Honors Program and
Design Project: Battle
- Bot Calculations

By: Alexander Miller, Daniel Blitshtein, Nick Johns




Goals of The Project

Gear Ratios

Weapon Speed

Mass Moment of Inertia
Rotational Kinetic Energy




Why Is This Information Important

Rotational Kinetic Energy - The Energy the weapon
o EIIVESS

Weapon Speed - How fast the weapon is moving

Gear Ratio - The reduction rate between the motor #¥+ = =™
and pulley of the weapon

Mass Moment of Inertia - Necessary to find
Rotational Kinetic Energy




Flexible
Distribution of Labor

Alex: Mass Moment of Inertia and Kinetic Energy
Codes, Research, Written Report, debugging

Daniel: Slides Design, Written Report, Research,
Gear Ratio Calculator Code, debugging

Nick: Research, Weapon Speed Code, Written
Report, Slides, editing




How Dot po IT ?
| WANT TO DO \T

\ Our Motivations
A

e \Wanted to do a challenging project that also taught new skills to us
beyond class, for robotics and physics

e Our group also had aninterest in robotic design in general
considering how important robotics is becoming in the research,
practical, and entertainment fields

e We also wanted to work on something that we knew was largely
achievable in the month we were given

| WON'T DO IT



Methodology

e Began with rough outlining of potential
classes and parameters

e Physics equations converted and expanded ;
for easier programming EX

e Four rudimentary programs completed
individually

e Combined to one program utilizing
methods under one class

e Further advanced structure, style and
cohesion in final program, utilizing classes
and subclasses




class WeaponSpeed

£
private double rpm, weaponRadius;
e a p O I l p e e O e private String formattedVelocityMph;
//Constructor

public WeaponSpeed(double rpm, double weaponRadius)
{

this.rpm = rpm;
this.weaponRadius = weaponRadius;

}

//Method to calculate weapon speed
public void CalculateWeaponSpeed()
{
double kmhIoMph = 1.609344;
double rpmToRadS = (Math.PI * 2) / 60;

° Constants for kmh to mph and rpm to radS/S double velocityMph, velocityMs, velocityKmh, wRads;

//Rotational velocity = rpm to radians constant * rpm

e Program completes calculations under wtads - roaToRadS * rom:
CaICulateWeaponSpeed() method //Velocity meters/second = rotational velocity * radius
velocityMs = wRads * weaponRadius;
e Displaylnfo() method prints the results to __ _
//velocity kilometers/hour = meters/second to kilometers/hour constant *
the COﬂSOle velocity meters/second

velocityKmh = (3600 / 1000) * velocityMs;

//Velocity miles/hour = velocity kilometers/hour * kilometers/hour to
miles/hour constant

velocityMph = (velocityKmh / kmhToMph);

//Formats final velocity in miles/hour as a string to truncate after 4
decimal places
formattedVelocityMph = String.format("%.4f", velocityMph);
}

//Display calculations
public void DisplayInfo()
{
System.out.println(“The velocity of the weapon in miles per hour is: " +
formattedVelocityMph);

}



Gear Ratio Calculator

e Computed gear ratio by simple division and
formatting

e Program completes calculations under
CalculateGearRatio() method

e Displaylnfo() method prints the results to
the console

class GearRatio

{

private int teethDriver, teethDriven;
private String formattedGearRatio;

//Constructor
public GearRatio(int teethDriver, int teethDriven)
{
this._teethDriver = teethDriver;
this.teethDriven = teethDriven;

}

//Method to calculate the gear ratio of the drivetrain
public void CalculateGearRatio()
{
double gearRatio = (double) teethDriver / teethDriven;
formattedGearRatio = String.format("%.4f", gearRatio);
}

//Display calculations
public void displayInfo()

{

System.out.println("The gear ratio between the two given gears is: "

formattedGearRatio + " : 1");

}

}

+



Kinetic Energy Code

private double rpm, inertia;
private String formattedKineticEnergy;

//Constructor
public KineticEnergy(double rpm, double inertia)

{

this.rpm = rpm;
this.inertia = inertia;

}

//Method to calculate kinetic energy of the weapon
rey()

public void CalculateKinetic

{

double kineticEnergy;
double rpmToRadS = (Math.PI * 2) / 60;

e Usessame constant in speed class for rpm
. //rotational kintetic energy = 1 / 2 * moment of inertia around the axis of
to rad/s ConverSIOn rotation * angular velocity (rotations per minute)

kineticEnergy = (1 / 2) * inertia * rpm * rpmToRadS;

e Program completes calculations under {lFocmet= <inal Kinetls snecey| 1% wiles/boue as 8 string to trumats wrer

4 decimal places

CalculateKineticEnergy() method i - St o 7, it
e Displaylnfo() method prints the results to //Display calculations

public void displayInfo()

{
the ConSOIe System.out.println("The kinetic energy of the weapon in joules is: " +

formattedKineticEnergy);

e Utilizes result from Moment Inertia class for , !
calculations



Mass Moment of Inertia
Co d e - G

private double inertia;

// Calculate inertia

//Constructor inertia = (0.25 * mass * Math.pow(radius, 2)) + (1.0/12 * mass *
public MomentInertia(int type) Math.pow(length, 2));
{ 3
this.type = type;
} //Method to continue calculations based on the shape of the weapon
public void CalculateTubeMomentInertia()
//VMethod to calculate the momentary rotational inertial {
public void CalculateMomentInertia() Scanner scanner = new Scanner(System.in);
{
//Sorts calculations done by the given shape // Ask for dimensions
if (type == 1) System.out.println("Enter length of the tube (in meters):

double length = scanner.nextDouble();
- System.out.println(“Enter inner radius of the tube (in meters):");
double innerRadius = scanner.nextDouble();

b : CalculateTubeMomentInertia();
y user in pu } else System.out.printIn(“Enter outer radius of the tube (in meters):");

{ double outerRadius = scanner.nextDouble();
Systen.out.println("Invalid shape selection.”);
e Program completes ) 11 sk for desity
} System.out.println(“Enter density of the material (in kg/m"3):");
System.out.println("Common densities: Steel (7800), Titanium (4500),

Ca Iculations under three //Method to continue calculations based on the shape of the weapon Aluminum (2760)");

{
e Sorts shape and methods called e
{

public void CalculateDiskMomentInertia() double density = scanner.nextDouble();
{
d 'ff t th d Scanner scanner = new Scanner(System.in); // Calculate volume
| eren n Ie O S double volume = Math.PI * (Math.pow(outerRadius, 2) - Math.pow(innerRadius,
// Ask for dimensions 2)) * length;

System.out.println("Enter radius of the disk (in meters)

° No Displaylnfo, instead a b s ot |2 ' i e

double mass = density * volume;

Syste.out.println("Enter length of the disk (in meters):

getl nertia Since Value only double length = scanner.nextDouble(); : // Calculate inertia

inertia = 0.5 * mass * (Math.pow(outerRadius, 2) + Math.pow(innerRadius,

/] Ask for density 2));
System.out.println("Enter density of the material (in kg/m"3):"); }
needs to be referenced by e e e e e e
Aluminum (2760)"); //Saves inertia to a method getInertia for access in future calculations

Other Classes double density = scanner.nextDouble(); public double g
{
// Calculate volume
double volume = Math.PI * Math.pow(radius, 2) * length; 3

return inertia;



Challenges faced:

When we attempted to implement the Mass Moment of Inertia program we ran into
some challenges with its implementation, which lead to a cost in time

Time Constraints

Comprehending and understanding the physics rules and concepts necessary to write
the program and check its accuracy

Learning new programming concepts in relation to the specific classes and libraries
learned in class

Combining our programming styles




\ What We Learned

Mathematics, physics, robotics, and data
analysis concepts

e How to write code with others
e |ncreased understanding of coding concepts

e Howtocreate awrittenreport




\ Sources

e http://runamok.tech/AskAaron/tools.html
https://lucidar.me/en/unit-converter/revolution-per-minute-to-mi
les-per-hour/

https://www.omnicalculator.com/physics/gear-ratio
http://runamok.tech/RunAmok/spincalc.html
http://runamok.tech/squid/newtorguecalc.htm
https://openstax.org/books/university-physics-volume-1/pages/1
0-4-moment-of-inertia-and-rotational-kinetic-energy



http://runamok.tech/AskAaron/tools.html
https://lucidar.me/en/unit-converter/revolution-per-minute-to-miles-per-hour/
https://lucidar.me/en/unit-converter/revolution-per-minute-to-miles-per-hour/
https://www.omnicalculator.com/physics/gear-ratio
http://runamok.tech/RunAmok/spincalc.html
http://runamok.tech/squid/newtorquecalc.htm
https://openstax.org/books/university-physics-volume-1/pages/10-4-moment-of-inertia-and-rotational-kinetic-energy
https://openstax.org/books/university-physics-volume-1/pages/10-4-moment-of-inertia-and-rotational-kinetic-energy

