
1

Scalable Video Streaming with Helper Nodes using
Random Linear Network Coding

Pouya Ostovari, Member, IEEE, Jie Wu, Fellow, IEEE Abdallah Khreishah, Member, IEEE,
and Ness B. Shroff Fellow, IEEE

Abstract—Video streaming generates a substantial fraction of
the traffic on the Internet. The demands of video streaming also
increase the workload on the video server, which in turn leads to
substantial slowdowns. In order to resolve the slowdown problem,
and to provide a scalable and robust infrastructure to support
on-demand streaming, helper-assisted video-on-demand (VoD)
systems have been introduced. In this architecture, helper nodes,
which are micro-servers with limited storage and bandwidth
resources, download and store the user-requested videos from a
central server to decrease the load on the central server. Multi-
layer videos, in which a video is divided into different layers,
can also be used to improve the scalability of the system. In
this paper, we study the problem of utilizing the helper nodes to
minimize the pressure on the central servers. We formulate the
problem as a linear programming using joint inter- and intra-
layer network coding. Our solution can also be implemented
in a distributed manner. We show how our method can be
extended to the case of wireless live streaming, in which a set of
videos is broadcasted. Moreover, we extend the proposed method
to the case of unreliable connections. We carefully study the
convergence and the gain of our distributed approach.

Index Terms—Video-on-demand (VoD), streaming, multi-layer
video, intra-layer coding, inter-layer coding.

I. INTRODUCTION

Recent studies have shown that multimedia streaming pro-
duces a significant portion of the traffic on the Internet. For
example, 20-30% of the web traffic on the Internet is from
YouTube and Netflix [2]. Thousands of hours of video are
uploaded on YouTube every day, and millions of hours of
movies are available on Netflix, Hulu, and iTunes sites.

In order to provide a scalable and robust infrastructure
that will support large and diverse on-demand streaming,
the concept of helpers has been introduced, and the design
of helper-assisted video-on-demand (VoD) systems has been
explored [3]–[5]. Helpers are micro-servers with limited stor-
age and bandwidth resources, which can download and store
requested videos to be able to serve user requests. The helpers

Manuscript received April 4, 2014; revised December 22, 2014; accepted
March 27, 2015. This work is supported in part by NSF grants CNS 149860,
CNS 1461932, CNS 1460971, CNS 1439672, CNS 1301774, ECCS 1231461,
ECCS 1128209, and CNS 1138963.

P. Ostovari and Jie Wu are with the Department of Computer & Infor-
mation Sciences, Temple University, Philadelphia, PA 19122 USA (e-mail:
ostovari@temple.edu; jiewu@temple.edu).

A. Khreishah is with the Department of Electrical & Computer Engineer-
ing, New Jersey Institute of Technology, Newark, NJ 07102 USA (e-mail:
abdallah@njit.edu).

N. B. Shroff is with the Departments of Electrical and Computer Engi-
neering and Computer Science and Engineering, The Ohio State University,
Columbus, OH 43210 USA (e-mail: shroff@ece.osu.edu).

Part of this work appeared was presented in IEEE MASS, 2013 [1].

Users

Helpers

Central

Server

Fig. 1. The system architecture.

(a) Original (b) Layer 1 (c) Layer 2

(d) Layer 3 (e) Layers 1 & 2 (f) Layers 2 & 3
Fig. 2. Multi-layer video with 3 layers.

work in conjunction with a central server, which provides users
with video files that cannot be obtained from their neighboring
helpers (Fig. 1). It is clear that the central server will be able
to serve more users, as long as we can provide more portions
of the requested videos through the helpers.

In addition to the use of helpers, we can benefit from multi-
layer videos [6], [7] to provide a higher degree of scalable
VoD systems. In multi-layer video, also called multi-resolution
codes (MRC) or scalable video coding (SVC) [8]–[10], videos
are divided into a base and enhancement layers. The base layer
(layer 1) is required to watch the video, but the enhancement
layers augment the quality of the video. Accessing more layers
provides higher video quality, but the i-th enhancement layer
is useless without all of the layers with a smaller index.
Figs. 2(b)-(d) show the constructed layers from an original
image in Fig. 2(a). Layer 1 is required by all the users. Layers
2 and 3 are useless without layer 1, as depicted in Figs. 2(c)
and (d). Fig. 2(f) shows that adding layers 2 and 3 together
without layer 1 is useless, as well. Adding layer 2 to layer 1
increases the quality of the image, as shown in Fig. 2(e).

In order to optimally use the resources, we need a mech-
anism to distribute the packets of the videos on the helpers,
since, due to storage limitations, the helpers might not be able
to store a full copy of the video. Network coding (NC) [11],
[12] helps to simplify the content distribution problem, and

2

1 layer

2 layers Central

Server

Central

Server

+

+

+

+

Central

Server

(a) (b) (c)

Layer 1

No multi-layer

coding

Layer 2

Intra-layer

coding

(d)

Fig. 3. The advantage of using NC, (a) No multi-layer NC, (b) Intra-layer NC, (c) Inter- & intra-layer NC, (d) Coding schemes.

solves it in an efficient way [13]. Consider packets p1, ..., pn.
In linear NC, each coded packet is in the form of

∑n
i=1 ai×pi,

where ai is a coefficient. In this scheme, if a user has
access to any n linearly independent coded packets, it can
use Gaussian elimination to decode the coded packets and
retrieve the original packets. In [14], it is shown that when
the coefficients are selected randomly, there is a very high
probability that the packets will be linearly independent. As
a result of this scheme, which is called random linear NC,
the coded packets contribute the same amount of data to the
users, which simplifies the distribution of the packets. Linear
NC can be classified into intra- or inter-layer NC, depending
on whether the coding is performed between the packets from
the same layer or different layers, respectively.

Consider Fig. 3, in which the users request a two-layer
video, each of which consists of 2 packets; thus, the video
contains 4 packets. The capacity of the helpers is equal to
2 packets. Users u1 and u6 request layer 1, and the other
users need both layers. If we were to use the method in [4],
the whole video would need to be downloaded for playing,
as the method does not support multi-layer coding; thus, the
video is considered to be 4 packets, p1-p4. Fig. 3(a) shows an
optimal video placement option based on the method in [4],
in which random linear coded packets of p1-p4 are stored on
the helpers (the no multi-layer NC is depicted in Fig. 3(d)).
In this case, users u2-u5 have access to 4 coded packets over
p1-p4; thus, they can decode the coded packets using just the
helpers. However, users u1 and u6 need to download 2 more
packets from the server to decode the coded packets.

Fig. 3(b) shows an optimal placement using intra-layer NC.
The coding structure is shown in Fig. 3(d). In this case, only
user u2 needs to download 2 packets from the server, so the
load on the server is less than that of in Fig. 3(a). Inter-
layer NC can be used in conjunction with intra-layer NC to
increase the efficiency of the content placement on the helpers.
In Fig. 3(c), we benefit from inter-layer NC. Users u2-u5 have
access to 4 linearly coded packets over layers l1 and l2, so the
server does not need to upload any layer. Moreover, users u1

and u6 have access to 2 linearly coded packets over layer l1,
which is sufficient for decoding the first layer.

Motivated by the intuition drawn from the example, in this
work, we answer the following questions: how should the
packets of videos be distributed over helpers? How should the
helpers allocate their bandwidth to the users to minimize the
load on the central server? And, lastly, how should we design a
coding scheme for content placement? While answering these
questions, we make the following contributions:

• We study video streaming using helpers in the case of
multi-layer multi-videos, and characterize the optimal
solution using linear programming (LP).

• The problem of inter-layer NC is in general an NP-
complete problem [7], [9]. However, in our problem, the
optimal solution in the case of using triangular inter-layer
NC can be calculated in polynomial time. We also present
a distributed approach to optimally utilize the helpers,
which adapts to the changes in the requested videos and
the joining or departure of the nodes (helpers and users).

• We empirically show the cases under which combining
inter- with intra-layer coding provide benefits (reduced
server load) over intra-layer coding.

• In contrast with the work in [4], we extend our solutions
to consider the reliability of the links.

The remainder of this paper is organized as follows: We
review the related works in Section II. In Section III, we
introduce the settings. We formulate the problem for the case
of wireless or wired VoD in Section IV, and we extend our
proposed method to the case of networks with unreliable links
in Section V. We study the wireless live streaming application
in Section VI. In Section VII our distributed solution is
proposed. We evaluate our methods through simulations in
Section VIII. Section IX concludes the paper.

II. RELATED WORK

The authors in [15] study rate allocation problem in Peer-
to-peer (P2P) VoD streaming. They propose a distributed rate
allocation algorithm, which can reduce the unfriendly traffic to
the Internet service providers (ISP), such as inter-ISP traffic,
without much increase on the server load. In [16], distributed
bandwidth allocation in live P2P streaming is studied. The
challenges and the design issues of a large-scale P2P-VoD sys-
tem are studied in [17]. The authors argue that less synchrony
in the video contents shared by the users in VoD streaming
makes the problem of reducing server load and maintaining
streaming performance hard. In order to resolve this problem,
each peer needs to contribute a small amount of storage. The
paper proposes content replication, content discovery, and peer
scheduling schemes.

In [5], the authors study live streaming of a single video in
a helper-assisted P2P system. In their proposed method, each
helper downloads one coded packet of the currently streamed
segment. The simulation results show a significant increase in
the streaming bitrate. The authors in [18] use helpers in a P2P
VoD system to stream a single video, and propose a distributed
bandwidth allocation algorithm for the helpers.

3

Layer 1

Time

(a) (b)Intra-layer coding

Layer 2

Triangular Inter-layer coding (c)

Layer 3

Segment 1 Segment 2

Segment 1 Segment 2

Segment 1 Segment 2

...

...

...

...

...

...

...

...

...

...

...

...

Fig. 4. (a) Segmentation of a multi-layer video with 3 layers. (b) Intra-layer NC. (c) Joint inter- and intra-layer coding.

In [3], the role of coding in the design of a large-scale
Video-on-Demand (VoD) system is studied. The authors show
that NC can convert a combinatorial problem into a tractable
problem. In [4], a P2P Video-on-Demand (VoD) system using
helpers is proposed. The objective of the paper is to minimize
the server load in the case of limited helpers’ bandwidth
and storage. The authors formulate the problem as an LP
optimization, and propose a distributed algorithm to solve it.
However, their distributed scheme oscillates among different
solutions. As a result, it does not converge to the optimal
solution. The other problem with the oscillation is that it can
result in delay oscillation, which might cause playback lags. In
contrast with the proposed distribution algorithm in [4], our
distributed algorithm converges to the optimal solution very
quickly. Moreover, in this work, we consider multi-layer VoD
streaming and the unreliability of the links.

III. SETTING

We consider a VoD system, where a video provider delivers
a set of videos to a set of users. This video provider might
consists of a set of servers. In the rest of the paper, we refer
to this video provider as central server. A group of helpers,
which are micro-servers with limited storage and bandwidth
help the central server in providing the users with the videos.
These helpers might be set up by the video providers or third-
party companies. In general, the users can also participate in
the video distribution by allocating a portion of their local
storage to work as a helper. Without loss of generality, we
consider the helpers and users to be separate. We represent the
set of helpers, users, and videos as H , U , and M , respectively.
The users are stationary, and each helper covers a subset of
the users (these sets do not need to be mutually exclusive).
The coverage can be based on the geographic location or
physical connection between the nodes. The k-th video mk

has a constant streaming rate rk and size vk. User ui has a
stationary request, denoted as qi, which means ui watches a
single video at a time from the beginning to the end.

The helper hj has storage and upload bandwidth capacities
equal to Sj and Bj , respectively. If the helpers adjacent to user
ui can cumulatively provide the streaming rate of the requested
video by the user, the whole video will be downloaded
only from the helpers. Otherwise, the user will request the
remaining portion of the video directly from the central server
(Fig. 1), which incurs some costs. In our problem, the cost is
in terms of the load on the central server. Our objective in this
work is to minimize the server’s total upload rate to the users.

TABLE I
THE SET OF SYMBOLS USED IN THIS PAPER.

Notation Definition
ui, U The i-th user, the set of users
hj , H The j-th helper, the set of helpers
mk,M The k-th video, the set of videos
Bj/Sj The bandwidth/capacity limit of helper hj

rkl/vkl The rate/size of layer l of video mk

N(ui)/N(hj) The set of adjacent helpers/users to ui/hj

xkl
ji Upload rate from hj to ui over layer l of video mk

fkl
j The fraction of layer l of video mk stored on helper hj

ek The number of layers of video mk

qi The video requested by user ui

ci The number of layers requested by user ui

xk
j Upload rate of hj over video mk (in live streaming)

dkji The download rate of user ui from helper hj over video
mk (in live streaming)

ϵji Reliability of the link between helper hj and user ui

ϵi The reliability of the link between server and user ui

In other words, we want to maximize the amount of data that
helpers provide to their adjacent users.

The users have diverse network conditions and use different
types of devices with different processing and bandwidth
resources to watch the videos; thus, they might desire different
levels of video quality. In order to provide the users with
different levels of video qualities, each video mk is divided
into ek layers. The l-th layer of video mk has a streaming rate
and size equal to rkl and vkl, respectively. Each user ui can
subscribe to his or her desired number of layers ci. The user
can make a decision regarding ci based on the quality of its
network connection, or any other network limitations it may
have. The l-th layer of a video is not useful unless all of the
layers with a smaller index are available. Let the j-th helper
node’s upload rate to its adjacent user ui over the l-th layer
of video mk be xkl

ji . We represent the set of adjacent helpers
to the user ui and adjacent users to the helper hj as N(uj)
and N(hj), respectively. We consider the links to be reliable.
Later, in Section V, we extend our proposed methods to the
case of unreliable connections. Table I summarizes the set of
symbols used in this paper.

We develop a distributed algorithm to find the optimal
solution for the stationary case, where the number of users and
helpers are fixed. We show via simulation results that, even
for dynamic networks, our algorithm appears to converge to
the optimal solution.

IV. VOD WITH MULTI-LAYER VIDEOS

In general, a helper might not be able to store a full copy
of a video because of storage limitations. Moreover, a helper

4

might provide more help to the central server by storing more
partial videos, rather than by storing a small number of full
videos [3]. The reason is that, by storing more partial videos,
the helper can provide partial help to a greater number of users.
Under this setting, in order to minimize the pressure on the
central server, the following questions have to be addressed:

• Content placement: Which packets of which layers of
each video should a helper store?

• Bandwidth allocation: Which packets, and to which ad-
jacent users, should each helper serve its stored content?

• Coding scheme: How should we design the coding
scheme for the helpers?

Intra-layer NC helps to simplify the content placement
problem on the helpers. As stated in the introduction, intra-
layer NC also increases the efficiency of the content placement
on the helpers. We divide each layer of a video into segments
of n packets, according to the playing time of the video
frame that they belong to. Fig. 4(a) shows a video with 3
layers. Each segment of a layer consists of 2 packets, and
the playback of segment 1 is before segment 2. In our intra-
layer NC scheme, each coded packet of a segment is a random
linear combination of the whole packets in that segment. In
Fig. 4(b), the coefficients are not shown for simplicity. For
instance, p1 + p2 means a1p1 + a2p2, where ai is a random
coefficient. Coding too many packets together increases the
time and memory complexity of coding and decoding. That
is why we partition the packets into segments and code the
packets of each segment together. When using intra-layer NC,
all of the coded packets from the helpers will contribute the
same amount of information, and a user will be able to view
the segment if it downloads any n linearly independent coded
packets from the helpers that have the segment stored.

In order to enable a helper to serve any users watching video
m, regardless of their playback time, we uniformly store the
packets from each segment. Using this scheme, in order to
store a fraction f of a layer of video m on helper h, we
store f × n random linearly coded packets of each segment.
Consider the video layer in Fig. 5(a), in which each segment
contains 4 packets. Assume that we want to store half of the
video layer. We store 2 random linearly coded packets for each
segment, as shown in Fig. 5(b). Note that the 2 coded packets
of each segment are different, since they have different random
coefficients. For simplicity, we do not show the coefficients in
the figure. Using this scheme, helper h can supply at the rate
of f × r to the users that need video m, where r is the rate
of the video. The use of intra-layer NC enables a flow-based
model of the content, which changes our content placement
and bandwidth allocation questions to finding:

• The rate at which coded packets of a video layer should
be stored on a helper.

• The rates at which coded packets of a video layer should
be uploaded to a helper’s adjacent users.

• The optimal coding scheme.
An alternative coding approach to random linear NC are

rateless (fountain) codes [19], [20], which have less coding
and decoding complexity. However, assuming that n packets
are coded, n(1 + ϵ) coded packets are required for decoding,

Video layer

Time

(a) (b)

Segment 1 Segment 2 Segment 1 Segment 2

+ + +

...

...

...

...
...
...+ + +

+ + +

+ + +

Fig. 5. (a) Segments of a video layer. (b) Storing a half of the video layer.

where ϵ is a small overhead. It is shown that as n becomes
larger, ϵ becomes smaller. In this paper we user random linear
NC. However, it can be replaced with a rateless code.

A user might receive the packets of the current segment
from the helpers and the server with different delays. As the
packets of each segment are linearly coded with each other,
the user is not able to decode the segment until it receives
enough coded packets for the current segment. It means that,
the user will be able to decode and watch the current segments
when it received the last coded packet of the current segment
from the helper or server that has the largest delay. In order
to address this problem, which might result in the video lag
problem (the video stopping as a result of delay in receiving
the required packets), each user buffers the received coded
packets and delays the playback so that the differences of the
transmission delays and changes in the delays do not result in
playback lags. The delay of the paths changes over time; thus,
this buffering time should be large enough such that it does
not result in lag problem. A large buffering time increases
the waiting time to start the payback; thus, the buffering time
should not be too large. Computing the buffering time of the
users is beyond the scope of this work.

A. Intra-Layer Network Coding

In this section, we assume that the links are reliable. As a
result, minimizing the server load is equivalent to maximizing
the help provided by the helpers. This optimization can be
modeled as the following LP optimization problem:

max
∑

i,k:ui∈U,mk=qi

∑
j,l:hj∈N(ui),l≤ci

xkl
ji (1)

s.t xkl
ji ≤ fkl

j rkl, ∀j, i, l, k : ui ∈ N(hj),mk = qi, l ≤ ek
(2)∑

i,k:ui∈N(hj),mk=qi

∑
l≤ci

xkl
ji ≤ Bj , ∀j : hj ∈ H (3)

∑
k:mk∈M

∑
l:l≤ek

fkl
j vkl ≤ Sj , ∀j : hj ∈ H (4)∑

j:hj∈N(ui)

xkl
ji ≤ rkl, ∀i, l, k : ui ∈ U, l ≤ ci,mk = qi

(5)

0 ≤ fkl
j ≤ 1, ∀j, k, l : hj ∈ H,mk ∈ M, l ≤ ek (6)

Fig. 6. Problem A: LP optimization with intra-layer NC.

We refer to this problem as problem A. Objective function
(1) is the summation of the helpers’ upload rates to their
adjacent users, over the subscribed layers of the requested
videos. Function (1) is a linear function, so it is a concave
function (Note that (1) is not strictly concave). We use the

5

(a) (b)

(c)

 , ,

, ,

Fig. 7. p1+p2 means a1p1+a2p2 (ai is a random coefficient). (a) Original
packets. (b) General form of random linear NC. (c) Triangular NC.

set of Constraints (2) to limit each helper’s upload rate at the
available service rate of the videos (the rate of stored videos).
This upload rate differs for different layers of a video; thus, for
each layer of a video, we have a separate constraint. The set of
constraints (3) and (4) are feasibility constraints on bandwidth
and storage. In more detail, the total upload rate of a helper
and the total stored data on it cannot exceed its bandwidth
and capacity limit. Note that in VoD applications, even in
the case that the adjacent users to a helper watch the same
video, their playback times are different; so, the helper needs
to allocate separate bandwidths for each adjacent user. If two
users adjacent to the same helper are watching the same video
within a small time difference (e.g, 30 seconds), buffering at
the users could be used to transmit the same information to
both. However, for long videos it does not happen frequently.

It is sufficient for user u to download layer l of its requested
video mk at a rate equal to the streaming rate of the layer,
since more than that value will not be useful. The set of
Constraints (5) limits the aggregated download rate of the
requested layers of video m to the user u at the rate of the
layers. The set of Constraints (6) are the feasibility constraints
on the fraction of stored video layers on the helpers, which
limits them to be in the range of 0 and 1.

Assuming that each user is connected to all of the helpers,
the number of variables x and f are equal to |U ||H|e and
|H||M |e, where e is the maximum number of video layers.
Also, the number of Constraints (2)-(6) are equal to |U ||H|e,
|H|, |H|, |U |e, and |H||M |e, respectively. Thus, the solution
of the optimization can be calculated in polynomial time [21].

B. Joint Inter- and Intra-Layer Network Coding

In this section, we extend the formulation of problem A
(Fig. 6) to the case of joint inter- and intra-layer NC.

In the general form of random linear NC, each packet can be
coded with any other packets. Thus, in the case of n packets,
there are 2n − 1 random linear NC possibilities. Fig. 7(b)
shows the seven possible ways to code the three packets in
Fig. 7(a) using the general form of NC. For simplicity, the
random coefficients are not shown in the figures. In contrast
with the general form of coding, in triangular NC [22], [23],
each coded packet is a random linear combination of the first
i packets, ∀i : 1 ≤ i ≤ n. In other words, the coded packets
have a prefix form. Therefore, there are just n possibilities for
coding n original packets. Fig. 7(c) shows the three possible
coded packets using the triangular coding scheme.

As stated in the introduction, inter-layer NC increases
the provided help of the helpers. In order to benefit from
joint inter- and intra-layer NC, we first perform intra-layer
NC (Fig. 4(b)). Then, we use the triangular NC scheme to
code the intra-layer coded packets together. In our scheme,

the coded packets of each segment of a video’s l-th layer
are a random linear combination of that segment in layers
1 to l. Fig. 4(c) depicts the joint inter- and intra-layer coded
packets, using the triangular scheme. In this figure, the packets
of layer 1 are similar to those in the intra-layer approach, but
the packets of layer 2 are a linear combination of layers 1 and
2. The packets of layer 3 are a random linear combination of
all the 3 layers. The random coefficients are not shown for
simplicity. For example, P1 + P4 means a1P1 + a2P4.

We prefer using triangular NC for two reasons. First, it
limits the coding space of the coding problem, such that the
convex optimization can be solved in polynomial time. Second,
in our setting, we limit the number of received layers of each
user to his request. Because of this limitation, the gain of the
triangular NC is not less than the general form of NC. Before
discussing the reason, we propose the following lemma:

Lemma 1: A set of general linear coded packets (non-
triangular) can be mapped to a set of triangular coded packets
such that the rank of the set is preserved.

Proof is provided in Appendix A. Under the proposed
setting, we do not provide a user with more layers than he
has requested, which makes the gain of the triangular NC not
less than that of the general form of inter-layer NC. Assume
that the largest non-zero index in a general coded packet is d.
Based on our setting, we should deliver ci layers to user ui.
Thus, we do not transmit this coded packet to a user that has
requested fewer than d layers, and any changes in this coded
packet does not have any impact on this user. Also, following
Lemma 1, mapping a set of general linear coded packets to a
set of triangular coded packets does not change the rank of the
set. Therefore, the mapping does not have a negative impact
on the users that requested at least d layers.

Assume that user ui has subscribed to ci layers, each of
which contains n packets. We represent the received coded
packets of the l-th coded layer as Zl. In [22], it is shown that
under the triangular coding scheme, a user can decode all of
the ci layers if

∑ci
j=ci−l+1 |Zj | ≥ ln, ∀l ∈ [1, ci]. This means

that the total number of received coded packets should be at
least equal to cin. Also, the total number of received coded
packets from layers 2 to ci needs to be equal to or more than
(ci − 1)n. In general, the number of received coded packets
from layers l to ci should not be less than (ci− l+1)n, which
gives us an insight into the following lemma:

Lemma 2: Assume that the l-th layer contains nl packets.
Providing more than

∑l′

l=1 nl coded packets from the first l′

coded layers is not useful to user u.
For the proof, refer to Appendix B. From Lemma 2, for

the case of joint inter- and intra-layer NC, we can modify the
formulation of problem A in Fig. 6, as follows. The objective
function is the same as that in problem A. Also, much like
problem A, we have the set of Constraints (2), (3), and (4).
The set of Constraints (5) should be modified as:

l′∑
l=1

∑
j:hj∈N(ui)

xkl
ji ≤

l′∑
l=1

rkl, (7)

∀i, l′, k : 1 ≤ l′ ≤ ci, ui ∈ U,mk = qi

6

which implies that the total upload rates of the first l′ layers
of the user-requested video should not be more than the total
streaming rate of those layers. This set of constraints ensures
that the helpers will not provide users with coded packets that
are not useful for decoding. Moreover, we do not have the set
of Constraints (6) anymore. The reason is that the coded video
layers are joint inter- and intra layer. As a result, the variable
f can be greater than 1. For example, consider a 2-layer video
with n packets per layer. In the case of inter- and intra-layer
coding, a user that does not receive any coded packet from
layer 1 and receives 2n coded packets over layer 2 is able to
decode both of the layers. Consequently, a helper can store the
inter-layer coded packets of layer 2 at a rate equal to f = 2.

V. VOD WITH UNRELIABLE CONNECTIONS

We extend our methods for unreliable connections in two
cases. In the first case, we assume that the losses happen just
on the links between the helpers and the users. In the second
case, the links from the server and helpers to the users might
be lossy as well.

A. Reliable Server Links

As we assume that the links from the server to the users
are reliable, maximizing the provided data to the users by
the helpers minimizes the load on the server. The main
difference between the case of unreliable helper links and the
proposed methods in Section IV is that, here, the provided
data (delivered successfully) from helper hj to its neighboring
user ui over layer k is equal to ϵjix

kl
ji , where ϵji is the

reliability of the link between these two nodes. Based on this
discussion, in the following sections, we modify the proposed
linear programming equations in Section IV.

1) VoD with intra-layer Coding: In the case of existence of
lossy helper nodes’ links, the optimal bandwidth and storage
can be found using the following LP:

max
∑

i,k:ui∈U,mk=qi

∑
j,l:hj∈N(ui),l≤ci

ϵjix
kl
ji (8)

s.t xkl
ji ≤

fkl
j

ϵji
rkl,∀j, i, k, l : ui ∈ N(hj),mk = qi, l ≤ ek

(9)∑
i,k:ui∈N(hj),mk=qi

∑
l≤ci

xkl
ji ≤ Bj , ∀j : hj ∈ H (10)

∑
k:mk∈M

∑
l:l≤ek

fkl
j vkl ≤ Sj , ∀j : hj ∈ H (11)∑

j:hj∈N(ui)

ϵjix
kl
ji ≤ rkl,∀i, l, k : ui ∈ U, l ≤ ci,mk = qi

(12)

0 ≤ fkl
j ≤ 1, ∀j, k, l : hj ∈ H,mk ∈ M, l ≤ ek (13)

The objective function (8) is a summation of the delivered
data from the helpers to their adjacent users. In contrast with
the case of reliable links, here xkl

ji is not equal to the received
rate of the user ui. As a result, the helpers can perform
redundant transmission, since some of the transmissions will
be lost. That is why, in the set of Constraints (9), we divide

fkl
j by ϵji. The set of Constraints (10) and (11) ensure that the

data uploaded by a helper and the stored data on the helper do
not exceed its bandwidth and storage constraints. We use the
set of Constraints (12) to limit the receiving rate of each layer
of a video by a user, which is equal to ϵjix

kl
ji , to the rate of

that layer. We refer to this LP as reliable intra-layer coding.
2) VoD with Joint Inter and Intra-layer Coding: We can

modify the proposed joint inter- and intra-layer LP to the case
of unreliable helper links. Solving the following LP results in
the optimal bandwidth and storage allocation when the links
between helpers and the users are unreliable:

max
∑

i,k:ui∈U,mk=qi

∑
j,l:hj∈N(ui),l≤ci

ϵjix
kl
ji

s.t xkl
ji ≤

fkl
j

ϵji
rkl, ∀j, i, k, l : ui ∈ N(hj),mk = qi, l ≤ ek∑

i,k:ui∈N(hj),mk=qi

∑
l≤ci

xkl
ji ≤ Bj , ∀j : hj ∈ H

∑
k:mk∈M

∑
l:l≤ek

fkl
j vkl ≤ Sj , ∀j : hj ∈ H

l′∑
l=1

∑
j:hj∈N(ui)

ϵjix
kl
ji ≤

l′∑
l=1

rkl,∀i, l′, k : 1 ≤ l′ ≤ ci,mk = qi

B. Lossy Server Links

In the previous sections we maximized the provided data
from the helpers to the users, since that is equivalent to
minimizing the load on the server. It is obvious that when
the links between the server and users are lossy, maximizing
the provided data from the helpers to the users might not
minimize the load on the server. The reason is that, the links
between the server and the users that could not download a
100% portion of their requested video from the helpers might
be worth much more than the users that receive their requests
in full from the helpers. As a result, we need to change the
objective functions of the proposed linear programming from
maximizing the provided help from the helpers to minimizing
the server load as follows:

min
∑

i,k,l:ui∈U,mk=qi,l≤ci

[
rkl −

∑
j:hj∈N(ui)

ϵjix
kl
ji

]
/ϵi (14)

We represent the delivery rate of the link between the user
ui and the central server as ϵi. The rate of the layer k is
equal to rkl, and the inner summation in Equation (14) is the
total portion of the layer k provided to the user ui through its
neighboring helpers. Therefore, the summation over the users
in Equation (14) results in the total load on the central server.

VI. WIRELESS LIVE STREAMING APPLICATIONS

In this section, we show how the proposed solution for VoD
can be extended for wireless live streaming (LS) applications.
By ‘LS’ we are referring to applications where some videos
are broadcast to the users, such as TV station channels or
surveillance systems. In VoD, the users can play the videos
asynchronously as depicted in Fig. 8(a). However, in LS,
the playback times of the users that watch the same video

7

Fig. 8. VoD vs. Live streaming.

are synchronous (Fig. 8(b)). Therefore, the main difference
between LS and VoD is that, in LS, the helpers do not need to
allocate separate bandwidths to their adjacent users that watch
the same video, as shown in Fig. 8(b).

In the case of VoD, the summation of the allocated band-
width from each helper to its adjacent users should be less than
or equal to its bandwidth. However, in LS, the summation of
the allocated bandwidth from each helper for all of the videos
should be less than or equal to its bandwidth. The reason for
this is that multiple users might request the same video, and all
of the users use the same broadcast packets. Consider Fig. 9,
where users u1 and u4 requested the same video, m1. Also,
the users u2 and u3 requested video m2. In this case, helper
h1 shares its bandwidth between videos v1 and v2, without
assigning a separate bandwidth for each users. In order to
formulate the case of LS, we represent the allocated bandwidth
for the video mk over helper hj as xk

j . The summation of these
variables for each helper should be less than or equal to the
helper’s bandwidth. Also, the download rate of user ui over
video mk from the helper hj , which is represented as dkji,
should be less than or equal to xk

j . The problem of LS in the
case of single-layer videos can be formulated as follows:

max
∑

i,k:ui∈U,mk=qi

∑
j:hj∈N(ui)

dkji (15)

s.t xk
j ≤ fk

j rk, ∀j, k : mk ∈ M (16)∑
k:mk∈M

xk
j ≤ Bj , ∀j : hj ∈ H (17)∑

k:mk∈M

fk
j vk ≤ Sj , ∀j : hj ∈ H (18)

dkji ≤ xk
j , ∀i, j, k : hj ∈ N(ui),mk = qi (19)∑

k:mk=qi

∑
j:hj∈N(ui)

dkji ≤ rk, ∀i : ui ∈ U

0 ≤ fk
j ≤ 1, ∀j, k, l : hj ∈ H,mk ∈ M, l ≤ ek

Objective function (15) is the summation of the download
rates of users. The set of Constraints (16) ensures that the
upload rate of a video by a helper cannot exceed the available
service rate of the video. Constraints (17), (18), and (6) are
feasibility constraints on bandwidth and storage. We limit the
download rate of a user from a helper to the upload rate of its
requested movie, using the set of Constraints (19). We refer to
our method as wireless live streaming (WLS). For simplicity,
we formulated the problem for the case of single-layer videos.
The formulation can be easily extended for multi-layer videos.

Central

Server

 ...

...

Fig. 9. Live streaming.

VII. DISTRIBUTED SOLUTION

In this section, we solve the proposed optimization problem
A (Fig. 6) for the case of multi-layer VoD streaming, using
intra-layer NC in a distributed way. The same approach can
be used to find a distributed solution for the other settings.
The idea is to solve the Lagrange dual of the problem using
the gradient method [24]. In this way, the helpers start from
empty storage, and gradually update their storage and band-
width allocation, based on the exchanged Lagrange variables
between them and their adjacent users.

The objective function (1) is not strictly concave, due to
the presence of a linear summation. Consequently, a direct
application of standard gradient iterative method might lead
to multiple solutions. In this case, the output of an iterative
method may oscillate between multiple feasible solutions. In
order to overcome the problem due to the lack of strict concav-
ity, we can apply the Proximal method described in [25], page
233. The idea behind the Proximal method is to add quadratic
terms to the objective function and make it strictly concave. A
detailed description of the Proximal method is in [25], [26]. To
apply the Proximal method, we introduce auxiliary variables
yklji . By using the Proximal method, the optimization becomes:

max
∑

i,k:ui∈U,mk=qi

∑
j,l:hj∈N(ui),l≤ci

(
xkl
ji − (xkl

ji − yklji)
2
)

(20)

subject to the set of Constraints (2), (3), (4), (5), and (6).
The optimal solution of (20) is also the solution of (1). Let

x⃗∗ and f⃗∗ be the optimal solution of (1) then, x⃗ = x⃗∗, f⃗ = f⃗∗,
and y⃗ = x⃗ is the maximizer of (20). The standard proximal
method iteratively works as follows:

1) Fix y⃗(t) and maximize (20) with respect to variables
x⃗(t) and f⃗(t).

2) Set y⃗(t+1) = x⃗(t), increment t, and go back to step 1.
Since the Slater condition holds (see reference [27]), there

is no duality gap between the primal and the dual problems.
Therefore, we can use the dual approach to solve the problem.
Let λjil

1 , λj
2, λj

3, and λil
4 be the Lagrange variables for

Constraints (2), (3), (4), and (5), respectively. Here, i, j, and
l are corespondent to the indices in the set of Constraints (2)
to (5). The Lagrange function of (20) is:

L(x⃗, f⃗ , y⃗, λ⃗) =∑
i,k:ui∈U,mk=qi

∑
j,l:hj∈N(ui),l≤ci

(
xkl
ji − (xkl

ji − yhlji)
2
)

−
∑

j,i:hj∈H,ui∈N(hj)

∑
k,l:mk=qi,l≤ci

λjil
1 (xkl

ji − fkl
j rkl)

8

Algorithm 1 Calculation of f⃗ (for helper hj)

1: rem = Sj , calculate γkl
j ∀k, l : mk ∈ M, l ≤ ek

2: for each fkl
j in descending order of γkl

j do
3: if γkl

j > 0 and rem > 0 then
4: if rem > vkl then set fkl

j = 1, rem = rem− vkl
5: else set fkl

j = rem
vkl

, rem = 0

6: else fkl
j = 0, rem = 0

−
∑

j:hj∈H

λj
2(

∑
i,k,l:ui∈N(hj),mk=qi,l≤ci

xkl
ji −Bj)

−
∑

j:hj∈H

λj
3(

∑
k,l:mk∈M,l≤ek

fkl
j vkl − Sj)

−
∑

i,k,l:ui∈U,mk=qi,l≤ci

λil
4 (

∑
j:hj∈N(ui)

xkl
ji − rkl)

By rearranging the terms, we have:

L(x⃗, f⃗ , y⃗, λ⃗) =
∑

i,k:ui∈U,mk=qi

∑
j,l:hj∈N(ui),l≤ci

[
(1− λjil

1 − λj
2

− λil
4)x

kl
ji − (xkl

ji − yklji)
2
]

+
∑

j,i:hj∈H,ui∈N(hj)

∑
k,l:mk=qi,l≤ci

λjil
1 fkl

j rkl

−
∑

j:hj∈H

∑
k,l:mk∈M,l<ek

λj
3f

kl
j vkl

By a simple change of variables, the Lagrange function is
separable in x⃗ and f⃗ , and we can rewrite it as:

L(x⃗, f⃗ , y⃗, λ⃗) =∑
i,k:ui∈U
mk=qi

∑
j,l:hj∈N(ui)

l≤ci

[
(1− λjil

1 − λj
2 − λil

4)x
kl
ji − (xkl

ji − yklji)
2
]

+
∑

j,k:hj∈H
mk∈M

(
∑

i,l:ui∈N(hj)
l≤ci

λjil
1 rkl −

∑
l:l<ek

λj
3vkl)f

kl
j (21)

The objective function of the dual problem is
D(y⃗, λ⃗) = maxx⃗≥0,y⃗≥0 L(x⃗, f⃗ , y⃗, λ⃗). The dual problem
itself is minλ≥0 D(y⃗, λ⃗). The dual optimization can be solved
using the gradient method [24]. The updates of the Lagrange
variables are as follows:

λjil
1 (t+ 1) =

[
λjil
1 (t) + α(xkl

ji(t)− fkl
j (t)rkl)

]+
,

∀j, i, k, l : hj ∈ H,ui ∈ N(hj),mk = qi, l ≤ ek

λj
2(t+ 1) =

[
λj
2(t) + α

∑
i,k:ui∈N(hj),mk=qi

∑
l≤ci

xkl
ji(t)−Bj

]+
,

∀j : hj ∈ H

λj
3(t+ 1) =

[
λj
3(t) + α

∑
k:mk∈M

∑
l:l≤ek

fkl
j (t)vkl − Sj

]+
,

∀j : hj ∈ H

λil
4 (t+ 1) =

[
λil
4 (t) + α

∑
j:hj∈N(ui)

xkl
ji(t)− rkl

]+
,

∀i, k, l : ui ∈ U,mk = qi, l ≤ ci

where [.]+ denotes the projection on [0,∞). Also, by setting
the first derivative of (21) with respect to x⃗ being equal to
zero, the optimal x⃗ can be calculated as follows:

xkl
ji(t+ 1) =

1− λjil
1 (t)− λj

2(t)− λil
4 (t)

2
+ yklji (t)

∀j, i, k, l : hj ∈ H,ui ∈ N(hj),mk = qi, l ≤ ek

Algorithm 1 illustrates the computation of f⃗ . Here, γkl
j =∑

j,k:hj∈H
mk∈M

(
∑

i,l:ui∈N(hj)
l≤ci

λjil
1 rkl−

∑
l:l<ek

λj
3vkl) is the mul-

tiplier of fkl
j in Equation (21), and rem is the free space

of helper hj . The idea here is that, in order to maximize the
second line in Equation (21), we should give a greater value to
the fraction of the videos with a greater γ value. On the other
hand, the fraction of videos with a negative γ value should
be equal to zero. Therefore, for each helper, we sort the γkl

j

in descending order of their values, and we start to fill the
helpers with videos that have a greater γ. Let us represent
the set of videos requested by the neighboring users of helper
hj as Mj . For each layer of a video we have a fkl

j variable;
thus, the number of executions of the For loop in Algorithm 1
is equal to the total number of layers of the videos in Mj .
Therefore, the time complexity of Algorithm 1 is in order of
O(

∑
k∈Mj

ek). If we represent the maximum number of layers
as e, the complexity will be in the order of O(|Mj |e).

We can define two iterative levels for the distributed algo-
rithm [26]. In the inner loop, we fix the auxiliary variables
y⃗ and update x⃗, f⃗ , and λ⃗, for T times. We run the outer
loop τ times, in which we set y⃗(τ + 1, 0) = x⃗(τ, T). The
users’ and helpers’ policies are shown in Algorithms 2 and
3, respectively. The users can receive xkm

ij from the helpers
explicitly. However, they can compute it based on the actual
receiving data rate from their neighboring helpers. The con-
vergence of our algorithm can be proven using a technique
similar to [28]. We omit the proof for brevity, and in our
simulations, we empirically verify the convergence.

The For loop in Algorithms 2 runs for T iterations. Also,
user ui needs to calculate ci different λil

4 variables. For each
of these Lambda variables, the the summation in line 5 has
a complexity of O(|N(ui)|). Therefore, the complexity of
Algorithms 2 is O(|N(ui)|ciT). The For loop in Algorithms 3
runs for T iterations. Line 5 needs to be calculated for
|N(hj)|e, where e is the maximum number of video layers.
The complexity of lines 6, 7, and 8 is O(e|Mj |). Also, in line
9, the helper node runs Algorithm 1. As a result, the complex-
ity of Algorithms 3 is in order of O(Te(|Mj |+ |N(hj)|)).

Consider the topology in Fig. 10, in which users u1 and u2

requested movies m1 and m2, respectively. In order to simplify
the example, we assume that the movies contain one layer.
As a result, we remove the index l from all of the notations
and equations. Also, without loss of generality, we discuss
the process for one round and we do not show variable τ
in the equations. At the beginning, the users u1 and u2 set
up their Lagrange variables λ1

4 and λ2
4 to zero, respectively.

Moreover, helpers h1 and h2 initialize their correspondent
variables xk

ji, f
k
j , λj,i

1 , λj
2, and λj

3 to zero, or any other default
value (Fig. 10(a)). The variables ykji are initialized to the values
of their correspondent variables xk

ji by the helpers.

9

(a) (b)

Then, update x and f

(c)

Initializing, set the

variables to 0

Fig. 10. Example of the distributed solution.

Algorithm 2 Users’ Protocol (for user ui)
1: Initialization: Send the request and the number of desired

layers to the adjacent helpers. Set λil
4 (1, 0) = 0

2: Iteration Phase at the τ -th iteration
3: for t = 0, ..., T − 1 perform the following step sequen-

tially
4: send λil

4 (τ, t + 1) = [λil
4 (τ, t) +

α(
∑

j:hj∈N(ui)
xkl
ji(τ, t) − rkl)]

+ ∀l : l ≤ ci to
all adjacent helpers.

5: λ⃗4(τ + 1, 0) = λ⃗4(τ, T)

Algorithm 3 Helpers’ Protocol (for helper hj)

1: Initialization: Set xkl
ji(1, 0) = 0, fkl

i (1, 0) = 0,
λjil
1 (1, 0) = 0, λj

2(1, 0) = 0, λj
3(1, 0) = 0, yklji (1, 0) = 0

2: Iteration Phase at the τ -th iteration
3: for t = 0, ..., T − 1 perform the following steps sequen-

tially

4: λjil
1 (τ, t+1) = [λjil

1 (τ, t)+α(xkl
ji(τ, t)−fkl

j (τ, t)rkl)]
+

5: λj
2(τ, t + 1) = [λj

2(τ, t) +
α
∑

i:ui∈N(hj)

∑
l≤ci

xkl
ji(τ, t)−Bj]

+

6: λj
3(τ, t + 1) = [λjl

3 (τ, t) +
α(

∑
k:mk∈M

∑
l:l≤ek

fkl
j (τ, t)vkl − Sj)]

+

7: xkl
ji(τ, t+ 1) =

1−λjil
1 (τ,t)−λj

2(τ,t)−λil
4 (τ,t)

2 + yklji (τ, t)

8: run algorithm 1 to calculate f⃗(τ, t+ 1)

9: y⃗(τ+1, 0) = x⃗(τ, T), x⃗(τ+1, 0) = x⃗(τ, T), λ⃗1(τ+1, 0) =
λ⃗1(τ, T), λ⃗2(τ+1, 0) = λ⃗2(τ, T), λ⃗3(τ+1, 0) = λ⃗3(τ, T)

Following the initializing phase, the users update their
Lagrange variables λ1

4 and λ2
4 based on the received band-

widths xk
ji from the helpers. User u1 calculates λ1

4(t + 1) =
[λ1

4(t) + α(x1
1,1(t) + x1

2,1(t) − r1)]
+, and transmits it to the

helpers h1 and h2. Similarly, as shown in Fig. 10(b), user u2

calculates λ2
4(t + 1) = [λ2

4(t) + α(x1
1,2(t) + x1

2,2(t) − r2)]
+

and sends it to the helpers. In the next round, the helpers
use the received Lagrange variables to update their Lagrange
variables, and modify the bandwidth and storage assignment.

In Fig. 10(c) we show the updates for helper h1. The updates
for helper h2 can be done in a similar way. The helper h1

first updates λ1,1
1 and λ1,2

1 using equations λ1,1
1 (t + 1) =

[λ1,1
1 (t)+α(x1

1,1(t)−f1
1 (t)r1)]

+ and λ1,2
1 (t+1) = [λ1,2

1 (t)+
α(x2

1,2(t)−f2
1 (t)r2)]

+, respectively. These Lagrange variables
correspond to the set of Constraints (2). Moreover, helper h1

TABLE II
THE RANGES OF THE PARAMETERS IN THE SIMULATIONS.

Video’s
rate

Video’s
size

Bandwidth
capacity

Storage
capacity

Num. of adjacent
helpers to a user

[1,2] kbps [0.5,2] MB [2,4] kbps [0.5,2] MB [1,3]

calculates λ1
2 and λ1

3 as shown in Fig. 10(c). Then, the helper
runs Algorithm 1 to calculate f1

1 and f2
1 . Finally, helper h1

assigns its bandwidth to the users u1 and u2, using equations
x1
1,1(t + 1) = [1 − λ1,1

1 (t) − λ1
2(t) − λ1

4(t)]/2 + y11,1(t) and
x1
1,2(t + 1) = [1 − λ1,2

1 (t) − λ1
2(t) − λ1

4(t)]/2 + y11,2(t),
respectively. The processes in Fig. 10(b) and (c) are repeated
periodically. After T times of running these steps, the variables
y11,1 and y21,2 are set to x1

1,1 and x2
1,2, respectively, and the

updates by the users and helpers are repeated.

VIII. SIMULATION RESULTS

We compare our proposed methods with an optimal single
layer VoD streaming using the helpers. We refer to this scheme
as DIST methods. We also study the convergence of the
proposed distributed method under the static and dynamic
cases. For this purpose, we implemented a simulator in the
Matlab environment. For solving the linear programming
optimizations, we use the Linprog optimization toolbox which
is embedded in Matlab. We assume that the popularity of the
videos and the number of subscribed layers by each user are
uniformly distributed. We evaluate the methods on 100 random
topologies, and use the average output of the simulation for
plots of this section. By random topologies we mean randomly
connecting the users to the helpers and randomly setting the
bandwidth limit of the helpers. Number of adjacent helpers to
user ui is randomly selected in the range of [1,3]. Assuming
that this number is di, we connect user ui to di helpers.
The range of a video’s rate, size, storage capacity, bandwidth
capacity, and number of adjacent helpers to each user are
randomly chosen in the ranges shown in Table II.

A. Performance

In Fig. 11(a), we compare the loads on the central server.
Each video contains 5 layers, and the number of requested
layers by each user is randomly chosen in the range of [1, 5].
The other parameters are shown in Table II. The figure shows
that the result of the joint inter- and intra-layer coding is very
close to that of the intra-layer coding. Moreover, the server’s
load in our methods is up to 75% less than that of the DIST
approach. The figure shows that the slope of the load in the
DIST method is more than that of our proposed approaches,

10

40 45 50 55 60
0

10

20

30

40

Users

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter & intra−layer
DIST

(a) Number of helpers: 20

15 20 25 30 35
0

10

20

30

40

Helpers

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter & intra−layer
DIST

(b) Number of users: 40
Fig. 11. Server’s load in kbps, VoD, 5 videos, 5 layers.

40 45 50 55 60
0

10

20

30

40

Users

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter− & intra−layer
DIST

(a) a = 2

40 45 50 55 60
0

10

20

30

40

Users

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter− & intra−layer
DIST

(b) a = 3
Fig. 12. Server’s load in kbps, VoD power-law distribution of the videos
popularity, 10 helpers, 5 layers.

which is due to to users’ greater amount of required resources
when using the DIST method.

In our next experiment, we study the effect that the number
of helpers has on the server’s load. It is clear that more helpers
can provide more portions of the videos, due to more available
capacity and bandwidth resources. As a result, the server’s load
in all of the methods decreases as we increase the number of
helpers, as illustrated in Fig. 11(b).

We repeat the experiment in Fig. 11(a) for the case of
videos’ popularity with a power-law distribution [29], i.e.,
the fraction of movies with d request (denoted as Pd) is
proportional to d−a: Pd = (a− 1)d−a. Here, a is the power-
law distribution parameter, which usually satisfies a ∈ [2, 3].
In Fig. 12(a), we set a = 2. The other parameters are the
same as those in Fig. 11(a). Compared to Fig. 11(a), the load
on the server reduces in Fig. 12(a). The reason is that, in this
case, the probability of common requests increases; thus, the
storage of the helpers can be used more efficiently. We increase
a to 3 and repeat the experiment. Fig. 12(b) shows that as the
popularity of few videos increase, the advantage of using the
helpers increases as well; as a result, the load on the server
reduces.

Figs. 13(a) and (b) depict the effect of the number of videos
and layers of the server’s load. The simulation’s parameters
are chosen randomly in the ranges shown in Table II. The
server’s load increases as we increase the number of videos.
This is because, as we increase the number of choices, the
number of common requests decreases; thus, the helpers need
to store more videos, which is not feasible due to the storage
limitations. More layers give the users the choice to select
videos with a lower quality, which decreases the load on the
server, as shown in Fig. 13(b). The server’s load is almost
fixed in the DIST method, since DIST is a no-layer approach.

In order to validate the result of Fig. 11(a), we repeat the
same experiment in the case of geographic distribution of the
nodes. For this purpose, we distribute the nodes randomly in

4 6 8 10 12
0

10

20

30

40

Movies

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter & intra−layer
DIST

(a) Number of layers: 5

2 4 6 8 10
0

10

20

30

40

Layers

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter & intra−layer
DIST

(b) Number of videos: 5
Fig. 13. Server’s load in kbps, VoD, 50 users, 20 helpers.

40 45 50 55 60
0

10

20

30

40

50

Users

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer coding
Joint coding
DIST

(a) Number of helpers: 20

15 20 25 30 35
0

10

20

30

40

50

Helpers

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer coding
Joint coding
DIST

(b) Number of users: 40
Fig. 14. A server’s load (in kbps) in the case of geographic distribution of
the user and helpers, VoD, 5 videos, 5 layers.

a 4×4 M area, and set the transmission range of the nodes to
1 M. Fig. 14 (a) shows the load on the server of the different
methods. In this figure, the video rates, video sizes, storage
capacity, and bandwidth capacity of the helpers are in the range
of [1, 2], [0.5, 2], [0.5, 2], and [1, 3], respectively. Most similar
to Fig. 11 (a), the load on the server increases as we increase
the number of users, which is due to more video requests. In
Fig. 14(a), the average number of adjacent helpers to the users
is equal to 4.2. Fig. 14(b) shows the effect of changing the
number of helpers on the server’s load. As it is expected, most
similar to Fig. 11(b), the load on the server decreases as we
increase the number of helpers.

As we stated in the introduction, there are cases where the
inter-layer NC reduces the server’s load. However, Figs. 11
and 13 show that the server’s load using joint NC and just
intra-layer coding are very close. In order to study the benefit
of inter-layer coding, we repeat the first experiment with a
single video, as to eliminate competition between the users
with different video requests. The helpers’ bandwidths are in
the range of [5, 10], and the video size, video rate, and the
storage capacities are set to 4, 4, and 1. Also, the degree of
each user is in the range of [1, 4], and we set the number of
requested layers of each user to its degree. Fig. 15(a) shows
that the server’s load using joint coding is up to 17% less than
that of the intra-layer coding method. Fig. 15(b) shows that,
as we increase the number of helpers, the difference between
the methods decreases, which is due to the availability of
a high percentage of the video through the helpers in both
methods. Based on our observation, we can find that when the
users compete to receive different videos, and the bandwidth
is the bottleneck, inter-layer NC cannot increase the content
available to the users. As a result, we can conclude that inter-
layer NC is not very useful in practice.

Figs. 16(a) and (b) show the comparison between the
server’s load in the DIST and WLS (wireless live streaming)

11

10 15 20 25
0

2

4

6

8

10

Users

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter & intra−layer

(a) Number of helpers: 10

10 15 20 25
0

0.5

1

1.5

2

Helpers

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter & intra−layer

(b) Number of users: 10
Fig. 15. The advantage of joint inter- & intra-layer coding over intra-layer
coding, VoD, 4 layers.

40 45 50 55 60
10

15

20

25

30

35

40

Users

Lo
ad

 o
n

th
e

se
rv

er

DIST
WLS

(a) Number of helpers: 20

15 20 25 30 35
10

15

20

25

30

35

40

Helpers

Lo
ad

 o
n

th
e

se
rv

er

DIST
WLS

(b) Number of users: 50
Fig. 16. Live streaming, Load on the server in kbps, 5 videos, single layers.

methods. The experimental parameters are chosen randomly in
the ranges shown in Table II. In the case of LS, the playback
time of the users that watch the same video are synchronous.
Thus, in the WLS method, the helpers do not assign a separate
bandwidth to the users that watch the same video, which
results in providing more portions of the videos through the
helpers. As a result, the server load in the WLS method is
less than that of the DIST method. In Fig. 16(a), the slope
of DIST is more than that of the WLS, which means that the
helpers do not have enough free bandwidth to support more
users. On the other hand, in Fig. 16(b), WLS has less slope
than the DIST method since, even in the case of 15 helpers,
the users receive a large portion of their requests.

B. Convergence

In this section, we study the convergence of our distributed
solution under both the static and dynamic cases.

1) Static System: We evaluate the convergence of the
proposed distributed algorithm in Fig. 17. We solve the DIST
method using a similar scheme to our solution in the case
of inter-layer coding. However, in order to study the effect
of Proximal method, we do not use the proximal method for
DIST. In this figure, the number of users, helpers, and videos
are equal to 50, 20, and 5, respectively. In order to have
a fair comparison, we set the number of video layers to 1.
The optimal solution is computed off-line for comparison. It
is clear in Fig. 17(a) that the proposed distributed solution
converges to the optimal solution very fast; however, the
convergence speed of the DIST approach is less than that of
our approach. Moreover, the DIST method oscillates around
the optimal solution. Fig. 17(b) depicts the convergence of a
particular helper’s (helper h5) storage allocation. The allocated
storage for videos 2 and 4 goes to zero, since these videos
are not requested by the adjacent users of this helper. The

0 800 1600 2400 3200
10

15

20

25

30

35

40

Number of iteration

T
ot

al
 a

llo
ca

te
d

ba
nd

w
id

th

Intra−layer
Optimal

(a)

0 800 1600 2400 3200
0

0.2

0.4

0.6

0.8

1

Number of iteration

F
ra

c.
 o

f v
id

eo
s

on
 th

e
he

lp
er

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

(b)
Fig. 18. Convergence of the proposed distributed method to the optimal
solution in the case of dynamic users, 10 helpers, 5 videos. (a) Total allocated
bandwidth. (b) Frac. of videos on helper h8.

0 800 1600 2400 3200
10

15

20

25

30

35

40

45

Number of iteration

T
ot

al
 a

llo
ca

te
d

ba
nd

w
id

th

Intra−layer
Optimal

(a)

0 800 1600 2400 3200
0

0.1

0.2

0.3

0.4

0.5

Number of iteration

F
ra

c.
 o

f v
id

eo
s

on
 th

e
he

lp
er

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

(b)
Fig. 19. Convergence of the proposed distributed method to the optimal
solution in the case of dynamic helpers, 20 users, 5 videos. (a) Total allocated
bandwidth. (b) Frac. of videos on helper h3.

convergence of the allocated bandwidth from helper h5 to its
adjacent users is shown in Fig. 17(c).

We repeat the previous experiment by increasing the step
size α from 0.01 to 0.03. The results are shown in Figs. 17(d),
(e), and (f). By comparing Figs. 17(a) and (d), it can be
inferred that our distributed method converges faster to the
optimal solution as we increase the step size. Moreover, even
with a greater α, our method does not oscillate. On the
other hand, the DIST method’s oscillation increases rapidly
as we increase the step size. Figs. 17(e) and (f) illustrate the
bandwidth and storage allocation of helper h5, respectively.

2) Dynamic System: Here, we show that our distributed
approach automatically adapts to the system dynamics. As a
result, the users and the helpers only need to run the distributed
algorithm, regardless of the changes in the system.

We study the effect of changing the number of users to the
system in Fig. 18. For this purpose, we add 5 users at both
iterations 800 and 1600, and we randomly connect them to
[1,3] helpers. We also remove 5 users at iteration 2400. The
initial number of users is 10, and there are 10 helpers in the
system. We set the number of videos to 5. The optimal solution
is computed off-line for comparison. Fig. 18(a) shows that the
total allocated bandwidth of the optimal solution changes as
we add or remove users, and the distributed solution converges
to the optimal result. We depict the fraction of stored videos
on a helper h8 in Fig. 18(b).

We repeat the previous simulation for the case of dynamic
helpers. We set the number of users, helpers, and videos to 20,
6, and 5, respectively. We add 3 new helpers at iterations 800
and 1600, and remove 3 helpers at iteration 2400. Figs. 19(a)
and (b) show that the proposed distributed method adapts to
the changes in the dynamic case. After removing 3 helpers,
the the allocated bandwidth does not return to the level of

12

0 500 1000
0

50

100

150

Number of iteration

T
ot

al
 a

llo
ca

te
d

ba
nd

w
id

th

DIST
Intra−layer
Optimal

(a) α : 0.01

0 500 1000
0

0.2

0.4

0.6

0.8

1

Number of iteration

F
ra

c.
 o

f v
id

eo
s

on
 th

e
he

lp
er

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

(b) α : 0.01

0 500 1000
0

0.5

1

1.5

2

2.5

3

Number of iteration

A
llo

ca
te

d
ba

nd
w

id
th

User 18 (requested movie: 1)
User 22 (requested movie: 3)
User 35 (requested movie: 5)

(c) α : 0.01

0 500 1000
0

20

40

60

80

100

120

Number of iteration

T
ot

al
 a

llo
ca

te
d

ba
nd

w
id

th

DIST
Intra−layer
Optimal

(d) α : 0.03

0 500 1000
0

0.2

0.4

0.6

0.8

1

Number of iteration

F
ra

c.
 o

f v
id

eo
s

on
 th

e
he

lp
er

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

(e) α : 0.03

0 500 1000
0

0.5

1

1.5

2

2.5

3

Number of iteration

A
llo

ca
te

d
ba

nd
w

id
th

User 18 (requested movie: 1)
User 22 (requested movie: 3)
User 35 (requested movie: 5)

(f) α : 0.03
Fig. 17. VoD with intra-layer coding. Convergence of the proposed distributed method to the optimal solution in a static network case. The number of users,
helpers, and videos are equal to 50, 20, and 5, respectively. (a) and (d): Total allocated bandwidth to the users. (b) and (e): The fraction of each video on
helper h5. (c) and (f): The allocated bandwidth from helper h5 to its adjacent users.

40 45 50 55 60
0

10

20

30

40

50

60

Users

Lo
ad

 o
n

th
e

se
rv

er

Reliable Intra−layer
DIST

(a)

40 45 50 55 60
0

10

20

30

40

50

60

Users

Lo
ad

 o
n

th
e

se
rv

er

Reliable Intra−layer
DIST

(b)
Fig. 20. Server’s load in kbps, in the case of unreliable links from helpers
to the users and reliable server links, VoD, 20 helpers, 5 videos, 5 layers. (a)
ϵ ∈ [0.8, 1] (b): ϵ ∈ [0.6, 0.8]

iteration 1600. The reason is that, the removed helpers are not
those that are added at iteration 1600. We can conclude that
the storage size or bandwidth of the removed helpers are less
than those of the added helpers. Another possibility is that the
added helpers covered the users with a common video request,
but the removed helpers did not.

C. Unreliable links

Here, we repeat the experiment in Section VIII-A for the
topologies with unreliable links between the helpers and the
users. We set the reliability of these links in the range of
ϵ ∈ [0.8, 1], and measure the effect of number of users on the
server load. The number of helpers, movies, and the video
layers are equal to 20, 5, and 5 respectively. The server
load of the methods increases in Fig. 20(a) as we increase
the number of users, which is due to limited bandwidth and
storage resources. By comparing Figs. 20(a) and 11(a), we
find that the gap between our proposed method and the DIST
method is more in Fig. 20(a). This is because the DIST method
does not consider the unreliability of the links.

In Fig. 20(b), we reduce the reliability of the links to the
range of ϵ ∈ [0.6, 0.8] and repeat the previous experiment. The
two reasons that make the server load in the DIST method

15 20 25 30 35
0

5

10

15

20

25

30

35

Helpers

Lo
ad

 o
n

th
e

se
rv

er

Reliable Intra−layer
DIST

(a)

15 20 25 30 35
0

5

10

15

20

25

30

35

Helpers

Lo
ad

 o
n

th
e

se
rv

er

Reliable Intra−layer
DIST

(b)
Fig. 21. Server’s load in kbps, in the case of unreliable links from helpers
to the users and reliable server links, VoD, 40 users, 5 videos, 5 layers. (a)
ϵ ∈ [0.8, 1] (b): ϵ ∈ [0.6, 0.8]

more than the reliable intra-layer coding are a.) the layered
approach in our method, and b.) considering the reliability of
the links. Having more users increases the requests for the
resources, which results in a greater load on the server. The
server load in Fig. 20(b) is more that that of in Fig. 20(a),
which is due to less reliable helpers’ links.

The number of users, videos, and layers in Figs. 21(a) and
(b) are equal to 40, 5, and 5, respectively. We set the range
of links’ reliability in Fig. 21(a) to ϵ ∈ [0.8, 1]. Most similar
to Fig. 13(a), the load on the sever decreases as we increase
the number of helpers. The reason is that, more helpers can
provide a larger portion of the videos to the users. We change
the reliability of the links from ϵ ∈ [0.8, 1] to ϵ ∈ [0.6, 0.8],
and repeat the previous experiment. By comparing Figs. 21(a)
and (b), we find that the unreliability of the links has more
of a negative effect on the DIST approach, compared to the
reliable intra-layer coding method.

Next, we compare the proposed intra-layer coding method
with the reliable intra-layer coding. Fig. 22(a) shows the
load on the server for different ranges of link reliability. The
number of helpers, videos, and layers are equal to 20, 5, and
5, respectively. Moreover, we set the number of users to 40.
As expected, the proposed reliable intra-layer coding method

13

[0.6−1] [0.7−1] [0.8−1] [0.9−1] 1

5

10

15

20

Reliability

Lo
ad

 o
n

th
e

se
rv

er

Reliable Intra−layer
Intra−layer

(a) Number of users: 40

[0.6−1] [0.7−1] [0.8−1] [0.9−1] 1

5

10

15

20

Reliability

Lo
ad

 o
n

th
e

se
rv

er

Reliable Intra−layer
Intra−layer

(b) Number of users: 60
Fig. 22. Server’s load in the case of unreliable links from helpers to the users
and reliable server links, VoD, 20 helpers, 5 videos, 5 layers.

[0.6−1] [0.7−1] [0.8−1] [0.9−1] 1
0

5

10

15

20

25

Reliability

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer coding
DIST

(a) Number of users: 40

[0.6,1] [0.7,1] [0.8,1] [0.9,1] 1
0

5

10

15

20

25

Reliability

Lo
ad

 o
n

th
e

se
rv

er

Reliable Intra−layer
Intra−layer

(b) Number of users: 60
Fig. 23. Server’s load in kbps, in the case of unreliable links from helpers
and the server to the users, VoD. 20 helpers, 5 videos, 5 layers.

reduces the load on the server, since it considers the unreliable
links between the helpers and the users. This method gives
more priority to the more reliable helper links, since giving
the same priority to the links results in wasting the bandwidth
resources. As the reliability of the links increases, the gap
between the proposed method vanishes. In the case of reliable
links, the server load of the methods becomes the same. We
repeat the same experiment for 60 users in Fig. 22(b), which
results in more server load than that of in Fig. 22(a).

We repeat the last two experiments in the case of unreliable
links from the server and helpers to the users. Obviously, the
server lossy links result in more of a load on the server, which
can also be inferred from Figs. 23(a) and (b). Remember that,
in the case of lossy server links to the users, we change the
objective function from maximizing the provided help through
the helpers to minimizing the load on the server.

IX. CONCLUSION

In this paper, we study the problem of utilizing helpers
to minimize the load on the central video servers. For this
purpose, we formulate the problem as an LP optimization
problem. This is done by using joint inter- and intra-layer
NC. We discuss the advantages of joint inter- and intra-
layer NC over just intra-layer NC, and through an empirical
study, we found the cases in which joint coding reduces the
server’s load. We use a lightweight triangular inter-layer NC
instead of the general form of inter-layer NC, to reduce the
time complexity of the optimization. We solve the proposed
optimization in a distributed way, and evaluate the convergence
and the gain of our distributed approach via comprehensive
simulations. Our future work is to consider the cost of helpers
in the optimization and study the overhead that results from
introducing the helpers.

REFERENCES

[1] P. Ostovari, A. Khreishah, and J. Wu, “Multi-layer video streaming with
helper nodes using network coding,” in IEEE MASS, 2013, pp. 524–532.

[2] A. Finamore, M. Mellia, M. Munafò, R. Torres, and S. Rao, “Youtube
everywhere: impact of device and infrastructure synergies on user
experience,” in ACM IMC, 2011, pp. 345–360.

[3] S. Pawar, S. Rouayheb, H. Zhang, K. Lee, and K. Ramchandran, “Codes
for a distributed caching based video-on-demand system,” in ACSSC,
2011.

[4] H. Hao, M. Chen, A. Parekh, and K. Ramchandran, “A distributed
multichannel demand-adaptive P2P VoD system with optimized caching
and neighbor-selection,” in SPIE, 2011.

[5] J. Wang and K. Ramchandran, “Enhancing peer-to-peer live multicast
quality using helpers,” in IEEE ICIP, 2008, pp. 2300–2303.

[6] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered
multicast,” in ACM CCR, 1996, pp. 117–130.

[7] M. Kim, D. Lucani, X. Shi, F. Zhao, and M. Médard, “Network coding
for multi-resolution multicast,” in IEEE INFOCOM, 2010, pp. 1–9.

[8] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the h. 264/avc standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–
1120, 2007.

[9] M. Shao, S. Dumitrescu, and X. Wu, “Layered multicast with inter-
layer network coding for multimedia streaming,” IEEE Transactions on
Multimedia, vol. 13, no. 99, pp. 353–365, 2011.

[10] E. Magli, M. Wang, P. Frossard, and A. Markopoulou, “Network coding
meets multimedia: A review,” IEEE Transactions on Multimedia, vol. 15,
no. 5, pp. 1195–1212, 2013.

[11] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,”
IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–
1216, 2000.

[12] S. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE Transac-
tions on Information Theory, vol. 49, no. 2, pp. 371–381, 2003.

[13] B. Li, Z. Wang, J. Liu, and W. Zhu, “Two decades of internet video
streaming: A retrospective view,” ACM Transactions on Multimedia
Computing, Communications, and Applications, vol. 9, no. 1s, pp. 1–20,
2013.

[14] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, 2006.

[15] J. Wang, C. Huang, and J. Li, “On ISP-friendly rate allocation for peer-
assisted vod,” in ACM Multimedia, 2008, pp. 279–288.

[16] C. Wu and B. Li, “On meeting P2P streaming bandwidth demand with
limited supplies,” in SPIE MMCN, 2008.

[17] J. Wang, C. Huang, and J. Li, “Challenges, design and analysis of a
large-scale P2P-vod system,” in ACM SIGCOMM, 2008, pp. 375–388.

[18] H. Zhang, J. Wang, M. Chen, and K. Ramchandran, “Scaling peer-to-
peer video-on-demand systems using helpers,” in IEEE ICIP, 2009, pp.
3053–3056.

[19] M. Luby, “LT codes,” in The 43rd Annual IEEE Symposium on Foun-
dations of Computer Science, 2002, pp. 271–280.

[20] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2551–2567, 2006.

[21] Y. He and L. Guan, “A new polynomial-time algorithm for linear
programming,” in ACM STOC, 1984, pp. 302–311.

[22] D. Koutsonikolas, Y. Hu, C. Wang, M. Comer, and A. Mohamed,
“Efficient online wifi delivery of layered-coding media using inter-layer
network coding,” in IEEE ICDCS, 2011, pp. 237–247.

[23] P. Ostovari, A. Khreishah, and J. Wu, “Cache content placement using
triangular network coding,” in IEEE WCNC, 2013, pp. 1375–1380.

[24] E. Chong and S. Zak, An Introduction to Optimization. John Wiley &
Sons, 2013.

[25] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Upper Saddle River, NJ (USA); Prentice Hall
Inc., 1989.

[26] X. Lin and N. Shroff, “Utility maximization for communication net-
works with multipath routing,” IEEE Transactions on Automatic Control,
vol. 5, no. 51, pp. 766–781, 2006.

[27] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ
Press, 2004.

[28] A. Khreishah, C.-C. Wang, and N. B. Shroff, “Optimization based rate
control for communication networks with inter-session network coding,”
in IEEE INFOCOM, 2008, pp. 81–85.

[29] M. E. J. Newman, “Power laws, Pareto distributions and Zipf’s law,”
Contemporary physics, vol. 46, no. 5, pp. 323–351, 2005.

14

(a) (b)

Mapping

Fig. 24. (a) Coefficient matrix of a set of general linear coded packets. (b)
Coefficient matrix of a set of triangular coded packets.

[30] S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra, 4th ed.
Upper Saddle River, NJ (USA); Prentice Hall, 2003.

APPENDIX A
PROOF OF LEMMA 1

Assume that A is the coefficient matrix of a set of general
linear coded packets. Each row of A represents the coefficients
of a coded packet. Consider di as the rightmost non-zero
column in row i. In order to map row i to a triangular form,
we should change it in way that the columns 1 to di becomes
non-zero. The rank of a matrix is preserved under elementary
column operations [30]. Therefore, we can multiply a column
by a number and add the result to another column without
changing the rank of the matrix.

Our mapping works as follows. We start from the rightmost
column j and add it to its left column j − 1. Then, we repeat
this process by adding the new values of column j − 1 to
column j − 2. This mapping is done for all of the columns.
At the end, matrix A is converted to a coefficients matrix A′,
which contains the coefficients of a set of triangular coded
packets. It should be noted that even in the case where adding
column k to column k − 1 results to a zero value for some
of the cells in column k − 1, we can multiply column k by a
multiplier before adding it to column k−1 to prevent the zero
cells to form. Figs. 24(a) and (b) show the coefficient matrices
of a set of general linear coded packets and their mapping to
a set of triangular coded packets.

APPENDIX B
PROOF OF LEMMA 2

Clearly, receiving more than n1 coded packets from layer 1
is not useful to user u, since n1 coded packets are enough to
decode layer 1. In other words, receiving n1 linearly indepen-
dent coded packets results in a rank equal to n1, and receiving
more coded packets does not increase the rank. Coded layer
2 contains coded packets over the first two original layers.
As a result, the user does not need more than n1 + n2 coded
packets from the first two layers. With the same reasoning,
receiving more than

∑l′

l=1 nl coded packets from the first l′

coded layers is not useful.

Pouya Ostovari received his B.S degree in soft-
ware engineering from Shahid Beheshti Univeristy,
Tehran, Iran, in 2006, and his M.S degree from
the Amirkabir University of Technology (Tehran
Polytechnic), Tehran, Iran, in 2009. He is currently
working toward his Ph.D. Degree at The Department
of Computer and Information Sciences, Temple Uni-
versity. He is also a research assistant at Temple
University. His research interests include wireless
networks, sensor networks, and distributed systems.
In his PhD. thesis, he studies the application on

network coding in priority-based data transmission.

Jie Wu is the chair and a Laura H. Carnell Professor
in the Department of Computer and Information
Sciences at Temple University. Prior to joining
Temple University, he was a program director at
the National Science Foundation and Distinguished
Professor at Florida Atlantic University. His cur-
rent research interests include mobile computing
and wireless networks, routing protocols, cloud and
green computing, network trust and security, and so-
cial network applications. Dr. Wu regularly publishes
in scholarly journals, conference proceedings, and

books. He serves on several editorial boards, including IEEE Transactions
on Computers, IEEE Transactions on Service Computing, and Journal of
Parallel and Distributed Computing. Dr. Wu was general co-chair/chair for
IEEE MASS 2006, IEEE IPDPS 2008 and IEEE ICDCS 2013, as well as
program co-chair for IEEE INFOCOM 2011 and CCF CNCC 2013. Currently,
he is serving as general chair for ACM MobiHoc 2014. He was an IEEE
Computer Society Distinguished Visitor, ACM Distinguished Speaker, and
chair for the IEEE Technical Committee on Distributed Processing (TCDP).
Dr. Wu is a CCF Distinguished Speaker and a Fellow of the IEEE. He is the
recipient of the 2011 China Computer Federation (CCF) Overseas Outstanding
Achievement Award.

Abdallah Khreishah is an assistant professor in the
Department of Electrical and Computer Engineering
at New Jersey Institute of Technology. His research
interests fall in the areas of visible light communi-
cations, green networking, network coding, wireless
networks, and network security. Dr. Khreishah re-
ceived his BS degree in computer engineering from
Jordan University of Science and Technology in
2004, and his MS and PhD degrees in electrical
& computer engineering from Purdue University in
2006 and 2010. While pursuing his PhD studies, he

worked with NEESCOM. He is a Member of the IEEE and the chair of North
Jersey IEEE EMBS chapter.

Ness. B. Shroff Ness B. Shroff (S91-M93-SM01-
F07) received his Ph.D. degree from Columbia Uni-
versity, NY in 1994 and joined Purdue University
immediately thereafter as an Assistant Professor.
At Purdue, he became Professor of the school of
Electrical and Computer Engineering in 2003 and
director of CWSA in 2004, a university-wide center
on wireless systems and applications. In July 2007,
he joined Ohio State University as the Ohio Emi-
nent Scholar of Networking and Communications.
University. His research interests span the areas of

wireless and wireline communication networks. He is especially interested
in fundamental problems in the design, performance, control, and security
of these networks. Dr. Shroff is a past editor for IEEE/ACM Trans. on
Networking and the IEEE Communications Letters. He currently serves
on the editorial board of the Computer Networks Journal. He has served
on the technical and executive committees of several major conferences
and workshops. He was the TPC co-chair of IEEE INFOCOM03, ACM
Mobihoc08, and general chair of IEEE CCW99 and WICON08. Dr. Shroff
is a fellow of the IEEE. He has received numerous awards for his work,
including two best paper awards at IEEE INFOCOM (in 2006 and 2008), the
flagship conference of the field. He has also received the IEEE WiOPT 2013,
IEEE WiOpt 2012, and the IWQoS best student paper award, the 2005 best
paper of the year award for the Journal of Communications and Networking,
the 2003 best paper of the year award for Computer Networks, and the NSF
CAREER award in 1996 (his IEEE INFOCOM 2013 and IEEE INFOCOM
2005 papers ware selected as runner-up papers). Dr. Shroff is recognized as
a Thomson Reuters Highly Cited Researcher and is listed in the Thomson
Reuters Book on The World’s Most Influential Scientific Minds in 2014.
In 2014, he received the IEEE INFOCOM achievement award for seminal
contributions to scheduling and resource allocation in wireless networks.

