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Abstract—Providing reliable transmission in wireless commu-
nication networks is an important problem which is typically
addressed using feedback and acknowledgment messages. In the
networks where using feedbacks is not possible, such as real-
time systems, an alternative approach is to maximize the possible
gain that the destination nodes are expected to receive. In this
paper, we consider transmission of data with different priorities,
and study the problem of maximizing the total gain in the case
that partial data retrieval is acceptable. We propose an optimal
solution that benefits from network coding. We also consider the
case of burst errors and discuss how can we make our proposed
method robust to this type of error. We evaluate our proposed
priority-based data transmission method using both simulations
and results from the implementation on a USRP testbed.

Keywords—Symbol-level coding, broadcasting, reliability, burst
error, random linear network coding, priority, wireless networks,
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I. INTRODUCTION

Broadcasting schemes are widely used for disseminating
data and control messages in wireless networks. However,
the error-prone wireless links in wireless networks create a
challenge for reliable transmission. To handle this challenge,
different mechanisms [1]-[4] have been proposed to provide
reliability. In the case of numeric data, e.g., the captured
information by sensor nodes, the importance of the data
(numbers) decreases from the left (most significant bit) to
the right (least significant bit). Therefore, any mechanism that
addresses numeric data transmissions in a lossy environment
should consider the weights of the bits.

In this paper, we propose a novel broadcasting approach
in wireless networks, which considers the importance of
the symbols. Instead of providing reliable transmissions and
guaranteeing a full delivery of the data, we are interested in
maximizing the expected total gain of the destination nodes,
with a fixed and given number of symbol transmissions. In
applications such as transmitting numeric data from a source
node to a set of destination nodes, encountering an error in
more important bits has a more negative impact, and with a
given number of transmissions, it is more efficient to allocate
more transmissions to the most important part of the data.

Consider a 2-digit decimal number in its Binary-Coded
Decimal (BCD) representation. In BCD, each decimal digit is
represented as a 4 bits binary number. For example, the BCD
representation of 94 is 10010100, in which the four leftmost
bits and the 4 rightmost bits represent 9 and 4, respectively.
Assume that the error rate of the link between the source and
a destination node is equal to 0.2. Moreover, we define each

TABLEL  MOTIVATION EXAMPLE.
xy | 4 3 2 1 0
x2 | 0 1 2 3 4
w | 9984 | 10.72 | 10.56 | 8.992 | 0.9984

4 bits as a symbol, and the source node can totally transmit 4
symbols. The gain of the user from each symbol is equal to
the multiplication of receiving probability of the symbol by its
importance. In this case, the weight of the symbols 9 and 4
are 10 and 1, respectively. As a result, the utility gain of the
destination is equal to 10 x (1—p**) 41 x (1 —p™2). Here, x1
and xo are the number of transmissions assigned to the most
significant and least significant symbols, respectively, and p is
the link’s error rate. Table I depicts the possible distribution
of the 4 transmissions to the 2 symbols, and the expected total
gain of the destination node in each case. The table shows
that, in our example, the optimal solution is to assign 3 and 1
transmissions to the symbols 9 and 4, respectively.

In this paper, we find the optimal scheme to assign the
transmission to the symbols with unequal priorities. Our con-
tributions are:

e  We study the problem of maximizing the total gain in
the case of partial data delivery with unequal priorities.

e We propose the optimal solution to maximize the
total gain, and we benefit from network coding in
our solution. We also discuss how can we make our
approach robust against burst errors.

e In addition to simulations, we report our results from
implementing our method on a USRP testbed.

The remaining sections are organized as follows. We re-
view the related work and describe linear network coding in
Section II. The problem definition and the setting are provided
in Section III. We propose our priority-based data transmission
in Section IV. We evaluate the proposed mechanisms through
simulations and real experiments in Section V. Finally, we
conclude the paper in Section VI.

II. RELATED WORK AND BACKGROUND
A. Reliable Transmission

Feedback messages are commonly used in the reliable
transmission methods over error-prone wireless communica-
tion networks. One of the most common approaches to provid-
ing a reliable transmission is Automatic Repeat reQuest (ARQ
[1]. In order to reduce the transmission overhead of the ARQ



method, hybrid-ARQ approaches [2], [5] are proposed, which
combine ARQ with FEC (Forward Error Correction). Rateless
(fountain) codes [3], [4] can be used to provide reliability with-
out feedback messages. In these methods, the source generates
and transmits an unlimited number of encoded packets until
the destination nodes receive a sufficient number of encoded
packets to be able to decode the coded packets and retrieve
the original packets. In rateless codes, if the source has k
original packets to send, a destination node needs to receive
N = (1+€)k [3] coded packets to decode the coded packets.
Here, € is a small number, which shows the overhead of the
rateless codes. It is shown that this overhead goes to zero [6]
as k goes to co. Because of their overhead for a small number
of packets, rateless codes are not suitable for our problem,
which is delay-sensitive and needs small batches of packets.

B. Network Coding

The authors in [7] introduce Network Coding (NC) [8]-[11]
for wired networks. They show that NC achieves the capacity
for the single multicast session problem. In [12], Random
linear network coding is proposed, and the authors show that
by selecting the coefficients of the coded packets randomly,
we can achieve the capacity asymptotically with respect to the
finite field size.

In random linear NC, coded packets are the linear com-
bination of the original packets over a finite field, and the
coefficients of the linear combinations are selected randomly.
Any coded packet has a form of Zle a; X P;. Here, P and
« are the packets and random coefficients, respectively. Packet
P can be an original packet or a coded packet. Assuming that
k packets are coded together, with a very high probability,
any set of k£ random coded packets can be used to decode the
coded packets and retrieve the original packets. This decoding
process is done using the classic methods to solve a system of
linear equations, such as Gaussian elimination.

NC is an effective method used to address reliable trans-
missions. Using NC, the source can transmit coded packets
until it receives an acknowledgment from the destinations once
they receive a sufficient number of coded packets to decode
the coded packets. NC can also reduce the number of required
transmissions to provide a reliable transmission. For example,
the problem of one-hop reliable broadcasting work is studied
in [13], [14]. In these works, the source node receives feedback
from each destination node, showing their received packet.
The source node benefits from NC, and combines the missed
packets by the destination nodes in a way that each destination
node can receive a missed packet using this coded packet. For
instance, assume that packets P, and P, are transmitted by the
source node, and destination nodes d; and ds receive packets
P; and P, respectively, and miss the other packets. If we
do not use NC, the source node needs to transmit both of
the packets. However, the source node can transmit a linear
combination of the packets instead.

The authors in [15] propose symbol-level network coding
and show that it can increase the throughput compared to the
packet-level network coding. In the case of symbol-level cod-
ing, even receiving a partial portion of the packets contributes
to the utility, which increases the throughput. Later, the authors
in [16], [17] benefit from the idea of symbol-level coding for
distributing data and multimedia in vehicular networks.
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Fig. 1. System setting.
TABLE I.  THE SET OF SYMBOLS USED IN THIS PAPER.

Notation | Definition

d; The i-th destination node

n The number of destination nodes

m The number of symbols inside each packet

k The number of packets

w; The weight of the i-th symbol of each packet

Di The error rate of the link between the source
and the i-th destination node.

t The size of the transmission time window (in
the terms of the number of symbols)

S The ¢-th symbol of the j-th packet

S; The ¢-th coded symbol

T The number of transmissions of the coded
symbols 5;

Yi The number of transmissions of the coded i-th
symbols 5;

P; The ¢-th packet

u; The gain (utility) from the ¢-th symbols in the
case of non-coded symbols

ul¥® The gain (utility) from the i-th symbols when
we use linear NC

U The total gain (utility) in the case of non-coding

ulve The total gain (utility) of using linear NC

III. SYSTEM MODEL AND PROBLEM DEFINITION
A. System Setting

In our model, we have a single-hop wireless network, in
which a source node broadcasts a batch of k£ packets to n
destination nodes d. We assume that m symbols form a packet,
and the symbols themselves might contain several bits. The
priority of a symbol s; is defined as the inverse of its weight
w;, and in general w; > w;y1,Ve : 1 < ¢ < m—1. The system
model is shown in Figure 1. The set of symbols used in this
paper is summarized in Table II.

We assume that each batch of packets has a deadline to
be transmitted, and after that the source has another batch
of packets ready to be transmitted. Consequently, we cannot
use channel coding and hierarchical coding methods in our
setting. The time assigned for transmitting a single packet is
sufficient for ¢ symbol transmissions. As a result, for a batch
of k packets, the source node can transmit ¢ X k symbols. If
we do not consider a deadline for the packets, or assume that
the source has infinite packets to transmit, the optimal solution
can be found by way of a simple extension of the well-known
channel coding theory [18].
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Fig. 2.  Gilbert-Elliott model: modeling transmission errors using a 2-state
Markov chain.

Our goal in this work is to maximize the total weight of
the received symbols of a batch of k packets by the destination
nodes. We use boolean variable z; ;; to represent success and
failure in delivering symbol s; of the k-th packet to destination
d;. The value of the variable is equal to 1 in the case of
successful delivery; otherwise the value is 0. We can model
our objective function as the following utility function:

m n

k
u = E E E Zji,l X Wj

j=14i=1 =1

B. Error Model

We assume that the transmission errors are bursty. A burst
error is a contiguous sequence of errors. In order to model the
burst errors we use the Gilbert-Elliott model [19], [20]. The
Gilbert-Elliott model is widely used for describing burst error
patterns in data transmission channels. This model is based on
a Markov chain with two states good and bad, represented as G
and B, respectively. As shown in Figure 2, the system transits
from state G to B with a probability equal to ¢. The probability
of the transition from state B to G is equal to r. In the general
form of the model, there are different error probabilities for the
2 states. However, in the simplified model, the error probability
of states G and B are supposed to be 0 and 1, respectively.
In the simplified version, the error probability is equal to the
stationary state probability of being at state B, which is equal

top=gq/(qg+r).

Figures 3(a)-(d) show the simulation results of 200 trans-
missions using the simplified version of the Gilbert-Elliott
model. In Figure 3(a), ¢ and r are set to 0.1. As a result, the
average length of the burst errors and successful transmissions
are the same. Figures 3(b) and (c) show that the average length
of the burst errors and successful transmissions decrease as we
increase q and r, which is due to the increase in the transition
probability. In Figure 3(d), ¢ and r are equal to 0.1 and 0.5,
respectively. As a result, the lengths of consecutive successful
transmissions are more than those of the burst errors.

IV. PRIORITY-BASED DATA TRANSMISSION

Without network coding, the probability of symbol s;; to
be received by the [-th destination is equal to 1 —p;*7¢, where
2;; is the number of transmissions of symbol s; ;. Also, the
weight of the i-th symbol of the packets are equal. As a result,
in the case of non-coding, the total gain (utility) becomes:

The problem of this scheme is that a destination node
might receive some of the symbols multiple times, and might
not receive the other symbols. This problem is known as the
coupon collector problem. In order to solve this problem,
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Fig. 4. Network coding scheme.

we can benefit from random linear NC. We can code the ¢-
th symbols of the k packets together as shown in Figure 4.
Using this scheme, a destination node will be able to decode
the ¢-th coded symbols and retrieve the original symbols
once it receives at least £ coded symbols. Thus, each coded
symbol contributes the same amount of information to the
destination nodes. This is in contrast to the case of non-coding
transmissions, in which a destination node might not receive
some of the symbols, and might receive the other symbols
multiple times. If we represent the number of transmissions
assigned to the coded symbols over the ¢-th symbols of the
packets as y;, the utility becomes:

m n y; Xk ,
uNC = Zwi X kz [ Z (kiyl) X (1 —pl)j X p%ﬁXk_J
i=1 =1 j=k

The right most summation calculates the decoding prob-
ability of the i-th symbols. A destination node can decode
the ¢-th code symbols if it receives at least k coded symbols.
Random linear NC decreases the probability of receiving
partial symbols. This is because if a destination node receives
less than k coded symbols, it will not be able to decode
the coded symbols. As a result, depending on the assigned
redundancy to each set of symbols of the k packets, using
random linear NC might be efficient or not.

Consider a source node that wants to transmit two packets
with a single symbol to a destination node, and the error rate
of the link between these nodes is equal to 0.4. Assume that
the number of transmissions is equal to 4. In the case of non-
coding transmissions, the probability of receiving both of the
symbols is equal to (1—0.42) x (1—0.4%) = 0.7056. Also, the
probability of receiving just one of them is equal to 2 x (1 —
0.4%) x 0.4% = 0.2688. Therefore, assuming that the weight of
the symbols is equal to 1, the total gain is 0.7056 + 0.2688 =
0.9744. Using NC, these probabilities become 1 — 0.4* — 4 x
0.4 = 0.7184 and 0 respectively. Thus, using network coding
in this example in not beneficial.

Following the above discussion, it is clear that none of the
coding and non-coding schemes give us the optimal solution.
Thus, we need a method that switches between them to finds
the optimal scheme. The optimization in this case becomes:

m
max Z mazx(u;, ul¥ )

i=1

k. m
s.t. Z Z Tji = t

j=1i=1

m
Zyi =t
i=1
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Fig. 3. Simulation result for 200 transmissions using the Gilbert-Elliott model.

where:

k n
wi=3 D wi X (1=p) M
j=11=1
n ink

WY =k [ 30 () a-p ]
219>

A straightforward solution is to apply brute search. For this
purpose, we can find the optimal solution by calculating the
gain in the case of coding and non-coding for all of the possible
transmission distributions, and by selecting the distribution that
results to the maximum gain. However, it is clear that the time
complexity of the brute search is huge. In order to reduce the
time complexity, we can benefit from the following lemma:

Lemma 1: For the distribution that results in the optimal
solution we have x; > s;41,V1 <i<m—1

Proof: Both of the functions 1 and 2 are non decreas-
ing functions. Therefore, assigning more transmissions to the
symbols with a greater w; results in a higher utility. ]

Lemma 1 helps us to reduce the search space dramatically.

Theorem 1: The number of ways that we can distribute ¢
transmissions among m symbols using lemma 1 is in the order
of ™.

Proof: The number of ways that we can distribute ¢
transmissions among m symbols using lemma 1 is equal to
the number of ways to partition the integer number ¢ to at
most m partitions. The latter problem is referred to as the
restricted version of the integer partitioning problem. In [21],
it is shown that the number of distinct possible partitionings
is in the order of ¢™. ]

Theorem 1 shows that the time complexity of checking
all the possible transmission distributions that see lemma 1 is
exponential. However, in our problem, m is fixed. Moreover,
a typical number of symbols is usually a small number, e.g.
4 or 5. As a result, the number of possible distributions that
need to be checked is polynomial in terms of .

Based on the discussion, we propose the Priority-Based
Transmission (PBT) algorithm as follows. The PBT algorithm
checks all the possible distributions that see lemma 1. For each
possible distribution, we check the gain of the ¢-th symbols of
the k packets in the case of coding and non-coding symbols,
and calculate the maximum total possible gain for all of
the symbols. We repeat this process for all of the possible
transmission distributions and select the distribution that results
in the maximum total utility. The details of the PBT method
are shown in Algorithm 1.

After finding the optimal number of transmissions for each
symbol, the source transmits each symbol several times. As
mentioned in Section III, the errors in our model have a
burst pattern. Consequently, putting the transmissions of the
same symbol beside each other is not logical. The reason is
that, if an error happens in a transmission, there is a large
chance that the next transmission faces an error as well. On
the other hand, a successful transmission might be followed
by another successful transmission with a high probability.
Consequently, if the source node transmits a symbol multiple
times, each following the other, it is with a high probability that
a destination node might receive the symbol multiple times or
might miss all of the transmissions assigned to that symbol. In
the former case, the transmissions are wasted, as some of these
successful transmissions could be assigned to other symbols.
In the later case, the destination node will not receive and gain
from that particular symbol.

In order to make the PBT method robust against burst
errors, we transmit the different symbols in a round-robin
patter. In PBT, the source node starts from the most important
symbol of the packets, transmits each symbol of a packet
once, and subtracts one transmission from the number of
transmissions assigned to each symbol. It then repeats the
process until no more transmissions are left. Our results
from the implementation on the USRP testbed confirm the
effectiveness of the round-robin transmission patter.



Algorithm 1 PBT Algorithm
Initialize: maxGain = 0, argmax = 1
for i =1:m do
coding(i) =0
for each distribution do
for i=1:m do
calculate u¥ and u; using 2 and 1
if ufvc > u; then
gain = gain + u
else
gain = gain + u;
if gain > maxGain then
mazrGain = gain
argmax = index
for i=1:m do
coding(i)=1

NC

%

V. EXPERIMENTS AND EVALUATION

In the following sections, we first report our simulation
results. We then present our real experiment results.

A. Simulations

1) Setting: In order to evaluate our method, we implement-
ed a simulator in the MATLAB environment. We compare
our proposed PBT (priority-based transmission) method with a
simple retransmission (SR) method and MPT-NC method [22].
In the SR method, we distribute the transmissions evenly to
the different symbols. The MPT-NC method, finds the optimal
distribution of the transmissions in the case of non-coding.
It then checks whether applying network coding among the
symbols that have the same weight can increase the gain or not.
In the former case, the MPT-NC method enables coding for
these set of symbols. We run each simulation for 100 random
topologies with different links’ error rates. Also, we repeat
the simulation of each random topology 100 times. In our
simulations, the weight of the ¢-th symbol of each packet is
equal to 2™~ In the simulations, the number of destinations,
packets, and symbols of each packet are equal to 10 and 5,
and 35, respectively.

2) Results: In the first experiment, we measure the effect
that the number of transmissions has on the total gain in
Figure 5(a). For each random topology, r is set to 0.12.
Moreover, q for each link to the destinations is randomly set
in the range of [0.05,0.12]. As a result, the error rate of the
links are in the range of [0.2941,0.5]. As expected, the total
gain in Figure 5(a) increases as we increase the number of
transmissions. In this figure, the total gain of the PBT method
is up to 16% and 50% more than that of the MPT-NC and SR
methods, respectively.

In Figure 5(b), we reduce the average burst error size by
half, and repeat the previous experiment. For this purpose, we
multiply r and the range of ¢ by 2. Therefore, the range of
error rates is still [0.2941,0.5]. Although the error rates in
Figures 5(a) and (b) are the same, the total gain in Figure 5(b)
is more than that of in Figure 5(a). The reason is that, the size
of burst errors in Figure 5(b) is smaller that in Figure 5(a).
However, the reduction in the burst size has more of an effect
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Fig. 5. Effect of number of transmissions on the total gain . m =5, k = 5,
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on the gain of MPT-NC and SR methods, as the PBT method
is more robust against the burst errors.

In Figure 6(a), r is set to 0.12, and ¢ is in the range of
[0.05,0.12]. Also, the number of symbol transmissions ¢ is
equal to 10. The figure shows that the total gain of the methods
is almost linear with respect to the number of destination
nodes. Figure 6(b) shows the empirical CDF of our method’s
performance. We define the performance as the division of the
total gain of the PBT method by that of the MPT-NC scheme.
The figure depicts that in 20% of the cases, the performance
of our method is between 1.16 and 1.2. Moreover, in 50% of
the runs, the performance of the PBT method is up to 1.14.

B. Real Experiment

For the real experiments we use 3 USRPs (Universal
Software Radio Peripheral) to evaluate our proposed PBT
method. One USRP is the sender, one is the receiver, and the
other one works as an interfering node. The devices work on
the narrowband, and the central frequency is 1.26GHz. The
antenna gain on each node is 20 db. We send the packets for
one minute and compare the received packets using the PBT
and the SR approaches.

The source node transmits a 5-digit binary coded decimal
(BCD) number, in which the weight of the i-th digit (from
left to right) is equal to 10°~%V 1 < i < 5. We repeat the
same experiment several times (iterations). Figure 7(a) shows
the total gain of the PBT and SR methods for 134 runs. The
bold and thin lines show the total gain of the PBT and simple
retransmission, respectively. In the PBT method, we put the
symbols in a round-robin fashion. In other words, we first put
the symbols to be sent beside each other, and then we put the
redundant symbols. As depicted in Figure 7(a), the total gain
of the PBT method is almost always more than or equal to
that of the SR. The oscillation in the gains is because of the
randomness of the channel, which results in errors happening
in different parts of the data in different runs.
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In Figure 7(b), we modify the proposed PBT method
by changing the round robin patter with a serial pattern. It
means that, we put symbol s; for z; times beside each other.
Then, we put the second symbol x5 times and so on. As
Figure 7(b) depicts, there are cases in which the gain of the
SR method is more than that of the PBT method, which is
due to the bursty errors. If a bursty error happens, all of the
repeated serial symbols might be lost. On the other hand, if a
symbol is received correctly, then the destination might receive
that symbol several times, which is useless. It suggests that
repeating the symbols in a serial patter is not an appropriate
approach.

The total gain of the methods in the case of a random
symbol pattern is shown in Figure 7(c). As the figure depicts, in
some cases both of the methods results in a similar total gain.
However, in many cases, the gain of the PBT method is more
than that of the SR method. By comparing the Figures 7(a)-
(c) we find that the gain of the PBT method with a random
symbol patterns is in between that of the serial and round-robin
pattern.

VI. CONCLUSION

Providing reliable transmission in wireless communication
networks is critical. In this paper, we consider transmission of
data with different levels of importance. Instead of ensuring the
reception of all of the packets by the destination nodes, we are
interested in maximizing the utility that the designation nodes
will gain in the case of partial retrieval of data. We propose an

optimal solution for assigning transmissions for different parts
of the data to be transmitted, which benefits from network
coding. In our priority-based transmission method, we consider
the possible burst errors. We implemented our method on
a USRP testbed. We evaluated our method both through
simulations and the results from the real testbed.
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