
Efficient Online Collaborative Caching in Cellular
Networks with Multiple Base Stations

Pouya Ostovari∗, Jie Wu∗, and Abdallah Khreishah†
∗Department of Computer & Information Sciences, Temple University, Philadelphia, PA 19122

†Department of Electrical & Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102

Abstract—These days we are witnessing a tremendous increase
in the popularity of wireless devices, e.g. smartphones and tablets.
These devices are typically connected to the Internet through
cellular connections, such as LTE/4G. Because of the popularity
of the wireless devices, a large portion of the traffic on the
Internet goes through the cellular base stations. Caching the
contents at the base stations brings the contents closer to the
users, reduces the traffic on the Internet, and reduces the cost of
providing the contents. In this paper, we study the problem of
collaborative caching in cellular networks among a set of base
stations. Motivated by the emergence of cloudlets, we consider
unlimited cache space in our model, and our objective is to
minimize the aggregated caching and download cost. We show
that in the case of knowing the popularity of the contents, this
optimization has a submodular property, and a greedy algorithm
can achieve an approximation ratio of 2 for this optimization.
We also provide an online algorithm that does not require any
knowledge about the future requests and the content popularity.
In order to evaluate our online algorithm, we compare its
performance against the optimal solution through simulations.

Index Terms—Collaborative caching, cellular network, wireless
networks, approximation, online algorithm.

I. INTRODUCTION

Recently, we have witnessed a rapid increase in the popu-
larity of mobile devices, e.g. smartphones and tablet devices.
These devices can be easily connected to the Internet using
WiFi or cellular connections. The wireless connections and the
portability of these devices provide the Internet access from
everywhere. These devices are used for a variety of purposes,
including but not limited to surfing the Internet, watching
videos, video and voice chats, and accessing social networks.

Recent studies indicate that multimedia streaming is the
dominant form of the traffic on the Internet. For instance,
YouTube and Netflix produce 20-30% of the traffic on the
Internet [1], [2]. Also, it is shown in [3] that video on demand
services use 54% of the total Internet traffic. This percentage
is predicted to grow to about 71% by 2019. As a result of
the popularity of wireless mobile devices, a large portion
of this traffic goes through the wireless connections of the
mobile devices, typically cellular connections such as LTE/4G
connections. To address this increase in the demand, the design
of the cellular networks needs to be modified, and new traffic
engineering methods need to be developed.

One solution to address the increasing data traffic on the
Internet is to provide caching capability at the base station of
the cellular networks. The dramatic decrease in the storage cost
suggests that the future base stations will have the capability to

store data [4]. Utilizing the storage of the base stations brings
the content closer to the users, and as a result, reduces the data
traffic on the backhaul links of the cellular networks and the
Internet. In addition to that, caching can reduce the delay of
providing the requested data to the wireless users. Providing
the locally cached data to the users is much faster and cheaper
than downloading from the Internet.

Caching is not a new topic, and the caching problem in gen-
eral has extensively been studied by the community. However,
the works related to cellular networks and base station caching
are limited. In [5], [6], the authors propose using wireless
helpers to cache the popular contents in order to reduce the
content delivery delay. Each helper is assumed to have a
limited storage and coverage area. The authors show that
the problem is NP-complete, and propose an approximation
algorithm for the content placement. The authors in [7] study
the problem of content popularity estimation and minimize the
content retrieval delay. For this purpose they use caching at
the base stations, and they map the minimization problem to a
knapsack problem. Hierarchical caching is studied in [8]–[10].

The mentioned works do not address the challenges in
collaborative caching. Recently, in [11] collaborative caching
has been studied, assuming that the contents’ popularity is
known. The authors propose an offline heuristic to minimize
the content delivery delay. In [4], the authors use collaborative
caching and propose an offline algorithm to minimize the
operation cost of the base stations in the case of limited
cache size. In [12], the authors study collaborative caching for
minimizing inter-ISP (Internet service provider) traffic, intra-
ISP traffic, and content delivery delay.

It is typical in caching problems to consider limited caches.
However, because of the advances in the storage technology,
the amount of available storage is growing rapidly. Moreover,
the current trend in cloudlets services [13], [14], which are
small clouds installed in the base stations or routers of the
network, bring a high storage capacity for caching contents.
As a result, it can be assumed that the available cache size is
becoming unlimited. Although, similar to all cloud services,
there is a cost associated with caching contents at cloudlets.

In this paper, we consider collaborative caching at the
base stations from an economic perspective. In contrast with
the previous works [4]–[7] which consider limited caches,
we study the problem of collaborative caching in a cellular
network with multiple base stations in the case of unlimited
caches. In our model, we consider two types of costs. The

first type of cost is the caching cost, which is paid to the
cellular network providers or cloudlet service provider. The
second type of cost is the cost corresponding to the traffic
on the backhaul links of the cellular network. Our objective
is to minimize the aggregated caching and download cost of
the cellular network. For this purpose, the base stations can
collaborate with each other to cache the popular contents and
provide them to the users.

We show that our optimization problem is NP-complete, and
it has submodular property. Therefore, a greedy algorithm can
achieve approximation ratio equal to 2. Moreover, we propose
an online algorithm which does not need any knowledge
about the popularity of the contents and the future requests.
In order to evaluate our online algorithm, we compare its
total cost against the optimal solution. In order to find the
optimal solution, we assume that the future requests at each
base station are known, and we formulate the problem as a
mixed integer and linear programming. In order to reduce
the complexity of finding the optimal solution, we assume
that network coding is applied on the original contents. This
assumption relaxes the mixed integer and linear programming
to a linear programming optimization. Our contributions in
this paper can be summarized as follows:

• We formulate the problem of cache content placement as
an integer programming optimization. We show that this
optimization problem is NP-complete, and its objective
function is submodular. We propose an offline approxima-
tion algorithm for the content placement problem, which
can achieve approximation ratio equal to 2.

• Assuming that the future users’ requests and the pop-
ularity of the contents are unknown by the system, we
propose an online algorithm to provide a collaborative
caching, which does not need a prior knowledge about
the popularity of the contents.

• We evaluate our online algorithm by comparing it against
the optimal solution. In order to find the optimal solution,
we assume that the future request are known, and we
formulate the problem as a linear programming optimiza-
tion. For this purpose, we use the benefit of random linear
network coding to encode the contents.

The rest of the paper is organized as follows. In Section II,
we review the related work on caching, and we present a
background on random linear network coding. We discuss the
system setting in Section III. In Section IV, we formulate
the problem and propose an offline algorithm. Our online
method is presented in Section V. In Section VI, we propose
the optimizations to find the optimal solutions. These optimal
solutions are used to evaluate the performance of our online
algorithm. We present our simulation results in Section VII.
Section VIII concludes the paper.

II. RELATED WORK AND BACKGROUND

A. Collaborative Caching

The general caching problem has extensively been studied
by the research community [15]–[18], but only few works

studied caching in cellar networks and base station. The
authors in [5], [6] proposed a method called Femtocaching.
The idea of the paper is to use some wireless caches, called
helper nodes, to cache the popular contents in order to reduce
the delay that the users experience. In Femtocaching, each
helper has a limited storage capacity. Each wireless user might
be covered with multiple helpers, and the network can be
represented as a bipartite graph. The authors prove that the
problem of minimizing delay is NP-complete. They show that
the optimization problem has a submodular property, and they
propose an approximation algorithm for the content placement
problem. They later extend their work to the case of different
path delays in [6]. Our work is different from these works
in a sense that, we consider unlimited caches in our model.
Moreover, we assume that caching incurs a cost, which makes
it not beneficial to store some contents.

In [7], the problem of content popularity estimation and
minimizing the content retrieval delay has been studied. The
authors study hierarchical caching in [8]. Also, an information-
theoretic view at hierarchical caching has been done in [9],
[10]. In [11], the authors assume that the popularity of the
contents are known, and they propose an offline collaborative
algorithm to minimize the delivery delay.

In [19], the authors consider unlimited cache space at the
base stations. They assume that the content popularity and the
future requests are not known by the system. In their model,
caching and downloading have costs. It is assumed that the
download cost from the direct base station is less than the other
base stations. Moreover, downloading from any base station
results in a smaller cost than downloading from the Internet. In
order to minimize the total cost, the authors propose an online
algorithm. However, in contrast with our work, the authors
assume that the caching cost does not depend on the duration
of the time that the content is cached. As a result, once a
content has been cached, it will be stored forever.

B. Network Coding

Network coding is a method used to combine and encode
the raw data in new form. The authors in [20] propose network
coding to solve the bottleneck problem in a multicast problem.
It was shown in [21] that linear network coding achieves the
capacity of a single multicast problem. The authors in [22]
propose a simple method to select the coefficients of the coded
packets. They suggest selecting the coefficients randomly, and
show that if we select the coefficients of the linearly coded
packets randomly, with a very high probability the generated
coded packets will be linearly independent.

The idea in random linear network coding [22] is to generate
random coefficients for the coded packets, and use these
coefficients to mix the original packets. In random linear
network coding, all of the operations are performed over a
finite field (also know as a Galois field). Each coded packet
in random linear network coding has the form of

∑
j ϵj ×Pj ,

where the original packets are represented as Pj . In addition,
ϵj represent a random coefficient from a finite field.

Gateway

Fig. 1. The system model.

In addition to provide reliability and throughput enhance-
ment, network coding can convert some non-tractable prob-
lems to new problems that can be solved in a polynomial
time. For example, many optimization problems such as
content caching are hard to track [15], [16]. However, using
random linear network coding, the optimal solution of these
problems can be found efficiently. The intuition is that, many
optimization problems have integer variables, which makes
them integer or mixed integer and linear programming op-
timizations. However, when network coding is applied, the
problem becomes similar to a flow optimization problem,
and becomes linear programming. In this work, we do not
use network coding in our online algorithm because of its
decoding overhead for the mobile users. However, in order to
find the optimal offline solution for comparison purpose, we
use network coding.

III. SYSTEM SETTING

In this work, we consider a set of base stations, which form a
cellular network. Each cellular base station covers the users in
its coverage area, and is equipped which a local cache storage.
In the rest of the paper, we use the terms cache and base station
interchangeably. The base stations are connected to each other
through backhaul links. Moreover, backhaul links connect the
base stations to the Internet through a gateway. When a request
comes to a base station, the base station first checks its local
cache to find the content. If the content exists in its local
cache, that will be send to the user directly. Otherwise, the
other base stations can send the content through the backhull
links. In the case that the other base stations do not have the
content, that will be provided from the Internet. The system
model is shown in Figure 1.

We represent the set of base stations as N =
{1, 2, .., i, .., n}. We use notation b to show the index of
the Internet. We assume that there are m contents in the
Internet, denoted as M = {1, 2, .., j, ..,m} with sizes V =
{v1, v2, .., vj , .., vm}. We consider two models in this paper.
In the first model, the storage size of each cache is unlimited.
However, there is a cost to store the contents on the caches,

TABLE I
THE SET OF SYMBOLS USED IN THIS PAPER.

Notation Definition
N/M The set of BS/contents
n/m The number of BS/contents
vk The size of the k-th content
Wk The set of BS that cached content k
γk The popularity of content k
gi The cost associated with caching at the i-th BS
dij Cost of downloading from BS j to BS i
si The capacity of the i-th cache (BS)
ujk Potential function of the j-th BS for content k
D/C Total download/caching cost
Y Content placement set
b The index of the Internet
α Rate of the reduction in the potential functions
β Cost threshold to remove a content from a cache

which makes unpopular contents unsuitable for caching. The
unit cost to store a content on base station i is represented as
gi. In our second model, the storage size of the caches are
limited, and we also have a caching cost. We denote the size
of the cache j as sj . The popularity of content k is represented
as γk. We denote the unit cost associated with downloading
a content from base station j to base station i as dij . Also,
dib denotes the unit cost of downloading content from the
Internet to the i-th base station. In general, the downloading
cost from a base station is less than that from the Internet.
Also, downloading cost from the cache of the base station
that covers a user is less than downloading from the other
base stations, i.e. dii < dij , ∀j ̸= i.

Our objective is to provide a collaborative caching among
multiple base stations, such that the aggregated caching and
download cost is minimized. In the following sections, we first
propose an offline algorithm assuming that the popularity of
the contents are known a priori. We show that in this case,
the objective function is minimizing a submodular function,
which can be approximated using a greedy algorithm. We
later propose an online algorithm which does not require priori
knowledge about the popularity of the contents.

IV. OFFLINE ALGORITHM

In this section, we study offline content placement on the
caches, assuming that the popularity of the contents and the
number of requests at each base station is known. We first
formulate the problem as an optimization problem, and discuss
its NP-completeness. We then show that this optimization can
be modeled as a submodular function optimization.

A. Problem Formulation

We denote the number of requests at base station i for a
period of time t as ri, and the popularity of content k as
γk. Let (j)i denote the base station with the j-th smallest
downloading cost to base station i. Moreover, Di and Ci

denote the download and caching cost associated with base
station i, respectively. We use variable yjk = 1 to indicate the
existence of content k on cache j; otherwise, yjk = 0 . With

a similar idea in [6], we can calculate the downloading and
caching cost of base station i as follows:

Di =
m∑

k=1

n∑
j=1

di(j)ivkγkri

[j−1∏
h=1

(1− y(h)ik)

]
y(j)ik

+
m∑

k=1

dibvkγkri

[n∏
h=1

(1− y(h)i,k)

]
ybk (1)

Ci =
m∑

k=1

giyikvkt (2)

Here,
[∏j−1

h=1(1 − y(h)ik)
]
y(j)ik is the indicator function,

which means content k is in the cache of base station (j)i,
and it does not exist in any base station with a smaller
download cost. Moreover,

[∏n
h=1(1 − y(h)i,k)

]
ybk is the

indicator function for the case that content k does not exist on
any base station.

In the case that the popularity of the contents and the
number of received requests by each base station is known,
we can formulate our problem as follows:

min

n∑
i=1

[Di + Ci] (3)

s.t yik ∈ {0, 1} ∀ i, k

The objective function is minimizing the total cost, which is
the summation of the download and caching cost at different
base stations.

B. NP-completeness
It can be proved that the optimization problem is NP-

complete.
Theorem 1: The optimization in (3) is NP-complete.

Proof. In order to prove the theorem, the same idea as that
in [19] can be used. For this purpose, we can reduce the set
cover problem to an instance of our optimization problem. The
definition of the set cover problem is as follows. We have a
set of elements A = {a1, a2, ..., a|A|}, and a set of A’ subsets
represented as B = {b1, b2, ..., b|B|}. Each subset bj has a cost
ej . The objective in the set cover problem is to find a set of
subsets of B such that it covers all of the elements in A and
results in the minimum total cost.

The reduction from the set cover problem to (3) is as
follows. We set the number of contents in our problem to
one. Also, we map each element in the set cover problem to
a base station requesting a content. Each subset bj of the set
B is mapped to base station j. Element ai ∈ bj means that
base station i can download contents from base station j. We
set the caching cost of the base station j to gj = ej . Also, for
all of the base stations, we set γi = 1. The download cost dij
is set to zero if ai ∈ bj ; otherwise it is set to ej . It can be
seen that a solution to this instance of our problem is also a
solution to the set cover problem [19].

C. Submodular Function Optimization
In this section, we formulate the optimization problem in (3)

as the minimization of a submodular function. Modeling the

optimization as the minimization of a submodular function
enables us to use an approximation algorithm to solve the
problem, and find an approximation ratio for the solution. We
first define submodular functions.

Submodular functions: Let G be a finite ground set, and f
be a set function f : 2G → R. We say that f is a submodular
function if for all sets A,B ⊆ G we have:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (4)

Alternatively, f is a called submodular function if f(A+ l)−
f(A) ≥ f(B + l)− f(B) for l ∈ G and A ⊆ B. This second
definition is a useful representation, and it denotes the property
of decreasing marginal utility of submodular functions. This
property captures the concept of diminishing returns. As a set
becomes larger, the benefit of adding an element to the set
decreases. In the definition, set B is a superset of A. As a
result, the benefit of adding element l to B is less than that
of adding the element to A.

Theorem 2: The optimization in (3) is a submodular func-
tion.
Proof. Similar to the work in [5], [6], we show that the
marginal value of adding a new content to any cache j
decreases as the size of the placement set Y becomes larger.
By placement set Y , we mean the set of variables yjk with a
value equal to 1. We represent the marginal value of adding
a new element to placement Y as Z(Y), which is defined as
the decrease in the aggregated caching and download cost by
adding the new element.

We consider two placement sets Y and Y ′, where Y ⊂ Y ′.
Assume that we add element yjk to both of these placements,
which does not exist on these two placements. In other words,
content k is cached on base station j. For both of the placement
sets, the increase in the caching cost C is the same, since the
content k is placed on the same cache j. For the downloading
cost, two different cases might occur:

1) This placement does not decrease the download cost for
a request made on base station i. In this case, the request is
served from another base station or the Internet. As a result, the
marginal value Z(Y ′∪yjk)−Z(Y ′) equals zero. For placement
Y , if the new placement cannot decrease the cost, we will have
Z(Y ∪yjk)−Z(Y) = 0. Otherwise, Z(Y ∪yjk)−Z(Y) > 0.

2) The new content placement can reduce the downloading
cost of the placement Y ′. As a result, base station j will serve
the received request by base station i. Since Y ⊂ Y ′, the
downloading cost of content k in placement Y ′ cannot be
greater than Y . Consequently, the decrease in the downloading
cost of content k in placement Y cannot be less than that of
placement Y ′.

Corollary 1: A greedy algorithm can achieve an approx-
imation within a factor 2 of the optimum solution for the
optimization (3).

Since our optimization problem is minimizing a submodular
function, we can use a greedy algorithm to find an approxima-
tion for the optimization problem. The greedy algorithm works
as follows. At each iteration, we find yjk with the highest
marginal value to the placement set. This process is repeated

Algorithm 1 Online Collaborative Caching (Unlimited Cache)
1: //Initialization

Wk = {}, R = {}, ujk = 0,∀ j, k
2: //On upcoming request
3: for each content k requested on i-th BS do
4: R = R ∪ {k}
5: Call UP (Wk, k, i) to update the potentials
6: h = argmaxj∈N (ujk − gj) //BS with highest potential
7: if uhk − gh > 0 then
8: Cache content k at BS h
9: Wk = Wk ∪ {h}, bhk = 0

10: Call CP (W,k, i) to calculate the new potentials
11: Serve request for content k from BS h, where

h = argmaxj∈W e(j, k, i) //Optimal BS
12: l = argmaxj∈W/h e(j, k, i) //Second optimal BS
13: bhk = bhk + e(h, k, i)− e(l, k, i)

until there is no yjk with a marginal value greater than zero.
After this point, caching a new content on the base station in-
crease the aggregated download and caching cost. Prior results
on the approximation of submodular minimizations [23] show
that a greedy algorithm achieves an objective function value
within a factor 2 of the optimum.

V. ONLINE ALGORITHM

In the previous section, we discussed the offline collabora-
tive caching, in which the popularity of the contents is known.
However, this information might not be available in practice.
In this case, we can use an online algorithm, which determines
the caching based on incoming requests. For this purpose,
the first few requests will be served through the Internet, and
they do not result in the content caching. The history of the
requests show whether a content is popular or not. If a content
is popular, that will be cached on a base station. The online
algorithm needs to decide whether to serve a request through
the Internet, by caching the content at a base station, or by
retrieving the content from a base station that already cached
the content.

In the next subsections, we first propose an online algorithm
for the case of base stations with unlimited caches. We then
modify our algorithm for the case of base stations with limited
cache space.

A. Unlimited Cache

In our setting, the base stations do not have any predictions
regarding the future request and the popularity of the contents.
As a result, they can just rely on the incoming requests and
their history to make a decision on caching the contents. The
basic idea of our online algorithm is to define a potential
function for each base station and for each content. A potential
function denotes how much a base station (cache) can be
useful in reducing the download cost of a content at all
of the base stations. Every time a request for content k is
received by a base station, all of the base stations update
their potential functions for that particular content. Then, the

Algorithm 2 UP (Wk, k, i) (Unlimited and Limited Cache)
1: //Updating potentials on the arrival of a new content

request
2: for all j ∈ N do
3: ujk = ujk + [e(i,Wj , k)− e(i, j, k)]+

Algorithm 3 CP (Wk, k, i) (Unlimited Cache)
1: //Recalculating the potentials after the arrival of a new

content request
2: for all j ∈ N do
3: ujk =

∑
j∈R[e(i,Wj , k)− e(i, j, k)]+

base station with the smallest potential function for content
k minus caching cost will cache the content. If there are no
base stations with a potential greater that the caching cost,
the content will not be cached, and the content will be served
directly from the Internet.

Caching cost depends on the duration of the caching time,
and storing a data for a longer time will increase the cost. As
a result, content k that is not requested for a while should be
removed from the cache to reduce the caching cost. For this
purpose, each base station calculates the amount of help that
is provided to the other base stations for content k, which is
denoted as bjk. In the case that the total caching cost becomes
greater than or equal to a fraction of this benefit, content k
will be removed from cache j.

Before discussing the details of the online algorithm, we
need to define some notations:

• R: the set of requests that are received so far by the base
stations.

• Wk: the set of base stations that cached content k.
• ujk: the potential function of the j-th base station for

content k.
Moreover, for a cache j and a content k requested at the

i-th base station, we define e(i, j, k) = dij . In the same way,
for the set of caches Wk and a content k requested at the i-th
base station, e(i,Wk, k) = minj∈Wk

dij . In the case that Wk

is empty, dij becomes infinity.
Our online algorithm is shown in Algorithm 1. In the

initialization phase, the potentials of the base stations for all
of the contents are set to 0. When a request k comes to base
station i, Algorithm 2 is called to update the potentials of
the base stations that do not have content k in their cache.
In this Algorithm, [e(Wj , k, i)− e(j, k, i)]+ is the amount of
cost reduction that base station j can provide for base station
i. Then, the online algorithm finds the base station with the
highest uhk − gh. If uhk − gh > 0, the base station will cache
the content k. Otherwise, the content will not be cached on
any base station. Then, Algorithm 3 is called to recalculate
the potentials. Finally, the base station which results in the
minimum cost will provide the content k to base station i,
which can potentially be the base station i.

The idea behind using the potentials is to find how useful is
to cache a content at a base station. For this purpose, the first

Algorithm 4 Iterative Potentials Update and Cache Release
(Unlimited and Limited Cache)

1: //Iterative potentials update
2: for all j ∈ N do
3: for all k ∈ M do
4: if Base station j did not receive any request for

content j at the previous time slot then
5: ujk = ujk − ujk/α

6: //Iterative cost calculation and cache release
7: for all j ∈ N do
8: for all k ∈ M cached on BS j do
9: cjk = cjk + gjvk

10: if cjk > bjk/β then
11: Remove content k from BS j
12: bjk = 0, cjk = 0

few requests increase the potentials of the base stations, and
when the potential of a base station reaches its caching cost,
the content will be cached on the base stations. The question
is: what should we do if there is a large gap between the
requests for content k? In other words, how should we update
the potentials for unpopular contents? It is clear that for this
type of content, the caching cost might be greater than the
earned benefit from caching. As a result, we iteratively reduce
the potentials of the base stations for content k in the case
that a request does not come to the system for content k. The
details are shown in the first part of Algorithm 4.

The popularity of the content changes over a time. The
online algorithm might decide to cache content k on a base
station, but the popularity of the content might decrease after
a while. In this case, we are paying the caching cost without
getting enough benefit from the stored content. As a result, the
online algorithm needs to remove this content from the cache.
For this purpose, as shown in the second part of Algorithm 4,
we iteratively update the caching cost of the contents, and we
remove a content from a cache, when its caching cost reaches
a given portion of its benefit. We update the benefit of caching
content k on base station j, whenever base station j helps any
base station (including itself) in providing the content. The
details of the benefit update are shown in lines 13 and 14 of
Algorithm 1. The benefit of a caching at base station h is
computed as the cost of providing content k from base station
h with the minimum cost to base station i minus the cost of
retrieving the content from the base station l with the second
minimum cost. The logic behind this calculation is that, the
benefit of the base station h is equal to the reduction in the
cost when the data is provided from base station h.

B. Limited Cache

In this subsection, we extend our online algorithm to the
case in which the cache size of the base stations is limited.
We represent the size of cache j as sj . Similar to the previous
subsection, we assume that the base stations do not know
the popularity of the contents. Also, they do not have any

Algorithm 5 Online Collaborative Caching (Limited Cache)
1: //Lines 1-6 of Algorithm 1
2: if uhk − gh > 0 then
3: if remaining storage in cache j is at least vk then
4: Cache content k at BS h
5: Wk = Wk ∪ {h}, bhk = 0
6: Call CP (W,k, i) to calculate the new potentials
7: else
8: Find cache h and content l with maximum uhk−uhl

9: if remaining storage in cache h is at least vk then
10: Remove content l from cache h
11: Cache content k at BS h
12: // Lines 11-13 of Algorithm 1

prediction about the future requests of the users. Consequently,
the base stations can just rely on the coming requests and their
history to decide whether to cache a content or not. Similar
to the case of unlimited cache size, the idea of our online
algorithm is to use the potential function for each cache and
content. These potential functions show how much a cache can
provide benefit by reducing the download cost of a content at
all of the base stations. When a request for content k arrives at
a base station, the potential functions of the base stations are
updated for that request (content). If all of the base stations’
potential functions minus their caching costs are less than or
equal to zero, the data will not be cached. Otherwise, the base
station j with the largest potential function minus caching
cost is selected. In contrast with the previous subsection, the
selected cache might be full. In this case, we need to decide
to replace a cached content on base station j, or select another
base station to cache the new request.

Our proposed online algorithm with a limited cache size
is shown in Algorithm 5. The first part of the algorithm is
similar to lines 1 to 6 of Algorithm 1. Also, the last part is
similar to lines 11-13 of Algorithm 1. For brevity, we did not
repeat them in Algorithm 5. When a request for content k is
received by base station i, Algorithm 2 is called to update the
potentials of the base stations that did not cache the content k
before. Here, [e(Wj , k, i) − e(j, k, i)]+ is the amount of cost
reduction that base station j can provide for base station i.

After that, the online algorithm finds the base station with
the highest uhk − gh. If for all base stations uhk − gh ≤ 0,
the content will not be cached. Otherwise, if the cache of the
base station with the greatest uhk − gh is not full, the content
will be cached there. In the case that the cache is full, we
can replace the content with the lowest potential, or add the
content to another base station. For this purpose, in line 9, we
find the cache and content with maximum uhk −uhl. If cache
h does not have enough storage, content l will be removed.
Finally, Algorithm 3 is called to calculate the potentials, and
the base station which results in the minimum download cost
will provide the content k to base station i.

Similar to the case with unlimited caches, we iteratively
reduce the potential functions for content k in the case that
no request comes to the system for it. The details are shown

Algorithm 6 CP (Wk, k, i) (Limited Cache)
1: //Recalculating the potentials after the arrival of a new

content request
2: for all j ∈ N do
3: if j ∈ Wk then
4: ujk =

∑
j∈R[e(i,Wj , k)− e(i, j, k)]+

5: else ujk = ujk +
∑

j∈R[e(i,Wj , k)− e(i, j, k)]+

in Algorithm 4, which is the same for the case of unlimited
and limited caches. Algorithm 4 also handles the changes in
the popularity of the contents over time. In the case that the
popularity of a cached content decreases, the gained benefit
through reduction in the download cost might be less than the
caching cost. The received benefit through the reduction in
the downloading cost is calculated upon reception of a new
request. Algorithm 4 iteratively updates the caching cost of
the contents on different caches. Whenever the caching cost
of content k on cache j achieves 1/β of the benefit, the content
will be removed from cache k.

VI. OPTIMAL SOLUTION

In order to check the performance of our online algorithm,
we need to compare its total cost to that of the optimal cost.
Assuming that we know the exact time of all of the requests,
we can use mixed integer and linear programming to find the
optimal solution.

A. Unlimited Cache

We use variable rτik to represent existence of a request for
content k at base station i at time τ , such that rτik = 1 if there
is a request; otherwise, rτik = 0. For each content we have
two options for caching the k-th content: cached on the i-th
station or not cached. In this case, the optimal solution over
a time period t can be found by solving the following mixed
integer and linear programming:

minD + C (5)

s.t D ≥
n∑

i,j=1

m∑
k=1

τ∑
τ=1

dijx
kτ
ij vk +

n∑
i=1

m∑
k=1

t∑
τ=1

dibx
kτ
ib vk (6)

C ≥
n∑

i=1

m∑
k=1

t∑
τ=1

giy
τ
ikvk (7)

xkτ
ij ≤ yτjk, ∀ i, j, k, τ (8)

xkτ
ib +

n∑
j=1

xkτ
ij ≥ rτik, ∀ i, k, τ (9)

xkτ
ib ≥ yτik − yτ−1

ik , ∀i, k, τ (10)

yτik, x
kτ
ij ∈ {0, 1}, ∀ i, j, k, τ (11)

The objective function is minimizing the total cost, which
is the summation of download cost D and caching cost C.
Constraint (6) calculates the download cost of the contents.
Variable xkτ

ij being equal to 1 means that base station j
provides content k to base station i at time τ . Otherwise, xkτ

ij

equals 0. We calculate the caching cost using Constraint (7).
If content k is stored on cache j at time τ , variable yτjk will
be equal to 1. The set of Constraints (8) ensures that the k-
th content is downloaded from base station j only when the
content is stored on the base station. The set of Constraints (9)
ensure that all of the requests are served all the time from a
base station or the Internet. In order to cache a content, that
should be downloaded from the Internet, which is represented
as constraint (10).

The complexity of finding the optimal solution of mixed
integer and linear programming is high. If we can convert
the optimization to a linear programming optimization, we
can find the optimal solution in a polynomial time. For this
purpose, we use random linear network coding to encode the
original contents. In this way, each cache can store a portion
of each content, and serve a portion of users’ requests. As a
result, the variables y and x will be relaxed to real numbers
in the range of [0, 1]. In this case, the objective is the same
as (5). Also, we have the set of Constraints (6)-(10). However,
Constraint (11) is replaced with yτik, x

kτ
ij ∈ [0, 1], ∀ i, j, k, τ .

This change makes the optimization linear programming,
which can be solved in a polynomial time.

B. Limited Cache

We represent the cache space of base station i as si. In the
case of limited cache space and using random linear network
coding, we can formulate the problem as the following linear
programming optimization:

minD + C (12)

s.t D ≥
n∑

i,j=1

m∑
k=1

τ∑
τ=1

dijx
kτ
ij vk+

n∑
i=1

m∑
k=1

t∑
τ=1

dibx
kτ
ib vk (13)

C ≥
n∑

i=1

m∑
k=1

t∑
τ=1

giy
τ
ikvk (14)

xkτ
ij ≤ yτjk, ∀ i, j, k, τ (15)

xkτ
ib +

n∑
j=1

xkτ
ij ≥ rτik, ∀ i, k, τ (16)

m∑
k=1

yτikvk ≤ si, ∀i (17)

xkτ
ib ≥ yτik − yτ−1

ik , ∀i, k, τ (18)

yτik, x
kτ
ij ∈ {0, 1}, ∀ i, j, k, τ (19)

Similar to the case of unlimited cache, the objective function
is minimizing the total caching and download cost. Con-
straint (13) calculates the download cost of the contents. The
set of Constraint (14) are constraints on cache capacity. We
use the set of Constraints (15) to ensure that the k-th content
is downloaded from base station j only when the content is
stored on the base station. The set of Constraints (16) ensure
that all of the requests are served all the time. The set of
Constraints (17) are the storage capacity constraints.

Users
50 100 150 200 250

T
ot

al
 C

os
t

0

2000

4000

6000

8000

OPT-Offline
Online
No caching

(a)

Users
50 100 150 200 250

D
ow

nl
oa

d
C

os
t

0

500

1000

1500

2000
OPT-Offline
Online

(b)
Fig. 2. The effect of number of users on the total cost in the case of 5 base
stations, α = 5; β = 2; (a) Total cost; (b) Download cost.

VII. EVALUATION RESULTS

In this section, we evaluate our methods using numerical
results. We compare the performance of our proposed online
algorithm against that of the optimal solution.

A. Simulation Setting

In order to evaluate our methods, we compare the total cost
of our online method against that of the optimal solution and
no-caching. For this purpose, we implemented a simulator
in the MATLAB environment. In order to find the optimal
solution, we use the Linprog tool in the MATLAB environment
to run the optimizations in Section VI. In the plots, we refer
to the optimal solution as the OPT-offline. In the case of no-
caching, there is no cache storage in the system, and all of the
request are served directly by the Internet.

We run our simulations for 100 random runs, and the
results shown in the next subsection are based on the average
output of the 100 runs. Here, by random we mean that the
content requests by the users are randomly selected. Also, the
download and caching costs are randomly chosen from a range
of values. In the following section, we study the effect of
number of users, contents, and cache size on the performance
of our online algorithm. In the simulations, the size of the
contents are equal to 1 GB.

B. Simulation Result

In the first simulations, we compare the total cost of our
proposed online algorithm against that of the optimal offline
solution and no-caching. For this purpose, we change the
number of users in the network in the range of 50 and 250,
and measure the total cost. In Figure 2 (a), the number of base
stations is 5. Also, the costs are in the range of gi ∈ [1, 3],
dij ∈ [1, 3], dib ∈ [7, 10]. As the figure shows, the no-caching
has the highest total cost. Moreover, the cost of the online
algorithm is more than that of the optimal solution, which is
due to lake of information about the popularity of the contents
and the users requests. More users results in more request,
which increases the cost of the no-caching method. However,
Figure 2 (a) shows that the slope of the line corespondent to the
optimal offline and the online methods is much lower than the
no-caching method. The reason is that, caching the contents

10 15 20 25 30
Number of Contents

0

2000

4000

6000

8000

10000

12000

T
ot

al
 C

os
t

OPT-Offline
Online
No caching

(a)

Number of Contents
10 15 20 25 30

D
ow

nl
oa

d
C

os
t

0

1000

2000

3000

4000

5000

6000
OPT-Offline
Online

(b)
Fig. 3. The effect of number of contents on the total cost in the case of 5
base stations; α = 5; β = 2; (a) Total cost; (b) Download cost.

and reusing them keeps the total cost low. The figure shows
that the total cost of the no-caching method can be more than
twice that of the online algorithm. Moreover, the total cost of
the online algorithm is at most twice of the optimal offline
algorithm, which is acceptable, as in the online algorithm we
do not know the future requests.

Figure 2 (b), shows the effect of number of users on the
download cost of the online and the optimal offline methods.
We do not show the download cost of the no-caching method,
as that is similar to Figure 2 (a). As expected, more number of
users increases the requests and the download cost. However,
this increase is limited. As mentioned before, this can be
justified by the increase in the efficiency of caching in the
case of more number of users.

In the next set of experiments, we measure the effect that
the number of content has on the total cost. Similar to the
previous experiences, there is a gap between the total cost
of our online algorithm and that of the optimal solution in
Figure 3 (a). In Figure 3 (a) the popularity of the contents are
selected randomly. Because of this randomness, the popularity
of each content decreases as we increase the contents amount.
Consequently, the caching becomes less efficient in the case
of a large number of contents. Figure 3 (b) illustrates the
download cost of the online and optimal offline algorithms.
More number of users decreases the frequency of requesting
the same content, which makes caching less efficient. The
figure shows that the increase in the download cost of the
optimal solution is slower than that of the online algorithm,
which is due to the knowledge about the future requests.

We next measure the effect that the cache size has on the
total cost of the system. In Figure 4 (a), we set the number
of base stations to 5. The size of the contents are equal to 1
GB, and the cache sizes are in the range of 6 to 10 GB. A
greater cache size provides the opportunity to store a greater
number of popular contents on the base stations and in more
places, which can potentially reduce the total cost. As in the
no-caching there is no cache and all of the request are served
directly from the Internet, the total cost in the no-caching
is fixed. However, the total cost of the offline and online
algorithms decrease as the cache size increases.

In the last experience, we measure the effect of cache size

Cache Size
6 7 8 9 10

T
ot

al
 C

os
t

1000

2000

3000

4000

5000

6000

7000

OPT-Offline
Online
No caching

(a)

Cache Size
6 7 8 9 10

C
ac

hi
ng

 C
os

t

0

500

1000

1500

2000
OPT-Offline
Online

(b)
Fig. 4. The effect of cache size on the total cost in the case of: (a) 5 base
stations; (b) 10 base stations.

on the caching cost in Figure 4 (b). The no-caching method
has not been shown in the figure, since it does not use caches.
The figure shows that as the cache size increases, the caching
cost of the online method increases as well. The reason is that,
as more caching resources are available, more popular contents
can be cached in order to reduce the total cost. However, the
increase in the caching cost of the optimal offline algorithm
is much slower than that of the online algorithm. It might
be a question why the caching cost in Figure 4 (b) increase
as the cache size increase, but in Figure 4 (a) the total cost
decreases. The reason is that, as the caching size increases,
the popular cached contents can be reused which reduces the
download cost. In other words, the decrease in the download
cost is more than the increase in the caching cost.

VIII. CONCLUSION

Wireless devices, e.g. smartphones and tablets, can be easily
connected to the Internet through cellular connections, such
as LTE/4G. Since these devices are widely-used by people,
a large portion of the traffic on the Internet transfers via the
cellular base stations. Caching the data at the base stations
reduces the traffic on the Internet. In addition to that, caching
reduces the cost of providing the content to the users. In this
work, we studied collaborative caching in cellular networks.
In this problem, a set of base stations, collaborate to cache the
more popular contents in order to minimize the total content
provision cost. We showed that this problem in NP-complete,
and it has a submodular property. Using this property, we
proposed greedy method, which can achieve an approximation
ratio equal to 2. In addition to that, we introduced an online
algorithm, which does not need any knowledge about the
popularity of the contents and the future request. In order
to measure the performance of our online algorithm, we
compared it against the optimal solution. In order to find
the optimal solution, we assumed that the future requests are
know and the contents are coded using random linear network
coding. Using network coding make is feasible to find the
optimal solution using linear programming optimization.

ACKNOWLEDGMENT

This research was supported in part by NSF grants CNS 1449860,
CNS 1461932, CNS 1460971, CNS 1439672, CNS 1301774, and

ECCS 1231461.

REFERENCES

[1] A. Finamore, M. Mellia, M. Munafò, R. Torres, and S. Rao, “Youtube
everywhere: impact of device and infrastructure synergies on user
experience,” in ACM IMC, 2011, pp. 345–360.

[2] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Ja-
hanian, “Internet inter-domain traffic,” in ACM SIGCOMM, 2010, pp.
75–86.

[3] “Cisco visual networking index: Global mobile data traffic
forecast update, 2014Ű2019 white paper,” 2015. [Online].
Available: http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white_paper_c11-520862.html

[4] A. Khreishah and J. Chakareski, “Collaborative caching for multicell-
coordinated systems,” in CNTCV, 2015.

[5] N. Golrezaei, K. Shanmugam, A. Dimakis, A. Molisch, and G. Caire,
“Femtocaching: Wireless video content delivery through distributed
caching helperss,” in IEEE INFOCOM, 2012, pp. 1107–1115.

[6] K. Shanmugam, N. Golrezaei, A. Dimakis, A. Molisch, and G. Caire,
“Femtocaching: Wireless content delivery through distributed caching
helpers,” IEEE Transactions on Information Theory, vol. 59, no. 12, pp.
8402–8413, 2013.

[7] P. Blasco and D. Gunduz, “Learning-based optimization of cache content
in a small cell base station,” in IEEE ICC, 2014, pp. 1897–1903.

[8] J. Erman, A. Gerber, M. Hajiaghayi, D. Pei, S. Sen, and O. Spatscheck,
“To cache or not to cache: The 3g case,” IEEE Internet Computing,
vol. 15, no. 2, pp. 27–34, 2011.

[9] N. Karamchandani, U. Niesen, M. Maddah-Ali, and S. Diggavi, “Hier-
archical coded caching,” in IEEE ISIT, 2014, pp. 2142–2146.

[10] M. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Transactions on Information Theory, vol. 60, no. 2, pp. 2856–2867,
2014.

[11] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. Leung, “Cache in the
air: exploiting content caching and delivery techniques for 5g systems,”
IEEE Communications Magazine, vol. 52, no. 2, pp. 131–139, 2014.

[12] X. Wang, X. Li, V. Leung, and P. Nasiopoulos, “A framework of
cooperative cell caching for the future mobile networks,” in HICSS,
2015, pp. 5404–5413.

[13] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[14] D. Fesehaye, Y. Gao, K. Nahrstedt, and G. Wang, “Impact of cloudlets
on interactive mobile cloud applications,” in IEEE EDOC, 2012, pp.
123–132.

[15] S. Pawar, S. Rouayheb, H. Zhang, K. Lee, and K. Ramchandran, “Codes
for a distributed caching based video-on-demand system,” in ACSSC,
2011.

[16] H. Hao, M. Chen, A. Parekh, and K. Ramchandran, “A distributed
multichannel demand-adaptive P2P VoD system with optimized caching
and neighbor-selection,” in SPIE, 2011.

[17] P. Ostovari, J. Wu, A. Khreishah, and N. B. Shroff, “Scalable video
streaming with helper nodes using random linear network coding,”
IEEE/ACM Transactions on Networking, vol. 24, no. 3, pp. 1574–1587,
2016.

[18] P. Ostovari, A. Khreishah, and J. Wu, “Cache content placement using
triangular network coding,” in IEEE WCNC, 2013, pp. 1375–1380.

[19] A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A provably
efficient online collaborative caching algorithm for multicell-coordinated
systems,” IEEE Transactions on Mobile Computing, vol. 15, no. 8, pp.
1863–1876, 2016.

[20] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,”
IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–
1216, 2000.

[21] S. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE Transac-
tions on Information Theory, vol. 49, no. 2, pp. 371–381, 2003.

[22] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, 2006.

[23] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations
for maximizing submodular set functions,” Mathematical Programming,
vol. 14, no. 1, pp. 265–294, 1978.

