Peter Bogunovich

CIS 203 Final

11/23/2003

Teaching a Computer How to Learn (sort of)


When I picked this course last spring, I knew that while I was intrigued by the

whole field of artificial intelligence, there was one part of the field, in particular, that I 

was more interested in; machine learning. The idea of teaching a program how to learn

and reach conclusions on its own always seemed simple in theory, but just by doing this

relatively simple project I can already see how difficult it is to create true machine 

learning. The following is a description of what I was trying to do, how close I got, and 

how I did my experiment with machine learning.


At first, I was unsure of how I wanted to make my “learning” program. There are

countless ways to demonstrate learning. I initially wanted to make some sort of program 

that would gather data from the user and, by using this data and some pre-programmed 

information or rules, the program would then reach a conclusion that should be correct 

and at the same time, not directly related to any of the input from the user. An example 

that I thought of was asking what the user had for lunch, and if the user answered “soup”,

then the program could make an educated guess that it probably wouldn't be a hot day, 

since most people wouldn't eat soup if it were hot out.


The more that I thought about it, the harder it seemed to implement such a 

program. While the soup question sounded good, I couldn't think of many other questions

that had similar indirect links, and any such question would have to have a yes or no, or 

multiple choice answer. Plus the idea started to seem kind of lame. So I decided to 

change the way I would show learning, but still stick with the learning topic.

The implementation that I decided on was actually very similar to my original 

idea. In the lecture on concept learning, the example of the twenty questions game was 

used. This seemed like a fun an interesting way to experiment with machine learning, so I

decided to try to write my own twenty questions game.


I decided to write my program in Java since I found Prolog to be very confusing, 

and the ideas that I had seemed like they could be done in a procedural language. I 

wanted to have the program work like this:

1) Load a file that gives the program a database of items to guess from. The

format of file is split into two parts: items and their attributes, then questions and their 

attributes. For the first part, the name of the item comes first and it is followed by the 

attributes of that item. Everything is separated by a comma. The second part is similar. 

First comes the question, then the attribute associated with the question, again separated 

by a comma. The two sections are separated by a line containing the string “questions”.


Example: 



dog,alive,natural,animal,mammal,etc…



cat,alive,etc…



questions



Is it alive?,alive



etc…

The resulting file may be a little ugly, but its easy to read and it makes it extremely easy 

To add to or change the data.

2) Once the data has been loaded, the program enters a loop that continues until 

either twenty questions have been asked, there are no more remaining questions, or there 

is only one possible item remaining. 

3) Once the loop is done, the program will guess what the user is thinking of.

These are the three main parts of my program. Parts one and three are rather 

simple and they contain little or no artificial intelligence techniques. The heart of the 

program is part two. 


The second part is made up of several smaller parts that use heuristic search and 

concept learning to both eliminate unlikely possibilities and to ask only pertinent 

questions. The way that I did this was to first create a new class called “Thing” that really 

just associates an item with its attributes and contains obvious accessor and mutator 

methods. I stored each item’s attributes in a hashSet to both prevent duplicated attributes 

and to easily check if an item has an attribute. I created a similar class, “Question”, that

associates a question to its attribute. It contains similar methods for accessing the 

attribute and question, and it has a method to check if the question has a given attribute.


When the first question is asked, any question is as good as the other ones, so the

program simply picks a random question to ask. If the user answers “yes”, then we know 

that whatever the answer is, it must have this attribute. We then are able to find all of the 

items with this attribute and update the list of possibilities to only contain these items. 

Similarly, if the user answers “no”, we then know that whatever the answer is, it does not

have this attribute. We can then find all of the items with this attribute and eliminate them 

from the list of possibilities. 


This narrowing down process is an example of machine learning. More precisely,

this is an example of concept learning. The program starts with no knowledge of the 

item, and through the user’s responses, it is able to decide which category the item 

belongs to.


The other technique that I used was a sort of heuristic approach to finding which 

questions to ask. I wanted to only ask questions that will help narrow the search. 

Therefore, it would not make sense for the program to ask questions that either don’t 

apply to any of the remaining possibilities or questions whose attributes apply to every 

remaining possibility. For example, suppose that we know that the answer is either dog or

cat. Then we wouldn’t want to ask if it is a plant, since neither of them are plants. Also 

we would avoid questions like, “Is it a mammal?”, since both cats and dogs are 

mammals. Once we have obtained the set of the best questions to ask, it doesn’t really 

matter which of these we ask, so the program randomly picks one. 

This is somewhere that, if I had more time, I could make an improvement. Even 

though my program eliminates unnecessary questions, it doesn’t really find which of this

set is the best question to ask. This could be done if we kept certain statistics about the 

current remaining possibilities. Most obviously, we could try to find a “half attribute” or

an attribute that about half of the possibilities has and about half doesn’t have. Then if we

asked this question, no matter what the response was, we would be eliminating about half 

of the possibilities, and in the process, we would have to ask a minimal amount of 

questions to reach the answer.


Regardless of what improvements I could make on the program, it does work as it

is, at least to some extent. The program that I wrote does exactly what I wanted it to do 

when I decided to do this project, but it still isn’t perfect. The problems that I have come 

across are things that you probably wouldn’t think of right away.


The first problem isn’t totally my fault or even my program’s fault. The problem 

is that given a certain question, two people may have two different answers for it. For 

example, suppose the user is thinking of a dog and he is asked by the program, “Is it 

smart?”. Well, are dogs smart? This is really an opinion question and when assigning the

attributes to an item, at best, we can only assign attributes that the majority of people feel

are correct. To find such information is already impossible and even if you could find it, 

some people would still disagree. 


There are two answers to this problem. First we could improve the program to 

make it capable keeping track of the answers that have been given for a while and if it 

seems that most people disagree with the data it has, then it would change the data to 

agree with the general consensus. This tactic is similar to that which is used by the much

more professional twenty questions game at www.20q.net. This would severely 

complicate my program, and it would lead to a big fuzziness about when to change the 

data. The second possible answer is that this is not a problem. Many people that are 

studying artificial intelligence want to make programs and computers that work the way 

that people do. When the program disagrees with a user, we can relate it to when a person 

disagrees with another person about the answer to a question.


The other main problem that I found was the program’s limited database. It would

be much cooler if the program could learn of new items from the games it plays with 

users. One way to do this would be to keep track of the user’s answers and, after the 

game is over, if the program makes an incorrect guess, the user could tell what it was

thinking of and add more attributes to it. Then the new item could be added to the 

database. This could give the program a potentially limitless database. 


If I had more time, and less work from other classes, it would be fun to improve 

the program and try to make it more human. From just this little program I can already 

see how difficult it is to create good artificial intelligence. I can now see how, in order to

do such a task, one must really be a master of several fields, and even several sub-topics

within artificial intelligence. I also got a better understanding of how seemingly simple or

unimportant projects can be a big step in a bigger more important program. My program 

seems like just a simple game, but the ideas of concept learning and the narrowing down 

process that I used could be, and have been used in much more important projects. The

MYCIN program that diagnoses infectious diseases seems to work on a similar procedure

of narrowing down a large group to find the answer. If this technology is perfected, it 

could be a huge step in medicine. It could make medical care much more widely 

available, and could even potentially improve the care that patients receive. Along with 

this application, teaching a program to classify objects is an important step in making 

computers that can understand and work like humans.

