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a b s t r a c t

Reliable packet transmission over error-prone wireless networks has received a lot of attention from the
research community. In this paper, instead of using simple packet retransmissions to provide reliability,
we consider a novel retransmission approach, which is based on the importance of bits (symbols). We
study the problem of maximizing the total gain in the case of partial data delivery in error-prone wireless
networks, in which each set of bits (called symbols) has a different weight. We first address the case of
one-hop single packet transmission, and prove that the optimal solution thatmaximizes the total gain has
a round-robin symbol transmission pattern. Then, we extend our solution to the case of multiple packets.
We also enhance the expected gain using random linear network coding. Our simulation results show
that our proposed multiple packets transmission mechanism can increase the gain up to 60%, compared
to that of a simple retransmission. Moreover, our network coding scheme enhances the expected total
gain up to 15%, compared to our non-coding mechanism.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Broadcasting schemes are widely used for disseminating data
and control messages in wireless networks. However, the error-
prone wireless links creates challenges in these networks. To han-
dle these challenges, different mechanisms [6,30,19,28,20] have
been proposed to provide reliability. In the case of numeric data,
e.g., the captured information by sensor nodes, the importance of
the data (numbers) decreases from the left (most significant bit) to
the right (least significant bit). Therefore, any mechanism that ad-
dresses numeric data transmissions in a lossy environment should
consider the weights of the bits. The problem of reliable transmis-
sion has received a lot of attention; however, to the best of our
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knowledge, nobody has studied the problem of transmitting sym-
bols (a group of bits) with different weights.

In contrast to the previous works, in this paper, we propose a
novel broadcasting approach inwireless networkswhich considers
the importance of the symbols. Instead of providing reliable
transmissions and guaranteeing a full delivery of the data, we are
interested inmaximizing the expected total gain of the destination
nodes, with a fixed given number of symbol transmissions. In
applications such as transmitting numeric data from a source
node to a set of destination nodes, encountering an error in more
important bits has a more negative impact, and with a given
number of transmissions, it is more efficient to allocate more
transmissions to the most important part of the data.

Fig. 1(a) shows an example, in which a packet with 2 symbols
is transmitted to a destination node. The weights of the symbols
s1 and s2 are equal to 2 and 1, respectively. Assume that the error-
rate of the link is equal to 0.6. The window size for transmitting
the packet is equal to 2 symbols, and after that, another packet
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Fig. 1. Motivation example; (a) setting, (b) the choices with 2 and 3 transmissions.

will be ready for transmission. In this case, the traditional methods
transmit each symbol once. Now, let us compute the expected gain.
We represent the number of transmissions of symbols s1 and s2 as
x1 and x2, respectively. Thus, the probability of successful delivery
of symbols s1 and s2 is equal to 1 − px1 and 1 − px2 , respectively.
Consequently, the expected gain is equal to w1 × (1− px1)+w2 ×

(1 − px2), where w1 and w2 are the weights of symbols s1 and s2.
The possible distribution of 2 transmissions and their respective
utilities are shown in Fig. 1(b). The figure shows that it is more
efficient to allocate both of the transmissions to symbol s1. Now
assume that the window size is equal to 3 transmissions. Fig. 1(b)
shows that the optimal solution is allocating 2 transmissions to
symbol s1, and 1 transmission to symbol s2. It should be noted
that if there is no deadline, then the optimal solution is a simple
extension from the channel coding theory [5].

Finding the importance of a data is application specific.
As another example, consider a multi-layer (multi-resolution)
video [21,27,7]. In multi-layer video coding, each video is divided
into a base layer and a set of enhancement layers. The base (first)
layer is required to watch the video. In contrast, the enhancement
layers can increase the quality of the video. However, a layer is not
useful without the layers with a smaller index. In this case, the
layers with a smaller index are more important than the layers
with a greater index. In order to assign weights to the different
layers, we canmeasure the effect (quality enhancement) of adding
a layer to the layers with a smaller index and consider it as the
weight of that layer.

In this work, we answer the following question. How should
we distribute the transmissions to different symbols with unequal
importance in order to maximize the total expected gain? While
answering this question, we have the following contributions:

• In contrast to previous works, which study the problem of
reliable packets or symbol level transmission, we study the
problem of maximizing the total gain in the case of partial data
delivery.

• In the case of single packet transmission to multiple destina-
tions with homogeneous channel conditions, we propose an al-
gorithm to find the optimal solution, and prove its optimality.
This algorithm assigns the transmissions to the symbols in a set
of round-robin iterations.

• We also propose an optimal algorithm for the case of trans-
mitting a single packet to multiple destinations with heteroge-
neous channels.

• We extend the proposed single packet transmission algorithms
to the case of multiple packets, and use the advantage of ran-
dom linear network coding to enhance the expected gain.

• We show that network coding does not necessarily increase the
gain, and we find the condition that network coding results in
more gain than the non-coding mechanism.
The rest of this paper is organized as follows. Section 2 reviews
the related work and describes linear network coding. In Section 3,
we provide the problem definition and the setting. We propose
our mechanisms for the case of transmitting a single packet in
Section 4. In Section 5, we extend our proposed mechanism to the
case of transmitting multiple packets, and we boost the gain of the
proposed method using linear inter-packets network coding. We
discuss the implementation issues in Section 6, and evaluate the
proposed mechanisms through simulations in Section 7. Section 8
concludes the paper.

2. Related work and background

2.1. Reliable transmission

Certain mechanisms, such as feedback messages, can be
applied in error-prone wireless networks to provide reliability.
Automatic Repeat reQuest (ARQ) is one of themost frequently used
approaches for addressing this challenge [6]. Nevertheless, ARQ
imposes overhead, since it requires transmitting many feedback
messages, especially for the case of multi destination nodes.
Hybrid-ARQ approaches [30,25], which combine FEC (Forward
Error Correction) with ARQ, are proposed to solve this problem.
The RMDP approach, which is a complex method, [25] uses
Vandermonde [24] code and ARQ to ensure reliability.

Using rateless (fountain) codes [19,28,20] is an efficient way
to provide reliability without using feedback messages. In these
schemes, the source node can generate and transmit an unlimited
number of encoded packets until each destination node receives
enough encoded packets to retrieve the original packets. In this
scheme, the destination nodes need to collect a sufficient number
of encoded packets, regardless of which packets have been lost. As-
suming that the number of original packets is k, the number of suf-
ficient coded packets that need to be received is N = (1 + ϵ) [19],
where ϵ is a small number and shows the overhead of the rateless
codes. Note that ϵ is independent of the reliability of the links. It can
be shown that as k → ∞, the overhead goes to zero [2]. Therefore,
rateless codes are very efficient for transmitting a large number
of packets, but are inefficient for transmitting a small number of
packets. As a result, rateless codes are not appropriate for delay-
sensitive applications, such as our problem, which needs small
batches of packets.

2.2. Network coding

Network coding (NC) [11,3,23,12] is introduced in [1] for
wired networks, to solve the bottleneck problem in single
multicast problem. It is shown in [15] that linear network coding
achieves the capacity for the single multicast session problem.
The authors in [13] provide a useful algebraic representation
of the linear network coding problem. Random linear network
coding is proposed in [9], and it is shown that randomly selecting
the coefficients of the coded packets, achieves the capacity
asymptotically, with respect to the finite field size.

In random linear network coding, coded packets are the random
linear combination of the original packets over a finite field. The
coded packets are in the formof

k
i=1 αi×Pi, where P andα are the

packets and randomcoefficients, respectively. Using random linear
network coding, the source node generates and transmits random
coded packets and their respective random coefficient vector. The
destination nodes are able to decode the coded packets once
they receive k linearly independent coded packets. The decoding
process is done using Gaussian elimination for solving a system
of linear equations. Using this scheme, the destination nodes can
send just one acknowledgment message to stop the source node
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Fig. 2. System setting.

from sendingmore coded packets once they are able to decode the
coded packets.

The work in [18,17,22,8] address the problem of reliable one-
hop broadcasting. In order to provide reliability, the source node
needs to retransmit the lost packets by the destination nodes. The
source node uses the benefit of network coding in the retrans-
mission phase to improve the transmission efficiency. In order to
reduce the number of required retransmissions, these methods
combine the packets that have not been received correctly by dif-
ferent receiver nodes. Assume that in Fig. 2, the source node sends
packets P1 and P2, and destination nodes d1 and d2 only receive
packets P1 and P2, respectively. As a result, the source node needs
to retransmit both of the packets. However, using network coding,
the source node canmix the packets to send a single packet P1+P2.
If nodes d1 and d2 receive the coded packets, they can retrieve their
respective packets P2 and P1, by performing (P1 + P2) − P1 and
(P1 + P2) − P2, respectively.

Symbol-level network coding for wireless mesh networks is
introduced in [10], and it is shown that its throughput is more
than that of the packet-level network coding. The insight behind
the symbol-level coding is that, even in the case that a node does
not receive a coded packet correctly, some of the symbols that
form the packet might be received without any error. As a result, if
instead of coding the packets together we code the symbols, the
successfully received symbols do not need to be retransmitted,
and transmitting the remaining symbols is sufficient; therefore,
symbol-level transmission reduces the transmission cost.

The authors in [14,29] use the symbol-level coding to propose
a method for distributing data and multimedia in vehicular net-
works. They show that the symbol-level network coding outper-
forms the packet level network coding for content distribution in
Vehicular Ad-Hoc Networks (VANET). The goal in [29] is to effi-
ciently designate live streaming multimedia to the mobile nodes
in a specific region of a road, called an area of interest.

3. Setting

We consider a single-hop wireless network that consists of one
source and n destination nodes d, as depicted in Fig. 2. The source
node has a batch of k packets to send to the destination nodes,
and each packet consists of m symbols. Each symbol itself might
contain several bits. Each symbol has a weight wi, and in general,
wi > wi+1, ∀i : 1 ≤ i ≤ m − 1. For simplicity, we assume
that the weight of the ith symbols of all of the packets are the
same. However, the proposed solutions in this paper can be easily
extended to the case of packets with different symbols’ weights.
We assume that the error rate of each transmitted symbol (or
packet) from the source node to the ith destination node is equal
to pi. We represent the number of times that the ith symbol is
transmitted as xi.

In our model, the packets of a batch have a deadline to be
received by the destination nodes, which is equal to the window
size, and after this time another batch of packets will be ready for
transmission. As a result, channel coding and hierarchical coding
methods cannot be applied in our setting. We assume that this
window size for a batch of packets is enough for transmitting t × k
Fig. 3. Binary coded decimal (BCD) and the weights of the symbols.

symbols, where t is the assigned window for a single packet. If the
packets are not delay sensitive, or the source has infinite packets
to transmit, the optimal solution is a simple extension of the well-
known channel coding theory [5]. Our goal is to maximize the
total weight of the received symbols of a batch of k packets by the
destination nodes. As a result, our utility function becomes:

u = k ×

m
i=1

n
l=1

wi × (1 − plxi) (1)

s.t.
m
i=1

xi = t.

It is obvious that we should assign a larger portion of the
transmissions to the symbols that are more important than the
other symbols, as successful delivery of these packets to the
destination nodes results inmore gain. However, it is not clear how
we should assign and distribute the transmissions (duplications) to
the different symbols of the packets in order to maximize the total
gain. Our goal in this work is to find this optimal assignment. In the
rest of the paper we use gain and utility interchangeably. The set
of symbols used in this paper is summarized in Table 1.

For the case of data like binary data, in which the importance of
the ith bit is twice that of the i + 1th symbol, the weight of the ith
symbol can be defined as 2m−i. As a result, the objective function
becomes:

k ×

m
i=1

n
l=1

2m−i
× (1 − plxi).

In this case each symbol contains one bit. In Binary-Coded
Decimal (BCD), each decimal digit is represented with a fixed
number of bits, usually 4 bits. Fig. 3 shows a decimal number and
its conversion to BCD. For the case of BCD, we can consider the 4
bits that correspond to the samedecimal digit as a symbol, inwhich
the weight of the ith symbol is 10 times that of the i+ 1th symbol.
Consequently, for the BCD data, the objective function will be:

k ×

m
i=1

n
l=1

10m−i
× (1 − plxi).

In this work, we do not restrict the solution to a special
weighting system, and solve the problem in the general case. The
parameters in our proposed method can be adjusted based on the
application and the structure of the data to be transmitted.

4. Optimal solution for the case of single packet

In the following two sections, we first find the optimal
distribution of transmissions to different symbols in the case
of destination nodes with homogeneous channels, and then we
extend it for heterogeneous destination nodes.

4.1. Destinations with homogeneous channels

We first investigate and address the problem in the case of a
packet size equal to 2 symbols. Then, we generalize the solution to
the case ofm symbols.
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Table 1
The set of symbols used in this paper.

Notation Definition

di The ith destination node
n The number of destination nodes
m The number of symbols inside each packet
k The number of packets
wi The weight of the ith symbol of each packet
pi The error rate of the link between the source and the ith

destination node.
t The size of the transmission time window for each packet (in the

term of number of symbols)
si The ith symbol (in the case of single packet)
sj,i The ith symbol of the jth packet
Si The ith coded symbol
Pi The ith packet
∆xi The change in the utility gain as we increase xi to xi + 1
u The utility function
ui The gain (utility) from the ith symbols
uNC
i The gain (utility) from the ith symbols when we use linear NC

uNC The total gain (utility) of using linear NC
uUC The total gain without using linear NC
cNC The header cost of a linear coded packet
cUC The header cost of an uncoded packet
τ The number of sets of t transmissions performed so far
pi,τ The actual error rates of the link between the source and node di

in the set of τ th set of transmissions
p̂i,τ The estimated error rates of the link between the source and node

di in the set of τ th set of transmissions
ri,τ Number of successfully received symbols by the destination node

di in the set of τ th set of transmissions

4.1.1. Packet size m = 2
For a packet sizem = 2, the objective function becomes:

u = n ×

w1 × (1 − px1) + w2(1 − px2)


s.t. x1 + x2 = t.

We denote the change in the total gain as we increase the ith
symbol’s transmissions from xi to xi + 1 as ∆xi , so we have:

∆xi = n × wi × (1 − pxi+1
− (1 − pxi))

= n × wi × (1 − p) × pxi .

Asmentioned in the setting,w1 > w2. Thus, it is obvious that, in
order to achieve more gain, the number of times the source node
transmits the first symbol should be more than or equal to that
of the second symbol. If we consider the problem in t rounds of
transmission, the first time we should increment x2 and transmit
the second symbol is when the gain of increasing x1 is less than
that of increasing x2. In other words, the condition to increase x2 is
∆x1 < ∆x2 . Consequently, we have:

n × w1 × (1 − p)px1 < n × w2 × (1 − p)px2

and as a result,

px1 <
w2

w1
px2 . (2)

In this case, we are incrementing x2 for the first time, so x2 = 0,
and we have:

px1 <
w2

w1
. (3)

Therefore, the first time we should increment x2 is when px1 <
w2
w1

; we refer to this point as the saturation point. After this point,
whenever px1 <

w2
w1

px2 , we should increment x2, since it results in
more gain. In contrast, if px1 ≥

w2
w1

px2 , we increment x1.
We show the optimal distribution of the transmissions between

x1 and x2 for different total numbers of transmissions t in Fig. 4.
The weights of symbols s1 and s2 in this example are assumed
to be 5 and 1, respectively. To find the optimal distribution, we
Fig. 4. Optimal distribution of transmissions between 2 symbols for an error
probability p = 0.5, w1 = 5, and w2 = 1.

compute the utility for all of the possible distributions. It can be
inferred from this figure that, after incrementing x2 for the first
time, the optimal solution has a round-robin incrementing pattern.
The insight behind this phenomenon is as follows. The ratio of ∆x1
and ∆x2 is equal to:

n × ∆x1

n × ∆x2
=

w1 × (1 − p) × px1

w2 × (1 − p) × px2
=

w1 × px1

w2 × px2
. (4)

Before we reach the saturation point, ∆x1 ≥ ∆x2 , and the ratio
in Eq. (4) is greater than 1. However, after the saturation point,
whenever we increment x2, the ratio in Eq. (4) is multiplied by 1

p ,
and it becomes greater than 1. As a result, the next transmission
should be assigned to x1, as it results in more gain. In contrast,
whenever we increment x1, the ratio is multiplied by p, which
makes the ratio less than 1. In this case, it is more beneficial to
assign the next transmission to x2.

Based on the discussion, our algorithmworks as follows. We it-
eratively increment x1 and decrement t until px1 <

w2
w1

. If anymore
transmissions are left, we start to distribute these remaining trans-
missions between x1 and x2 in a round-robin pattern.We prove the
optimality of this algorithm in Appendix A.1.

4.1.2. General packet size m
Similar to the case of m = 2, the first symbol (the symbol

with the smallest index) has more weight, so it is more important
than the other symbols. As a result, we should not transmit other
symbols until ∆x1 > ∆x2 . It should be noted that this condition
implies that ∆x1 > ∆xi , ∀i : 2 ≤ i ≤ m. The reason is that, w2 >
wi, ∀i : 3 ≤ i ≤ m, and xi = 0, ∀i : 2 ≤ i ≤ m. Consequently,
similar to the case of packet size m = 2, the first time that we
should increment x2 is when px1 <

w2
w1

, and after this point, the
transmissions should be distributed between x1 and x2. However,
in contrast with the case ofm = 2, after a specific point, we should
start to transmit the third symbol. The condition to increment x3 is
when ∆x1 < ∆x3 and ∆x2 < ∆x3 . For ∆x1 < ∆x3 we have:

n × w1 × (1 − p)px1 < n × w3 × (1 − p)px3 .

At this step, we are increasing x3 for the first time; therefore,
x3 = 0, and the first optimality condition becomes px1 <

w3
w1

.
Moreover, for the second condition ∆x2 < ∆x3 we have:

n × w2 × (1 − p)px2 < n × w3 × (1 − p)px3 .

As x3 = 0, the equation becomes px2 <
w3
w2

. When these two
conditions hold, we should start assigning the remaining transmis-
sions to the first 3 symbols in a round-robin pattern. By the same
reasoning, the condition for increasing xm is when pxi < wm

wi
, ∀i :
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Fig. 5. Optimal distribution of transmissions between 5 symbols for an error
probability p = 0.5, w1 = 16, w2 = 8, w3 = 4, w4 = 2, and w5 = 1.

1 ≤ i ≤ m − 1. Fig. 5 shows the optimal distribution of the trans-
missions between different symbols when m = 5 for different
numbers of total symbol transmissions t . The link’s error rate and
wi are equal to 0.5 and 25−i, respectively. This figure shows that,
even in the case of a packet size more than 2 symbols, the round-
robin distribution of the transmissions results in the optimal
solution.

We can summarize the discussion and the procedure of our
weighted retransmission with homogeneous destinations (WRH)
algorithm as follows. We assign the transmissions to x1 until px1 <
w2
w1

. Then, we distribute the remaining transmissions between x1
and x2 until px1 <

w3
w1

and px2 <
w3
w2

. After this point, we con-
tinue the round-robin distribution of the remaining transmissions
among x1, x2, and x3. In general, we start incrementing xj when
pxi <

wj
wi

, ∀i : 1 ≤ i ≤ j−1, andwe add xj to the round-robin incre-
menting process. We continue this process until t becomes 0. The
proof of this algorithm’s optimality is presented in Appendix A.2.

The binary and BCD representations of decimal number 83 are
shown in Fig. 6(a) and (b), respectively. In BCD, the weight of
symbol s1 is 10 times that of symbol s2. Also, theweight of symbol si
is twice that of symbol si+1 in binary representation. Assuming that
the error rate of the link between the source and destination nodes
is equal to 0.2, we show the optimal solutions in the cases of 8, 12,
and 16 symbol transmissions for the binary number in Fig. 6(a).
Note that, in this case, each symbol contains one bit. In BCD, the
size of each symbol is 4 times that of the binary representation.
Therefore, in Fig. 6(b), we show the optimal transmissions with 2,
3, and 4 symbol transmission in the BCD representation.

4.2. Destinations with heterogeneous channels

In the case of multiple destination nodes with different trans-
mission error rates, the round-robin distribution pattern does not
exist. For this reason, we use an iterative algorithm, which we call
weight retransmission (WR). In each iteration of the WR method,
we assign one transmission to a symbol such that it maximizes the
increase in the total gain. In the case of heterogeneous destination
nodes, ∆xi can be calculated as follows:

∆xi = wi ×

n
l=1


1 − pxi+1

l − (1 − pxil )


= wi ×

n
l=1


pxil − pxi+1

l


and the total utility is equal to:

u =

m
i=1


wi ×

n
l=1

(1 − pxil )


.

a b

Fig. 6. The binary and BCD representations of a decimal number, and the optimal
symbol transmissions to homogeneous destinationswith a different total number of
symbol transmissions. p = 0.2; (a) Binary representation, (b) BCD representation.

Algorithm 1WR Algorithm
for i=1 to m do

xi = 0
for j=1 to t do

max = 0
argmax = 0
for i=1 to m do

∆xi = wi ×
n

l=1(p
xi
l − pxi+1

l )
if ∆xi > max then

max = ∆xi
argmax = i

xargmax = xargmax + 1

TheWRalgorithmassigns the total number of transmissions t to
the different symbols in t rounds. At each iteration, our algorithm
computes ∆xi , ∀i : 1 ≤ i ≤ m, and it assigns the current
transmission to xj that increasing its number of transmissions by
one results is more increase in the total gain. In other words, j =

argmax 1≤i≤m
∆xi

. Algorithm 1 shows the iterative process.

The second loop (the loop over j) and its internal for loop in
Algorithm 1 run t and m times, respectively. Moreover, ∆xi is a
summation over n nodes. As a result, the complexity of the WR
method is in the order of O(t × m × n). We leave the proof of
optimality to Appendix B.

5. Efficient solution for the case of multiple packets

In order to broadcast a batch of k packets from a source node to
a set of destination nodes,we can use two approaches:without and
with network coding. We describe the details of the mechanisms
in the following sections.

5.1. Without network coding

In our model, we assume that the packet sizes (in term of
symbols) are equal. Moreover, the weights of the ith symbols
in different packets are the same. As a result, the problem of
sending k independent packets becomes k similar problems with
the same solution. Consequently, we can simply use the result of
the previous section, and repeat the same process for the different
packets. In the weighted multiple packets retransmission (WMPR)
mechanism,we first compute the optimal number of transmissions
for each symbol. For this purpose, we perform one of the proposed
algorithms in the previous section (WRH orWR), depending on the
channels condition. Then, we use the output values xi from the first
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Fig. 7. Inter-packet network coding.

step, and transmit each of the ith symbols of the different packets
xi times. As we repeat the same process on k packets, the utility of
this scheme is k times the gain of transmitting one packet.

5.2. Inter-packet network coding

Random linear network coding can increase the gain of the
WMPR mechanism. In our heuristic algorithm with network
coding, much similar to the WMPR method, we run the WRH or
WR algorithms to compute the optimal value of xi, ∀i : 1 ≤ i ≤ m.
Then, as it is shown in Fig. 7, we code all of the ith symbols of the
k packets together. We denote the ith coded symbols, as Si. The
coded symbols are in the form of Si =

k
j=1 αj × sj,i, where αj,i

is a random coefficient. In this scheme, the source node generates
and sends xi × k coded symbols from the ith original symbols.
This is in contrast with the WMPR approach, in which the source
node transmits the ith symbol of each packet xi times (xi × k
transmissions for k packets). We refer to our proposed weighted
multiple packets retransmission method with network coding as
WMPR–NC method.

In the discussed inter-packet network coding policy, each
destination node is able to decode the ith coded symbols and
retrieve the k original ith symbols of different packets, if it receives
at least k linearly independent coded symbols. The decoding phase
can be done using Gaussian elimination for solving a system of
linear equations. Consequently, the gain from the ith symbols of
the k packets can be calculated using the following equation:

uNC
i = wi × k ×

n
l=1

xi×k
j=k


k × xi

j


× (1 − pl)j × pxi×k−j

l


. (5)

In Eq. (5), wemultiplywi by k since, when we code the ith sym-
bols of the k packets together, any destination node can decode all
of the symbols, or none of them. The total number of transmissions
for the set of ith symbols is equal to xi ×k; as a result, the probabil-
ity of receiving j coded symbols correctly, and happening error in
the rest of the coded symbols, is equal to


k×xi
j


×(1−p)j×pxi×k−j,

where


k×xi
j


is the number of possibleways to select j coded sym-

bols out of the transmitted coded symbols. A node needs at least k
coded symbols to decode the coded symbols; therefore, the num-
ber of received coded symbols should be in the range of k and xi×k.

Because of using network coding, each coded symbol con-
tributes the same amount of information to the destination nodes.
Therefore, receiving any k coded symbols is sufficient for retrieving
the symbols. This is in contrast to the case of non-coding transmis-
sions, in which a destination node might not receive some of the
symbols, and might receive the other symbols multiple times. In
a b

Fig. 8. Example of inter-packet network coding.

Fig. 9. Comparison between the gain of the inter-packet network coding and no
coding mechanisms, error probability p = 0.5, number of packets k = 10.

this case, receiving a symbol multiple times does not contribute to
the total gain. However, network coding decreases the probability
of receiving partial ith symbols of the packets. The reason is that, if
a destination node receives enough coded symbols, it can decode
the coded symbols and retrieve all of the original symbols; how-
ever, it cannot decode the coded symbols in the case of receiving
an insufficient number of coded symbols.

Consider the example in Fig. 8, in which the source node wants
to send two single symbol packets to the destination node d1.
Assume that the transmission error rate is equal to 0.5, and x1 =

2. The WMPR scheme sends each symbol twice. As a result, the
probability of the destination node receiving both of the packets
is equal to (1 − p2) × (1 − p2) = 0.5625, and the probability of
receiving just one of the packets is equal to 2 × (1 − p2) × p2 =

0.3750. On the other hand, theWMPR–NC scheme sends 4 random
linear combinations of the symbols. Therefore, the destination
node can decode and recover both of the symbols, if it receives at
least any 2 coded symbols out of the 4 transmitted coded symbols.
In this case, the probability of retrieving both of the symbols is
equal to 1 − p4 − 4 × p3 × (1 − p) = 0.6875, which is more than
theWMPRmechanism. The reason for this difference is that, in the
case of non-coded symbols, the destination node needs to receive
each of the transmitted symbols at least once, and receiving one of
the symbols twice does not have any advantage. However, in the
case of network coding, the probability of retrieving just one of the
symbols is equal to 0; as in random linear network coding, partial
retrieval is not possible.

Fig. 9 shows the gain of the network coding and no coding
approaches for a different number of transmissions t . The number
of packets and the link’s error rate are equal to 10 and 0.5,
respectively. It can be inferred from the figure that, in this case,
for a t greater than 2, it is more efficient to use the proposed inter-
packet network coding. In contrast, for a t less than or equal to 2,
we should avoid using network coding, since it reduces the gain.
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Algorithm 2WMPR–NC Algorithm
Compute the optimal x⃗ by running WRH or WR methods
for i=1 to m do

ui = wi × k ×
n

l=1(1 − pxil )

uNC
i = wi × k ×

n
l=1

xi×k
j=k

k×xi
j


× (1 − pl)j × pxi×k−j

l


if uNC

i > ui then
for i=1 to k × xi do

Create a random linear combination of the ith symbols

Algorithm 3 Optimal header duplication
Max gain = 0
for x0 = 1 to t − 1 do

depending on the setting, run the WRH, WR, and WMPR
algorithms to compute the optimal x⃗ in transmitting t − x0
symbols
use Equation (6) to compute u
if u > Max gain then

Max gain = u
else

return xo and x⃗
exit loop

Referring to our discussion, for each set of symbols from the dif-
ferent packets, it might be beneficial to use network coding, or it
might be more efficient to avoid using network coding. Therefore,
for each set of the ith symbols of the packets, we compute the util-
ity of the non-coding and coding mechanisms. If the performance
of the coding policy is more than that of the non-coding, we gener-
ate k×xi random coded symbols, where xi is the optimal number of
transmissions when we use the non-coding mechanism. This pro-
cess is shown in Algorithm 2. It should be noted that, if it is more
efficient to transmit the ith symbols of the packets without using
network coding, we do not need to continue the algorithm for the
remaining symbols. The reason is that, always, xj ≤ xi, ∀i, j : j > i,
as wj ≤ wi. Therefore, if is not efficient to encode the ith symbols
together, it is definitely not efficient to encode the jth symbols.

6. Implementation

6.1. Packet header

After assigning the transmissions to the symbols, we should put
them together to form the packets. In the WRH, WR, and WMPR
mechanisms, we need to specify the index of each symbol in the
packet. If we had just one transmission for each symbol, we could
simply mention the first and the last index of the symbols that are
included in the packet. Thenwe could put the symbols in the packet
in increasing order of their index. However, in our schemes, each
symbol might be included in a packet several times. As a result, we
need3 fields in the header to indicate the locations of symbol si. The
first field represents the index of the symbol. The second and the
third fields are used to show the starting and the ending locations
of symbol si in the packet, respectively. Fig. 10(a) shows the
structure of the header in the WRH, WR, and WMPR mechanisms.

The header contains important information about the location
of the symbols in the packet. As a result, the header must be re-
ceived correctly by the destination nodes. To increase the reliabil-
ity, forward error correction (FEC) codes [4,16,26] can be used. In
addition to FEC codes, we can include the header multiple times in
the packet, as this part of the packet is much more important than
the other parts. If we consider the correct delivery of the header,
a b

Fig. 10. Packets’ header, (a): the WRH, WR, and WMPR mechanisms, (b): the
WMPR–NC mechanism.

the Objective Function (1) can be rewritten as follows:

u = k ×

m
i=1

n
l=1

wi × (1 − pxol ) × (1 − plxi) (6)

s.t.
m
i=0

xi = t

where x0 is the header duplication.
Consider Fig. 11(a) and (b). We assign different values to x0

and run the WRH algorithm to find the optimal distribution of
the remaining transmissions to the symbols. Fig. 11(a) and (b)
show the maximum achievable gain when the total number of
transmissions is equal to 10, and the error rates are equal to 0.2
and 0.5, respectively. These figures show that, as we increase the
duplication of the header, the total gain increases. The reason is
that, a correctly received symbol is not useful unless the header
is also received correctly. However, after a specific point, the total
gain starts to decrease. To find the optimal header duplication x0,
we start with x0 = 1, and run theWRH,WR, andWMPR algorithms
to compute the optimal xi in transmitting t−1 symbols.We repeat
the same process for x0 = 2 and t − 2, and stop once we find that
the utility decreases as we increment x0. The details are shown in
Algorithm 3.

In theWMPR–NCmechanism, the ith symbol might be encoded
or non-coded. Therefore, we need a flag field to indicate the en-
coded symbols. The packets’ header in the WMPR–NC method is
shown in Fig. 10(b). In addition to the source and destination IP ad-
dresses, we use index and coding flag to show the encoded symbols.
The coefficients of the coded symbols are also included at the end
of the header, which increases the overhead. In order to decrease
this overhead,we can put somepredefined randomcoefficient vec-
tors on the destination and the source nodes. In this way, instead
of including the coefficient in the header, the source can just put
the index of the coefficient vectors in the header. In order to make
the coefficient vectors useful for any packet batch size, the size of
the predefined vectors should be chosen long enough. If the size of
a given batch is less than the vector size, the extra elements of the
vector can be ignored by the destination nodes.

6.2. Packet header overhead

It is clear that the header overhead of network coded packets
is more than that of the uncoded packets. As a result, depending
on the header costs, network coding might be efficient or
inefficient. In order to consider the packet’s header cost, wemodify
Algorithm 2 to Algorithm 4, and refer it as the WMPR-header
algorithm.Wedenote the total gain in the case that network coding
is enabled as uNC . Moreover, the total gain without network coding
(uncoded packets) is represented as uUC . We first compute the
utilities in the cases that network coding is enabled or disabled
(raw utilities). Each iteration of the loop computes the utility of
each symbol. In each iteration of the for loop, we add max(uNC

i , ui)

to uNC , since the ith symbols in the network coding mode can be
coded or uncoded (see Algorithm 2).
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Fig. 11. Optimal header duplication, total number of transmissions equal to 10; (a): p = 0.2. (b): p = 0.5.
Algorithm 4WMPR-header
uNC

= 0
uUC

= 0
Compute the optimal x⃗ by running WRH or WR methods
for i=1 to m do

ui = wi × k ×
n

l=1(1 − pxil )

uNC
i = wi × k ×

n
l=1

xi×k
j=k

k×xi
j


× (1 − pl)j × pxi×k−j

l


uNC

= uNC
+ max(uNC

i , ui)

uUC
= uUC

+ ui
uNC

= uNC
− cNC × (

m
i=1 wi) × k ×

t
m × n

uUC
= uUC

− cUC × (
m

i=1 wi) × k ×
t
m × n

if uNC
≤ uUC then

Turn off network coding

After computing the raw utilities, we subtract the header
costs from the raw utilities. Assume that the header cost of a
linear coded packet and an uncoded packet are equal to cNC and
cUC , respectively. The value of each packet is equal to

m
i=1 wi.

Moreover, we have k packets and each of themwill be transmitted
t
m times (note that t is the total number of symbol transmissions for
each packet). Consequently, the total overhead of network coded
packets is equal to cNC × (

m
i=1 wi)×k×

t
m . We are computing the

total utility of n nodes; thus, we multiply the overhead by n and
subtract it from the raw utilities. If uNC

≤ uUC , we disable network
coding, as it reduces the gain. Algorithm 4 shows the details.

6.3. Unknown channel

So far, we have assumed that the channel erasure probabilities
are perfectly known by the source node. The total gain is highly
dependent on the error rate of the links; therefore, the source
node needs to learn them, when it does not have perfect channel
knowledge. For this purpose, each destination node di sends a
feedback message to the destination node at the end of the t × k
transmissions by the destination node (t transmissions for the
case of single packet), which contains the number of successfully
received symbols. Assume that the number of correctly received
symbols in the last transmissionwindow τ , and the estimated error
rate of the destination node di after the τ th set of transmissions,
are equal to ri,τ and p̂i,τ , respectively. Accordingly, the estimated
channel error rate of the destination node di is given by:

p̂i,τ+1 =
(τ − 1) × p̂i,τ + pi,τ

τ
(7)
Algorithm 5 Updating channels’ error rate
After the τ -th set of transmissions update the error rates pi,τ+1,
as follows,
for i=1 to n do

Receive ri,τ from destination di
pi,τ =

t×k−ri,τ
t×k

p̂i,τ+1 =
(τ−1)×p̂i,τ +pi,τ

τ

where pi,τ represents the error rate of the link between the source
and node di in the τ th set of transmissions, and can be calculated
as follows:

pi,τ =
t × k − ri,τ

t × k
.

In Eq. (7), we multiply τ − 1 by p̂i,τ to compute the total error
rate in the τ − 1 set of transmissions. Then, we sum it up with the
measured error rate in the last set of transmissions, and compute
the average error rate. Algorithm 5 shows the updating process of
the error rates.

7. Simulation

7.1. Setting

In this section, we evaluate our proposed mechanisms WRH
(weighted retransmission with homogeneous destinations), WR
(weighted retransmission with heterogeneous destinations),
WMPR (weighted multiple packets retransmission), and WMPR–
NC (weighted multiple packets retransmission with network
coding). We compare our proposed mechanisms with a simple
retransmission (SR) method. In this method, we distribute the
transmissions evenly to the different symbols of the packets. As
mentioned in the setting, the packets of a batch have a deadline to
be received by the destination nodes, which is equal to thewindow
size, and after this time another batch of packets will be ready for
transmission. Thus, channel coding and hierarchical coding meth-
ods cannot be applied in our setting. That is the reason we do not
include them in our simulations. Moreover, the objective of the
mentioned papers in the related work is to provide 100% reliabil-
ity, and they do not have any constraint on the number of trans-
missions. In contrast, we want to maximize the gain with a fixed
number of transmissions. We run the simulations on 1000 random
topologies, with different links’ error rates, and for each of the ran-
dom topologies, we run the simulations 10 times. The plots in this
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Fig. 12. Comparison between the gain of the WRH and SR mechanisms in the case of single packet transmission,m = 10, k = 1, n = 5; (a) p = 0.3, (b) p = 0.5.
paper are based on the average outputs of the simulation runs. We
assume that the weight of the ith symbol of a packet is equal to
2m−i. The tunable metrics in the simulations are as follows:

• Total number of transmissions: in order to study the effect of
the number of transmissions on the total gain, we evaluate the
methods with a number of transmissions in the range ofm and
4 × m for each packet.

• Packet size: the number of symbols in each packet in different
plots are in the range of 5–10.

• Number of packets: in the case of multiple packets transmis-
sion, we change the number of packets that the source node
transmits to the destination nodes from 20 to 50.

We choose these ranges since we believe that they are reasonable
numbers in a typical scenario.

7.2. Results

7.2.1. Single packet
In the first experiment, we compare the total gain of the WRH

and the SRmethods in Fig. 12(a). The packet size in this experiment
is equal to 10 symbols. Also, the number of destination nodes
and the link error probability are equal to 5 and 0.3, respectively.
It is clear that the total gain should increase as we increase the
total number of transmissions, which can be seen in the figure.
Moreover, the figure shows that the difference between the WRH
and the SR methods decreases as we increase the total number
of transmissions from 10 to 40 symbols. The reason is that the
successful delivery of all of the symbols approaches 1 in both of
the mechanisms as we increase the number of retransmissions.
Fig. 12(a) shows that the total gain of the WRH mechanism is up
to 30% more than that of the SR method.

We increase the link’s error rate to 0.5, and repeat the previous
experiment in Fig. 12(b). Similar to Fig. 12(a), the difference
between the two mechanisms decreases as we increase the
number of retransmissions in Fig. 12(b). However, by comparing
Fig. 12(a) and (b), we find that the efficiency of our proposed
mechanism, WRH, increases as the link’s error rate increases. The
total gain of theWRHapproach in this figure is up to 60%more than
that of the SR method.

In the next experiment, we evaluate the gain of the WR
mechanism in sending a packet to multiple destinations, by
comparing it to the SR method in Fig. 13(a). We set the packet size
to 10 symbols, and transmit a total of 10 symbols. In each of the
1000 runs, the links’ error rates are randomly chosen in the range of
[0.2, 0.4]. The figure shows that the gain of both of themechanisms
increase as we increase the number of destinations; this is due
to the presence of more receiver nodes. Also, it is clear from the
figure that the relationship of the total gain and the number of
destinations is linear, which is because of the independence of the
links. As a result, the ratio of the gain of the mechanisms is fixed in
this figure.

We repeat the previous experiment in Fig. 13(b) by increasing
the range of the links’ error rates to [0.2, 0.6]. As it is expected, the
gains of themechanisms in Fig. 13(b) are less than that of Fig. 13(a).
The efficiency of the WR mechanism increases as the error rates
increase.

7.2.2. Multiple packets
Fig. 14(a) shows the total gain of theWMPR,WMPR–NC, and SR

mechanisms. In this figure, the packet size is equal to 5 symbols.
Also, the number of destination nodes is equal to 5, and the error
rate of the links between the source and the destination node is
equal to 0.4. We increase the total number of transmissions as we
increase the number of packets, and it is equal to the total number
of symbols (total number of symbols is equal to 5 times the number
of packets). As it is expected, the gain of theWMPR–NCmechanism
is more than that of the other methods. Moreover, the gain of the
WMPR mechanism is more than that of the SR method. Fig. 14(a)
shows that the gain of theWMPR–NCmechanism is up to 15%, and
45% more than that of the WMPR and SR methods, respectively.
Also, the efficiency of the network coding increases as we increase
the number of packets, which are coded together.

We evaluate the effect of the link’s error rate on the gain in
Fig. 14(b). The packet size and the number of packets are equal
to 5 symbols and 50, respectively. Also, for the total 250 symbols
that the source node needs to transmit, we set the total number
of transmissions to 250. The figure shows that the total gain of the
WMPR and SR mechanisms drop dramatically as we increase the
error rate. In contrast with the other methods, WMPR–NC is more
robust to the error rate, which is due to the use of network coding.

We repeat the experiment of Fig. 14(a) in Fig. 15(a) with 5
destination nodes. The packet size is equal to 5 symbols, and
the links’ error rates are in the range of [0.3, 0.5]. Much similar
to Fig. 14(a), the gain of all of the mechanisms increase as we
increase the number of packets. Note that we increase the total
number of transmissions as we increase the number of packets. By
comparing Fig. 14(a) with Fig. 15(a), we find that the difference
between the WMPR and WMPR–NC decreases in the case of
multiple destinations, which is because of the diversity of the links.
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Fig. 13. Comparison between the gain of the WR and SR mechanisms in the case of single packet transmission,m = 10, k = 1, t = 10; (a) p ∈ [0.2, 0.4], (b) p ∈ [0.2, 0.6].
a b

Fig. 14. Comparison between the gain of WMPR, WMPR–NC, and SR mechanisms,m = 5, n = 5; (a) p = 0.4, t = 5 (b) k = 50.
Consequently, the efficiency of WMPR–NC increases in the case
that the error rates of the links are close to each other.

We compare the performance of the WMPR–NC mechanism to
the WMPR in Fig. 15(b). For this purpose, we divide the gain of
the WMPR–NC mechanism by that of the WMPR mechanism, and
plot its CDF. In this experiment, the packet size and the number of
packets are equal to 5 symbols and 50, respectively. Also, the error
rate of the links between the source and the 5 destination nodes
are in the range of [0.3, 0.5]. This figure shows that, in less than
5% of the cases, the number of delivered symbols in theWMPR–NC
mechanism is less than that of the WMPR method. Moreover, in
more than 50% of the cases, the number of delivered symbols of
the WMPR–NC protocol is more than 10% higher than that of the
WMPR mechanism.

Fig. 16(a) shows the gain of theWMPR,WMPR–NC, andWMPR-
header. We set the header cost of the coded and uncoded packets
to 0.07 and 0.05, respectively. The number of packets and symbols
in each packet are equal to 20 and 5. Moreover, the size of the
transmission time window for each packet is set to 5. Fig. 16(a)
shows that, for more reliable links, performing network coding
might not be efficient, as the gain of WMPR–NC is less than that
of the WMPR method. The reason is that, for these cases, the
advantage of performing network coding over uncoding is less
than the increase in the overhead. The WMPR-header considers
the header overhead of the packets; as a result, it disables network
coding when it finds that coding is not efficient. As we increase the
error rate of the links, the difference between the utility of network
coding and uncoding increases. Therefore, the utility ofWMPR–NC
becomes more than that of the WMPR method, and the WMPR-
header method automatically switches to coding.

We increase the header cost of the coded packet cNC to 0.09, and
repeat the previous experiment. Fig. 16(b) shows the simulation
result. Increasing cNC reduces the utility of network coding; thus,
the WMPR-header method turns on coding in the case of less
reliable links. Note that in this simulation the number of packets
is fixed, and an alternative way to make network coding more
efficient is increasing the number of packets k, as shown in
Fig. 15(a).

8. Conclusion

There is much work on reliable transmissions over error-prone
wireless channels. In contrast to the previous work on reliable
transmission, we consider a novel problem in this paper. We study
the problem of maximizing the total gain in the case of partial data
delivery in error-prone wireless networks. In our setting, each set
of bits, called symbols, has a different weight. We first address the
case of single packet transmission to a homogeneous destination
nodes, and we show that the optimal solution of this problem
has a round-robin pattern. Then, we extend our solution to the
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Fig. 15. Comparison between the gain of WMPR, WMPR–NC, and SR mechanisms, m = 5, n = 5, p ∈ [0.3, 0.5]; (a) total gain, t = 5 (b) performance of the WMPR–NC
mechanism over the WMPR method.
a b

Fig. 16. Comparison between the gain of WMPR, WMPR–NC, and WMPR-header mechanisms, m = 5, n = 5, k = 20, t = 5; (a) cNC = 0.07, cUC = 0.05 (b) cNC = 0.09,
cUC = 0.05.
case of heterogeneous destinations. We also provide a solution for
the case of sending multiple packets to multiple destinations, and
we enhance the expected gain (utility) using inter-packet random
linear network coding.

Our extensive results show that our proposed multiple pack-
ets transmission mechanism can increase the gain up to 60%, com-
pared to that of a simple retransmission mechanism. Moreover,
using random linear network coding can enhance the gain.
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Appendix A. Optimality of WRHmethod

Here, we prove the optimality of the WRH mechanism, and we
show that the optimal solution has a round-robin pattern. The util-
ity function in the case of transmitting one packet to homogeneous
destinations is as follows:

u =

m
i=1

n × wi × (1 − pxi)

s.t.
m
i=1

xi = t.
For the packet size equal to 2 symbols (m = 2) we have:

u = n ×

w1 × (1 − px1) + w2(1 − px2)


s.t. x1 + x2 = t.

A.1. Proof of optimality for the case m = 2

Lemma 1. If px1 <
w1
w2

px2 , then px1 >
w1
w2

px2+1.

Proof. We use contradiction to proof Lemma 1. We refer to the
optimal solution at the current iteration as (x1, x2). Assume that
the current state is (x1, x2) and px1 <

w1
w2

px2+1. As a result, px1−1 <
w1
w2

px2 , and we have:

w1px1−1 < w2px2 .

Bymultiplying the two sides of this inequality with n× (1− p) we
will have:

n × w1 × (1 − p)px1−1 < n × w2 × (1 − p)px2

⇒ ∆x1−1 < ∆x2 .

As a result, it should be more efficient to increase x2 in the
previous iteration. Therefore, in the current iteration we will have
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(x1 −1, x2 +1), which contradicts the assumption that the current
state is (x1, x2). Consequently, we have px1 >

w1
w2

px2+1. �

Lemma 2. If px1 >
w1
w2

px2 , then px1+1 <
w1
w2

px2 .

Proof. We use contradiction to proof Lemma 1. Assume that the
current state is (x1, x2) and px1+1 >

w1
w2

px2 . As a result, px1 >
w1
w2

px2−1, so we have:

w1px1 > w2px2−1.

By multiplying the two sides of this inequality with 1 − p we
will have:

n × w1 × (1 − p)px1 > n × w2 × (1 − p)px2−1

⇒ ∆x1 > ∆x2−1.

Therefore, it should be more efficient to increment x2 in the
previous state. Thus, in the current state, wewill have (x1 +1, x2 −

1), in which x2 ≥ 1 (x2 − 1 cannot be negative) contradicts the
assumption that the current state is (x1, x2). Consequently, px1+1 <
w1
w2

px2 . �

Proposition 1. Assigning the transmissions to x1 for x1 ≤ logp
w2
w1

and then incrementing x1 and x2 in a round-robin pattern will result
in the optimal solution.

Proof. Based on Eq. (3), if px1 <
w2
w1

then ∆x1 < ∆x2 , so x2 should
be zero. In addition, based on Lemma 1 after this point, every time
we increment x2, ∆x2+1 becomes less than ∆x1 . Therefore, in this
case, assigning the next transmission to x1 results in a larger gain.
Lemma 2 is the reverse of Lemma 1, which results in a round-robin
incrementing pattern. �

A.2. Proof of optimality for the case general m

Lemma 3. If pxi >
wj
wi
pxj∀i, j ∈ [1,m], j ≠ i, then pxi+1 <

wj
wi
pxj .

Proof. Assume that the current state is (x1, x2, . . . , xm), and there
is a j such that pxi+1 >

wj
wi
pxj . Then, pxi >

wj
wi
pxj−1 in one of the

previous states. As a result, ∆xi > ∆xj−1, so we should see a state
with xi+1 and xj−1. In this case, there is noway to see the current
state, which contains xi and xj. �

Proposition 2. The WRH algorithm results in an optimal solution.

Proof. It can be inferred from Lemma 3 that the optimal assign-
ment has a round-robin pattern. The reason is that, when we in-
crement xi, pxi becomes less than wj

wi
pxj , ∀j : j ≠ i. The next time pxi

becomes greater than wj
wi
pxj is when we increment all xj, j ≠ i. �

Appendix B. Optimality of the WRmethod

Lemma 4. The optimal xi, ∀1 ≤ i ≤ m are non-decreasing as we
increase the number of transmissions t.

Proof. The utility of a symbol si is equal to:

n
l=1

wi × (1 − pxil ) (B.1)

which is a non-decreasing function. Therefore, assigning more
transmissions to a symbol results in more utility. Moreover, the
utility of each symbol is a summation of concave functions;
therefore that is a concave function. It means that the ∆xi , ∀1 ≤

i ≤ m is a decreasing function. Assume that for a given t ′, the
optimal number of transmissions for symbols sj and sk are equal
to xj and xk, respectively. Moreover, for a t > t ′ transmissions, the
optimal number of transmission for sj and sk are xj − y and xk + y,
respectively,where y is a given positive number. It contradictswith
the optimality of xj and xk transmissions in the case of t ′ total
transmissions. The reason is that if xj − y and xk + y results in
more gain, then xj and xk cannot result in optimal solution for the
case of t ′ transmissions. Note that this holds since the utility of
each symbol (Eq. (B.1)) is a concave and non-decreasing function.
Consequently, xi are non-decreasing. �

The following corollary can be concluded from Lemma 4.

Corollary 1. The optimal solution for t transmissions can be
calculated from the optimal solution for t ′ < t transmissions.

Proposition 3. The WR algorithm results in an optimal solution.

Proof. We proof the optimality of the WR algorithm by induction.
Let t = 1. It is obvious that the transmission should be assigned to
the symbol si with the maximum ∆xi . Now, assume that for t − 1
transmissions the optimal solution is (x1, . . . , xm). By Lemma 4,
each xi is non-decreasing. Therefore, from Corollary 1, in order to
find the optimal solution for t transmissions, we just need to find
the symbol si with the maximum ∆xi and increase x1 by one. That
is exactly the same as what the WR algorithm performs. �
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