/* General game planner. */

play(Players, MyNumber, MyCards) :-

setup(Players, MyNumber, MyCards),

taketurns(1, Players).

setup(Players, MyNumber, MyCards) :-

assert(players(Players)),

assert(mynumber(MyNumber)),

ihold(MyNumber, MyCards).

taketurns(Active, Total) :-

/* check end condition: game is over and X won */

(gameover(X), write('Player '), write(X), write(' won.'));

/* adjust situation: keep track of active players */

(assert(turn(Active)),

 Next is (Active mod Total)+1,

 (out(Active);

 not_in_room(Active); /* checks if Active is in a room & so can ask */

 (not(out(Active)), question_time(Active, Q))

),

 retract(turn(Active)),

 taketurns(Next, Total)

).

/* */

/* Setting up initial knowledge. */

ihold(MyNumber, [NextCard|Rest]) :-

(not(Rest = []),

assert(hold(MyNumber, NextCard)),

eliminate(NextCard),

ihold(MyNumber, Rest));

(Rest = [],

assert(hold(MyNumber, NextCard)),

eliminate(NextCard)).

/* Question phase. */

question_time(Player, Quest) :-

(mynumber(Player), i_ask(Player, Quest)); /* Its my turn to ask */

/* Its another player's turn to ask */

(not(mynumber(Player)), opp_ask(Player, Quest)).

opp_ask(Asker, Q) :-

write('What does player '), write(Asker), write(' ask?'), nl,

read(Q), append([P, W, R], [], Q), nl,

/*
assert(askingP(P)), assert(askingW(W)), assert(askingR(R)),
*/

players(N), ActiveAns is (Asker mod N)+1,

answer_time(ActiveAns, Asker, Q),

guess_time()

/*
retract(askingP(P)), retract (askingW(W)), retract (askingR(R)),
*/.

i _ask() :-

/* Answer phase. */

answer_time(Answerer, Asker, [P, W, R]) :-

/* info */
(Answerer = Asker);

/* nobody had a card. */

(not(mynumber(Answerer)), opp_ans(Answerer, Asker, [P, W, R]));

(mynumber(Answerer), i_ans(Answerer, Asker, [P, W, R])).

opp_ans(Ans, Ask, [P, W, R]) :-

write('Does player '), write(Ans), write(' have one of those cards?'), nl,

write('(yes/no) '), read(YesNo), nl

/* info */
((YesNo = yes);

/* info */
 (YesNo = no, players(N), NextAns is (Ans mod N)+1,

 answer_time(NextAns, Ask, [P, W, R]));

 (nl, write('Please respond yes or no!'), nl,

 opp_ans(Ans, Ask, [P, W, R])

).

i_ans(Me, Ask, [P, W, R]) :-

(((showed(Ask, P), Show = P);

 (showed(Ask, W), Show = W);

 (showed(Ask, R), Show = R);

 (((hold(Me, P), Show = P);

 (hold(Me, W), Show = W);

 (hold(Me, R), Show = R)),

 assert(showed(Ask, Show)

)

),

 write('Show player '), write(Ask), write(' this card: '), write(Show), nl

);

(write('I do not have any of those cards.'), nl).

/* Guess phase. */

guess_time() :-

/* Other predicates. */

eliminate(X) :-

poss(PossList, I),

(not(member(X, PossList));

/* Card X is already eliminated. */

 (append(Start_PL, [X|Rest_PL], PossList),

 retract(poss(PossList, I)), J is I - 1,

 append(Start_PL, Rest_PL, New_PossList),

 assert(poss(New_PossList, J))

)

).

not_in_room(X) :-

/* checks if X is in a room & so can ask */

write('Can player '), write(X), write(' ask a question?'), nl,

write('(yes/no)'), read(no), nl.

/* if 'no', not_in_room succeeds, and question_time in taketurns is never called */

/* at beginning, anything could possibly be part of the solution */

poss([colM, missS, mrsW, mrG, profP, mrsP, rope, leadpipe, candle, gun, wrench, knife, conservatory, hall, lounge, ball, kitchen, study, billiard, library, dining], 21).

