices that require fastest path from one location to the next without any knowledge of its surroundings. This search can be expanded and improved further to make more rational decisions and even simulate human or animal behavior such as a mouse looking for cheese through the maze. 

 
Overall, use and benefits of my software are enormous. Unfortunately, I didn’t have time to conduct any research in this area because this program was very difficult to implement. It has over 1500 lines of code, and it took me over two weeks to develop logic and implement the code for my algorithms.
III. Program’s operation
To start Automated Path Finder program please run Path_Finder.exe program from the CD-ROM, it might take a while for a graphic interface to appear. If you get an error message before GUI appears, please install java runtime environment 1.4. This software was designed to run on Windows machine and was not tested with other operating systems.
Once the GUI is loaded, you will be able to select the following options: 

File Menu:

1. New - Clears the board 

2. Open – opens a map (template maps located in Path Finder folder)
3. Save – saves newly created map

4. Quit – exists the program

Edit Maze:

1. Draw a point – creates a square barrier on the field

2. Draw a line – select starting and ending points of the line (has to be straight)

3. Delete a point – deletes an arbitrary barrier from the field (you cannot delete a starting or ending points, you will have to start a new map to set them up)

Search:

1. Blind Search – search for path between two points with no additional information

2. Smart Search – search for path between two points in respect to the goal point, always looking for a shortest path from a current location to the goal

3. Perceptive Search – search for path between two points in respect to the goal point as well as looking for patterns in movement and calculating a more efficient route

4. Clear – will clear currently calculated path 


Search Speed Slider will increase or decrease the speed for path drawing

X and Y values give you the location where you just clicked

Number of moves calculates how many moves have been performed those far by either search method
Warning: Certain barrier combinations (have a starting and ending points face each other and have multiple walls between them preventing a direct root) can cause Smart Search to run very slowly, if you become impatient please close the DOS interface. For optimal performance, please copy all the files onto the hard drive.
Errors: For the most part, program is crash proof (as far as I have tested), but may behave weirdly and eat up a lot of resources if put into complex situations, regardless, if you leave it alone, it will eventually give you a path if there is one. Blind search will generally run much faster than Smart search because it does fewer computations. If you discover any errors during runtime please contact me at lflyamer@temple.edu. Enjoy Testing!
