Mala Khurana

CIS 203

Prof. Wang
Game Playing – Blackjack

Game Playing is definitely one of the most interesting areas of Artificial Intelligence, since it can have immediately noticeable effects. When it comes to having the computer be one of the players, the programmer can make the computer as smart as she wants it to be. It’s like creating a digital life within the computer. Game AI is really an attempt to program life-like attributes to provide a challenge or an appearance of reality.

When talking about game AI, there always has to be a programmed game to go with it. The game I chose was Blackjack because of the randomness of its results. My program portrays the reinforcement learning techniques that helps the computer become a better player. Learning from reinforcement is a promising approach for creating intelligent agents. However, reinforcement learning usually requires a large number of training episodes. Due to the timing of this project, this number will be limited to approximately 12 games per episode.

The best web site on Blackjack was F.Meyer's implementation of Blackjack using java. The learning algorithm F.Meyer uses is the SARSA algorithm. In my implementation of Blackjack, I use a variation of this algorithm. I define a set of rules, which help the computer become a better player. The computer decides which rule or the combination of rules is better for it.

To give a little background about the game, Blackjack or twenty-one is a card game where the player attempts to beat the dealer, by obtaining a sum of card values that is equal to or less than 21 so that his total is higher than the dealer's. In my game, the fixed rule that the dealer plays by is that it stops hitting at 17 or higher. The third player is the computer. This third player tries all the rules defined and uses the ones that benefit it the most. It keeps in mind the ratio of the rewards yielded by each rule. If the player finds that the probability is going down, it decides what to do to maximize the rewards. Each rule has three variables –

1. current
- this flag is turned on if the rule is used in the current game of that episode. For example, if the computer loses a game, then this variable helps determine which rule lost.

2. num_used
- this variable keeps track of the total number of times the rule was used for that episode.

3. num_lost
- this rule keeps track of the total number of game lost when using that rule.

 Following are some of the rules that the computer follows:

· This basic rule always stands – The player hits whenever his points are less than 17.

· If the dealer’s upcard (dealers first card that the player is allowed to see) has a point value of 8 and the computer has less than 19 points, the computer hits because the probability of the dealers next card being a face card is high. Therefore, hitting would be a better idea compared to standing at 17.

· Similarly, if the dealer’s upcard (dealers first card that the player is allowed to see) has a point value of 9 and the computer has less than 20 points, the computer takes the risk of hitting considering the probability of the dealer getting a face card.

· If the player sees that it is losing 60% of the time, it tries a different approach.

· If the losing % of a rule is 100% (Ex: rule used only once and lost), the computer is still allowed to use that rule till it reaches a point where the rule was used thrice and it lost all three times.

· Depending on the number of games being played, the losing % of a rule goes down so that the computer comes back to that rule and not completely stops using it if the rule reaches a losing percentage of 60 and higher.

The way my game works is the computer is allowed to use rules on an as-needed basis for the first 12 games. This helps the computer calculate the losing percentage of each rule based upon the number of times the rule was used until then and the result of using it. Therefore, the first 12 games yield random results. After the first 12 games, the computer chooses a rule or a combination of the rules keeping in mind the losing percentage of each rule.

F.Meyer’s implementation of this game lets the computer win less than 50% of the time. In my game, this percentage sometimes went a little over 50%. To be accurate, it was about + 3 from 50%

Finally, I chose C++ to implement this because my goal was to create an intelligent player and not a fancy looking program. I decided to choose a language I was good at so I could concentrate on my goal and not on the sophistication of the code since the fancy looking implementations of this game are already available on various web sites.

