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Abstract—Ubiquitous and resilient Internet connection access
is becoming a necessity of life. Moreover, the amount of data
requested by mobile users is increasing rapidly. Cooperative
mobile Internet access is a promising approach to addressing
these demands, by giving the mobile devices the opportunity
to use the help of other devices to access the Internet. The
helpers can download the data requested by the other users,
referred to as clients, through their cellular connections, and
can transmit the downloaded data to the clients using WiFi. In
this paper, we consider the problem of sharing the resources of
helpers among a set of clients that request the assistance of the
helpers. Opportunistic scheduling is an effective method that uses
the dynamic channel conditions to elevate the systems’ overall
utilities. We propose an opportunistic scheduling algorithm to
use the helpers efficiently and share them among the clients in a
fair way. Through simulation results, we show the effectiveness
of our cooperative downloading methods.

Keywords—Cooperative download, resilient communication, op-
portunistic scheduling, device-to-device communication, cellular
network, network coding.

I. INTRODUCTION

With the rapid development of mobile device technology,
such as smartphones and tablets, these devices can provide
their users with a convenient way to access the Internet.
Smartphone and tablet use is increasing rapidly, and resilient
ubiquitous Internet access is becoming a necessity in people’s
lives. The users can browse the Internet, download data, or
stream videos from anywhere through cellular connections.
On the other hand, the cellular data traffic is growing rapidly,
and download rates offered by cellular networks might not
be sufficient for users. Moreover, the user’s cellular channel
quality might not be sufficient to meet the user’s demand, and
the data rate of the cellular network can dramatically change
over time. Consequently, the users might not get the quality
of service that they expect [1].

Cooperative downloading is an effective approach for ad-
dressing the increasing traffic demand of the mobile devices,
and can provide resilient and ubiquitous Internet access [2].
Using cooperation among the users, we can use the idle
resources of the users to provide Internet access to other users
or improve their data rate. As shown in Fig. 1(a), the helpers
use their cellular connections, e.g. 4G/LTE, to download the
request of the clients, and transmit the downloaded data to the
clients using WiFi connections.

Consider the example in Fig. 1(b). The AP, helpers, and
clients are shown as B, H, and C, respectively. The delivery
rate of the links are shown beside the links, and the other links
are reliable. The bandwidth of each link is 10Mb/s, and utility
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Fig. 1. (a) The system architecture. (b) Motivation example.

is defined as the total download rate of the clients. In the case
of not using the helpers, the download rate of the clients and
the total utility will be 10× 0.4 = 4 and 8, respectively. Now
consider the case of using the helpers. It is easy to check that
assigning helpers 1 and 2 to clients 1 and 2 maximizes the
total utility. In this case, the download rate of clients 1 and
2 will be 13 and 9, respectively. Not only does cooperation
increase the download rate of the clients, but also provides
resilient communications. The reason is that in the case of a
broken link, the other links can replace it. However, is it clear
that this is not a fair resource sharing, since client 2 receives
less data than client 2. In a fair solution, the helper that serve
the clients should be changed depending on the cumulative
downloading rate of the clients in the previous time slots.

In order to have a fair resource sharing, we should use a
fair matching algorithm to assign the helpers to the clients
at each time slot. Moreover, it is typical to have a utility
function that is not a linear function of the receiving data
rate. The reason is that, as the receiving data rate of a client
increases, the increasing rate of its satisfaction decreases. As a
result, we need an optimization algorithm to find the optimal
transmission rate of the helpers. Another challenge is the
time-varying channel conditions due to fading, shadowing,
and interference among the links. Opportunistic scheduling [3]
is an effective approach used to deal with the dynamics of
channel conditions and achieve higher network performance.
The idea behind opportunistic scheduling is to consider the
current channel condition of the users, and at each time slot,
transmit to the user that maximizes the system performance
and does not violate the fairness constraints.

In this work, we study the problem of providing cooper-
ative Internet access to a set of clients through a group of
helpers. We consider the unreliability of the links and time-
varying channel condition of the links. In order to motivate the
helpers to assist the clients, we use a credit-based incentive
method. The credits that the clients need to pay the helpers
depend on the effort of the helpers. In order to use the wireless
resources more efficiently, we extend opportunistic scheduling
to the case of multiple helpers, and use it in our cooperative
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Internet access. We formulae the problem as an optimization
problem, which can be solved in a distributed way.

The remainder of the paper is organized as follows. Back-
ground on network coding and related work is presented in
Section II. Section III introduces the setting and problem
statement. In Section IV, we propose our cooperative Internet
access method. We present our simulation results in Section V.
Section VI concludes the paper.

II. RELATED WORK AND BACKGROUND

The authors in [4] introduce a system for sharing the on-
demand and live video streaming among a set of users in the
same vicinity. It is assumed that the users are friends and they
agree to share their content with each other, which might not
be practical in the cases that the users are not friends. There
are many previous works on cooperative downloading that are
proposed to share the same content to the users [5]. However,
in our work the data requested by the users can be different,
and there is no restriction on the type of applications.

The authors in [1] propose a system for cooperative down-
loading. In their system, a client sends requests to its neighbors
to form a network. The users that agree to help the client
send a confirmation message to the client. After forming the
network, the download process is started and each helper
receives a payment depending on the amount of help provided
to the client. The authors propose an energy efficient method
for scanning the neighbors. In contrast with [1], we consider
several clients that are interested in using the assistance of a
set of helpers, and focus on optimizing the total utility of the
clients subject to fair resource sharing.

Network coding (NC) is introduced in [6] to solve the
bottleneck problem in wired networks. Random linear network
coding (RLNC) is introduced in [7], and the authors show that
we can achieve the capacity asymptotically with respect to the
finite field size in the case that the relays select the coefficients
of the coded packets randomly. In RLNC, a coded packet
is a linear combination of the packets. In order to code the
packets, the coefficients of the linear combinations are selected
randomly, and the coded packets have a form of

∑k
i=1 ai×Pi.

Here, the symbols a and P are the random coefficients and the
packets. If we use RLNC to code k native packets together,
with a large probability any k coded packets are sufficient to
decode the coded packets and retrive the original packets. In
other words, with a probability close to one, any k random
linear coded packets are linearly independent. In order to
decode the coded packets, Gaussian elimination can be used
to solve a system of linear equations.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We consider a set of mobile helpers H = {1, ..,m}, e.g.
smartphones and tablets, that are willing to cooperate in pro-
viding internet access to a set of mobile clients I = {1, .., n}.
The helpers and clients can communicate with each other by
forming a mesh network G = (H ∪ I, E), where E represents
the set of links connecting them through WiFi. The helpers
get access to the Internet through a base station, e.g 4G/LTE
connection and provide the clients with the Internet using

WiFi. We consider a time-slotted system, and during each time
slot the channel conditions are fixed. We assume that the total
number of WiFi channels are equal to m, i.e. each helper works
on a different channel. Thus, each helper can serve only one
client at a time. Moreover, each client cannot receive help from
more than one helper at each time slot. The helpers and clients
can use their cellular and WiFi connections simultaneously.

The clients and helpers consume energy while downloading
or relaying data. The energy consumption of client i to receive
one byte through cellular and WiFi connections are represented
as eci and ewi . Typically, the energy consumption of cellular
connections is more than that of the WiFi connections. We
represent the bandwidth of the link between helper j and client
i at time t as btji. Also, bti and btj denote the bandwidth of the
link from the base station to client i and helper j, respectively.
The delivery rate of the links change over time and we denote
the delivery rate of the link ϵji at time t as ptji. We represent
the transmission rate from the base station to the client i at
time t as xt

i. Moreover, xt
ji is defined as the transmission rate

of helper j to client i at time slot t.

In our model, the links are not reliable. Therefore, some
of the packets might be lost and need to be retransmitted.
In order to eliminate the need for feedback messages, we
use RLNC. The packets that should be transmitted to each
client are partitioned into segments of equal sizes, and RLNC
is performed among the packets of the same segment. The
coding is done over a finite field, and a coded packet has a
form of

∑k
i=1 ai × Pi. The symbols a and P are the random

coefficients and the packets, respectively. The helpers receive
coded packets from the base station, and recode the packets
before transmitting them. The clients are able to decode the
coded packets once they receive a sufficient number of coded
packets, i.e. k linearly independent coded packets.

The use of RLNC enables a flow-based model of the
content, which simplifies our proposed schemes. Without NC,
we need to decide which packets should be transmitted by
the base station or the helpers. However, with NC, we just
need to find the rates at which the coded packets should be
transmitted. It should be noted that other types of coding
schemes, such as fountain codes [8], can also be applied on
top of our solutions. However, for ease of description, we use
RLNC in our proposed methods. An overview on linear NC
is provided in Section II.

B. Problem Statement

In order to motivate the helpers to participate in the
cooperation, we need to have an incentive mechanism. For
this purpose, the clients pay the helpers based on the data rate
that the helpers transfer to the clients. It should be noted that
the rates at which the clients receive data might be less than
the transfer rates of the helpers, which is due to the unreliable
links. On the other hand, the clients consume energy to receive
data from the base station and the helpers. Therefore, we define
the utility of each client as a function of the data rate that it
receives minus its energy consumption and the credits that the
client needs to pay the helpers.

The utility of client i at time t is defined as U(i, t) =
f(xt

jip
t
ji + xt

ip
t
i) − e(i, t) − xt

jiz. Here, z represents the
credits that client i needs to pay a helper in order to transmit
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TABLE I. THE SET OF SYMBOLS USED IN THIS PAPER.
Notation Definition
xt
ji Transmission rate from helper j to user i at time t

xt
i Transmission rate from base station to user i at time t

yt
i Total download rate of user i at time t

pt
ji Delivery rate of the link from helper j to client i at time t

pt
i /pt

j Delivery rate from base station to client i/helper j at time t

btji Bandwidth of link between helper j and client i at time t

bti Bandwidth of the link from base station to client i at time t

btj Bandwidth of the link from base station to helper j at time t

ewi /eci
Energy consumption of user i for receiving one byte from the
helpers/base station

one byte. The transmission rate of helper j to client i is
equal to xt

ji, and the data rate that is delivered to client
i is equal to xt

jip
t
ji. Moreover, the rate of the data that is

delivered to client i from the cellular network equals xt
ip

t
i.

We represent the energy consumption of i as e(i, t), which
equals xt

jip
t
jie

w
i + xt

ip
t
ie

c
i . Function f(.) is a strict concave,

non-decreasing, and continuously differentiable function of the
receiving data rate. The reason for the concavity assumption
relies on the fact that as the receiving data rate of a client
increases, the increasing rate of its satisfaction decreases. In
economics, this fact is known as the “law of diminishing
returns” [9]. Since the energy consumption and the credit that
needs to be paid to the helpers increases as the receiving data
rate increases, U(i, t) might reduce. Assuming that the energy
consumption and credit payments are linear functions of the
transition rate, U(i, t) becomes a strictly concave function.
Therefore, it has a unique maximum.

Our objective is to maximize the aggregated utility of the
clients. However, this maximization problem might result in
an unfair resource sharing among the users. The clients with
bad channel conditions might not be able to use the help of the
helpers in the case that the number of helpers is less than that
of the clients. As a result, in our optimization problem, we try
to provide fairness, which is discussed in the next section.

IV. COOPERATION SCHEMES

We first solve the optimization problem without consid-
ering the energy consumptions and the credits that need to
be paid by the clients. We then extend our solution when
considering the energy consumptions and the credit payments.

A. Transmission with WiFi

Fairness is a main part of scheduling problems in wireless
networks. If we do not consider fairness, we can trivially op-
timize the system performance by finding a bipartite matching
of the helpers to the clients such that the total utilities are
maximized. However, this scheduling might not be fair as the
clients with good channel conditions might keep the channels
forever. Thus, the clients with poor channel conditions might
not be able to use the assistance offered by the helpers.

To give an idea of opportunistic scheduling consider the
example in Fig. 2. The channel condition of users B and C
are shown in Fig. 2(b). The channel condition of node B is
always better than that of the node C. As a result, if we want to
maximize the data rate that the nodes receive, node A should
always transfer data only to node B. Clearly, this is not a
fair scheduling. Now assume that we assign half of each time
slot to user B. Node B experiences 3 slots with bandwidth 8,
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Fig. 2. Opportunistic scheduling; (a) Topology; (b) Time varying channel
conditions.

and 3 slots with bandwidth 6; thus, its receiving rate will be
(8/2 + 6/2)·3 = 21. Also, the receiving rate of node C will
be (4/2 + 2/2)·3 = 9. However, if A assigns time slots 1, 3,
and 5 to node B, and slots 2, 4, and 6 to node C, the receiving
rates of B and C will be 24 and 10, respectively. In this case,
not only does the total utility of the system increase, but the
utility of each user is also enhanced.

In order to provide fairness, we can extend the idea in [3]
to the case of multiple helpers. The idea is that instead of
maximizing the total utility, we maximize

∑n
i=1 α

t
iU(i, t).

Here, U(i, t) is the utility of client i at time t, and αt
i are

real parameters that control the fairness. Similar to the work
in [3], the idea behind parameter α is to give a chance to
the client whose utility received in the previous time slots is
low to use the assistance of the helpers. The α variable for
the clients with large received utilities is lower than the other
nodes. Thus, for each time slot, the relatively best clients are
selected and assigned to the helpers. The clients with large α
are the unfortunate nodes in that their channel conditions are
worse than the other clients. We will discuss the calculation
of α later. The problem of maximizing the total system utility
subject to fairness can be formulated as follows:

max
∑
i∈I

T∑
t=1

αt
iU(i, t) (1)

s.t. xt
ji ≤ ptjb

t
j/p

t
ji, ∀i, j : j ∈ H, i ∈ I (2)

xt
ji ≤ btji, ∀i, j : j ∈ H, i ∈ I (3)

xt
i ≤ bti, ∀i ∈ I (4)

yti ≤ xt
ip

t
i +

∑
j∈H

xt
jip

t
ji,∀i ∈ I (5)

[xt
ji] ∈ R1 (6)

where, U(i, t) is the utility of client i at time slot t. Also,
xt
ji and ptji are the transmission rates of helper j to client i

and the delivery rate of the link ϵji at time t, respectively. We
represent the total download rate of client i at time t as yti .
The objective function (1) is to maximize the total utility of
the clients. Here, we consider U(i, t) = f(yti), where f(yti) is
a monotonic increasing concave function.

The receiving rate of helper j equals ptjb
t
j . Therefore,

client i cannot receive data from helper j at a rate greater
than ptjb

t
j . On the other hand, the receiving rate of client

i equals to xt
jip

t
ji; thus, we have xt

jip
t
ji ≤ ptjb

t
j , which is

stated as the set of Constraints (2). The set of Constraints (3)
and (4) are bandwidth constraints. Constraint (5) calculates
the total receiving rate of the clients. Constraint (6) implies
that the transmission rate should be feasible. Here, R1 is
the set of possible scheduling. In our model, a helper cannot
transmit to more than one client at the same time slot and a
client cannot receive data from multiple helpers concurrently.
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Algorithm 1 Scheduling Algorithm
1: At each time slot t perform the following steps:
2: for each client i and helper j do
3: G(i, t) = f(min(btjip

t
ji, b

t
jp

t
j) + btip

t
i)− f(btip

t
i)

4: αt
i = 1/

∑t−1
t′=1 G(i, t),∀i ∈ I , α1

i = 1,∀i ∈ I
5: Assign αt

iG(i, t) to link ϵji
6: Find the MWBM using Hungarian algorithm
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Fig. 3. Optimal scheduling.

Therefore, if for helper j and client i we have xt
ji > 0, then

xt
j′i = 0,∀j′ ̸= j and xt

ji′ = 0, ∀i′ ̸= i.

Our scheduling algorithm for time slot t works as follows.
First, for client i, we calculate its maximum utility when it uses
only the cellular connection. We then calculate the increase in
client i’s maximum utility in the case of using helper j in
addition to the cellular connection. Since we do not consider
the energy consumption and the credit payments, the utility of
each client is an increasing concave function. Therefore, the
optimal rate assignment for client i is to use the full bandwidth
of both of the cellular connection and helper j. The increase
in the utility of client i in the case of using helper j is equal
to G(i, t) = f(min(btjip

t
ji, b

t
jp

t
j)+btip

t
i)−f(btip

t
i). The reason

for taking the minimum of the two values is that the receiving
rate of client i cannot exceed the bandwidth of the link ϵji and
the receiving rate of helper j. Then, we multiply each utility
enhancement G(i, t) by αt

i, and assign the result to the link
ϵji. We run the Hungarian algorithm [10] to find the maximum
weighted bipartite matching (MWBM) of the helpers to the
clients. In order to provide fairness, in this paper we calculate
α as αt

i = 1/
∑t−1

t′=1 G(i, t), and we set α1
i = 1,∀i ∈ I . The

details are shown in Algorithm 1.

Consider the example in Fig. 3. For simplicity, we assume
that the bandwidth of the links from the base station to the
helpers are not bottleneck, i.e. their bandwidth and reliability
are much higher than the links between the helpers and the
clients. Also, we do not consider the direct links from the
base station to the clients. The bandwidth of the links between
the helpers and clients are equal to 5. The delivery rate of
the links are shown in the figure. Assuming function f(.) =
log(x + 1), the utility of client 4 in the case of downloading
from helper 1 and 2 becomes log(5 × 0.7 + 1) = 1.5 and
log(5 × 0.5 + 1) = 1.25, respectively. Also, the utility of the
clients 3 and 5 when they download through helpers 1 and
2 are equal to log(5 × 0.8 + 1) = 1.61. Thus, the bipartite
matching that maximizes the total utility is assigning helper 1
to client 3, and helper 2 to client 5.

Assuming that the reliability and bandwidth of the links are
fixed, in time slot 2 the utility of clients 3 and 5 are divided
by the utility that they received at time slot 1. As a result,
the weight of the links from helpers 1 and 2 to clients 3 and

5 becomes 1. The weight of the links from helpers 1 and 2
to client 4 are still 1.5 and 1.25, respectively. Therefore, the
optimal weighted bipartite matching is to schedule clients 4
and 5 to receive from helpers 1 and 2, respectively.

Our proposed optimization can be implemented in a dis-
tributed way as follows. Calculating the utility of the client for
each helper assignment can be performed in a distributed way
by each client or helper. Also, the α variables are calculated
by each client separately. The products of the G(i, t) and αt

i
variables are used as the weight of the links ϵji. Then, we can
apply a distributed version of the MWBM algorithm, e.g. [11],
to find the optimal scheduling. We refer to this method as the
joint scheduling and rate control (JSRC) method.

B. Transmission with WiFi Considering the Costs

1) Formulation: In the previous subsection, we did not
consider the energy consumption and the credit payments.
Thus, the utility of the clients was an increasing function of
their received data rate. In that case, the utility function of
the clients is an increasing function of the received data rate.
However, when we take the energy consumption and the credit
payments into account, a client might prefer not to use the full
capacity of the link that is assigned to it. The reason is that, as
the receiving rate of a client increases, its energy consumption
and the credits that need to be paid to the helper increase as
well. These increase in the costs are linear to the download
rate. However, the function f(.) is not linear (f(.) is strictly
concave). Consequently, the whole utility might decrease de-
pending on the receiving rate. In this case, the utility function
becomes U(i, t) = f(yti)−x

t
ip

t
ie

c
i−

∑
j∈H [xt

jip
t
jie

w
i + zxt

ji].
The objective function and the other constraints are the same
as those in the previous subsection. This optimization contains
two sub-problems: (1) scheduling the links, (2) finding the
optimal data rates. In order to find the optimal solution, we
decompose the optimization into scheduling and rate optimiza-
tion. Assuming n helpers and n clients, there are n! possible
matchings; thus, the time complexity of checking the total
utility of all of the possible matchings is exponential.

In this problem, there is no need for checking all of the
possible matchings. In our model, each client can download
from one of the m helpers, and each helper cannot serve
more than one client. Therefore, the utility of each client
only depends on the matching, and is independent of the
download rate and the utility of the other clients. Thus, in our
polynomial time algorithm, we calculate the difference in the
optimal utilities of client i in the cases of using the assistance
of helper j and not using any helpers, denoted as G(i, t).
We then assign αt

iG(i, t) as the weight of link ϵji, and run
the Hungarian algorithm [10] to find the maximum weighted
matching of the helpers to the clients. The Hungarian algorithm
can find the maximum weighted matching of a bipartite graph
in a polynomial time. Other MWBM algorithms can be used
instead of the Hungarian algorithm.

2) Optimization: In order to find the optimal rate allo-
cations for each helper assignment, we need to perform an
optimization algorithm. Consider client i, which is scheduled
to receive from helper j at the current time slot t. The optimal
transmission rates from the base station and helper j to client
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Algorithm 2 Calculation of xji and xi (for client node i)

1: γi = λi
4pji − λj

1 − λji
2 − z − pjie

w
i

2: if γi
j > 0 then xji = min(bji, bjpj/pji) else xji = 0

3: if λi
4pi − λi

3 − pie
c
i > 0 then xi = bi else xi = 0

i can be found by solving the following convex optimization:

max U(i, t) = f(yti)− xt
ip

t
ie

c
i − xt

jip
t
jie

w
i − zxt

ji

s.t xt
ji ≤ ptjb

t
j/p

t
ji; xt

ji ≤ btji; xt
i ≤ bti; yti ≤ xt

ip
t
i + xt

jip
t
ji

We can find the optimal rate allocation by solving the
Lagrangian dual of the problem using the gradient method. In
this way, we gradually update the transmission rates, based on
the Lagrange variables. Since the Slater condition holds in this
problem (see reference [12]), there is no duality gap between
the primal and the dual problems. Let λj

1, λji
2 , λi

3, and λi
4 be the

Lagrange variables for the constraints. For simplicity, we do
not show the t superscripts. The Lagrange function becomes:

L(xi, xji, yi, λ⃗) = f(yi)− xipie
c
i − xjipjie

w
i − zxji

− λj
1(xji − pjbj/pji)− λji

2 (xji − bji)

− λi
3(xi − bi)− λi

4

[
yi − xipi − xjipji

]
By rearranging the terms and removing the constants, we have:

L(xi, xji, yi, λ⃗) = f(yi)− λi
4yi (7)

+ xji(λ
i
4pji − λj

1 − λji
2 − z − pjie

w
i ) (8)

+ xi(λ
i
4pi − λi

3 − pie
c
i ) (9)

The objective function of the dual problem is D(λ⃗) =
maxxi,xji,yi

L(xi, xji, yi, λ⃗). The dual problem is minλ D(λ⃗).
We can solve the dual optimization problem using the gradient
method. The updates of the Lagrange variables are as follows:

λj
1(τ + 1) =

[
λj
1(τ) + β(xji(τ)− pjbj/pji)

]+
λji
2 (τ + 1) =

[
λji
2 (τ) + β(xji(τ)− bji)

]+
λi
3(τ + 1) =

[
λi
3(τ) + β(xi(τ)− bi)

]+
λi
4(τ + 1) =

[
λi
4(τ) + β

(
yi(τ)− xi(τ)pi − xji(τ)pji

)]+
The projection on [0,+∞) is represented as [.]+. Also, β

is the step size. In order to find the yi that maximizes (7),
we set the first derivative of (7) with respect to yi equal zero.
If we consider f(yi) = log(yi + 1), the optimal yi becomes
yi = 1/λi

4 − 1. For iteration τ , if yi becomes infinity, we set
yi to pibi + pjibji. Equations (8) and (9) are linear functions
of xji and xi. Thus, in order to maximize them, when the
multipliers of xji and xi are greater than zero, their value
should be set to the maximum possible value, which depends
on the bandwidths. On the other hand, in the case of negative
multipliers, we should set xji and xi to zero. Algorithm 2
illustrates the computation of xji and xi. Here, γi = λi

4pji −
λj
1 − λji

2 − z − pjie
w
i is the multiplier of xji in Equation (8).

After finishing the iterations, the final values of xji and xi are
set to the average calculated values of the iterations.

The optimal rate allocation in the case of not using the
assist of helpers can be found by setting the first derivative
of f(xi) − xipie

c
i respect to xi equal to zero. Then, G(i, t)
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Fig. 4. Total utility of the clients, delivery rates ∈ [0.5, 1], n = 10, T = 50,
btj ∈ [2, 4], btji ∈ [1, 2]. (a): bti ∈ [0.2, 0.4]; (b): bti ∈ [0.5, 1].

is equal to the difference of the utilities in the case of using
helper j and not using any helper. We assign αiG(i, t) to link
ϵji, and select the MWBM using the Hungarian algorithm, and
pick its respective optimal rates.

The optimization in the case of considering the download
costs can be implemented in a distributed way. First, each
client uses the proposed gradient approach to find the optimal
rate when helper j is assigned to it, calculates G(i, t), and
multiplies G(i, t) by αi. Then, the result is assigned as the
weight of link ϵji. Finally, the distributed version of the
MWBM algorithm, e.g. [11], is run to find the scheduling that
maximizes the total utility. We refer to this method as the joint
scheduling and rate control with payments (JSRCP).

V. SIMULATIONS

A. Simulation Setting

We develop a simulator in the MATLAB environment, and
compare each proposed method with the optimal solutions in
the case of not considering the fairness, refereed to as the
Unfair method. In order to remove the fairness constraint from
the optimization constraints, we set αt

i = 1 ∀i ∈ I . As a
result, at each iteration, the matching that maximizes the total
utility of the clients is selected as the optimal solution. We
also modify our JSRC and JSRCP methods by setting αt

i to
the amount of increment in the utility of the client i in the
previous time slots that is due to using the helpers. We refer
to these methods as JSRC-M and JSRCP-M, respectively. In
our simulations, we consider f(yi) = log(yi + 1). The reason
to add one to yi is to set the utility function U(i, t) equal to
zero in the case that the download rate of user i from the base
station and the helpers is equal to zero. We run each simulation
200 times and report the average results.

B. Simulation Results

1) WiFi without Credit Payments: In Fig. 4, we evaluate the
utility. Fig. 4(a) shows that the total utility without using the
helpers is less than that of the other methods. Also, the Unfair
method has the highest utility compared to the other methods.
However, the utility of the JSRC method is about only 5%
less than that of the Unfair method. The figure illustrates that
the utility of the JSRC-M method is about 6% lower than that
of the JSRC approach. As we increase the number of helpers,
more resources are provided, which increases the utility of
the JSRC, JSRC-M, and the Unfair methods. In Fig. 4(b), we
increase the bandwidth of the links between the base station
and the clients to the range of [0.5, 1] and repeat the pervious
experiment. The total utility of all of the methods increase
when the clients can download more data directly from the
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Fig. 5. Total utility of the clients, delivery rates ∈ [0.5, 1], n = 10, T = 50,
btj ∈ [2, 4], btji ∈ [1, 2]. (a): bti ∈ [0.2, 0.4]; (b): bti ∈ [0.5, 1].

base station. In Fig. 4(b), the difference between the utility of
the No-helper method and the other methods is less than those
in Fig. 4(a). When the cellular connection of the clients has
sufficient bandwidth, there is not need for the helpers.

The previous experiments show that there is no huge
difference between the utility of the Unfair, JSRC, and JSRC-
M methods. These results illustrate the effectiveness of our
opportunistic scheduling in using the resources. In order to
check if our opportunistic scheduling mechanisms can provide
fairness, we measure the standard deviations of the total utility
that the different clients receive. Fig. 5 depicts the utility
standard deviation of the scheduling methods. The figure
shows that the standard deviation of the JSRC and JSRC-M
methods are almost the same. However, the standard deviation
in the case of using the Unfair method is between 3 to 4.5 times
that of the JSRC and JSRC-M methods. The utility standard
deviation of the Unfair method increases as we increase the
number of helpers. The reason is that, more helpers will
increase the chance that some of the clients are connected to
the helpers through channels with good conditions. Therefore,
these clients receive much more utility than the other clients.

Fig. 5(b) shows the empirical CDF of the utility standard
deviation in the case of using the JSRC method to that of the
Unfair method. For each run, we divide the utility standard
deviation of the Unfair method by that of the JSRC method,
and plot the empirical CDF. The figure shows that in 50% of
the cases, the utility standard deviation of the Unfair method
is up to 5 times that of the JSRC method. Moreover, in 20% of
the cases, the utility standard deviation of the Unfair method
is more than 6 times that of the JSRC method.

2) WiFi with Credit Payments: We repeat our first exper-
iment to evaluate the utility in the case of considering the
costs. Fig. 6(a) depicts that the total utility without using the
helpers is up to 60% less than the other methods. The Unfair
method has the highest utility compared to the other methods.
Also, the utility of the JSRCP method is about only 5% less
than that of the Unfair method. The utility of the JSRCP-M
method is about 2% lower than that of the JSRCP approach. In
the JSRCP-M method, we use the utility enhancement due to
the received help from the helpers to calculate the αi variable.
Clearly, as the number of helpers rises, more help is provided
to the clients, and the utility of the methods increases.

We compare the standard deviation of the utility that the
clients receive in Fig. 6(b). The standard deviation of the
JSRCP and JSRCP-M methods are very close. However, the
standard deviation of the JSRCP-M method is less than that of
the JSRCP method, which means JSRCP-M is more fair than
the JSRCP method. This is due to calculating αi based on the
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Fig. 6. Delivery rates ∈ [0.5, 1], n = 10, T = 50, btj ∈ [2, 4], bti ∈
[0.2, 0.4], btji ∈ [1, 2], eci = 0.3, ewi = 0.1, z = 0.1. (a): Total utility of the
clients; (b): Standard deviation of the clients’ utilities.

utility enhancement that client i receives from the helpers. The
standard deviation in the case of using the Unfair method is
up to 4 times that of our proposed methods. From the results
in Figs. 6(a) and (b), we can conclude that using the JSRCP
and JSRCP-M methods we can provide fairness at a cost of
about 2-5% reduction in the total performance.

VI. CONCLUSION

Ubiquitous Internet connection access is becoming a re-
quirement of our lives. Also, the amount of data requested by
the mobile users is increasing rapidly. An effective approach
to address these two demands is to use cooperative mobile
Internet access. In this work, we consider the problem of
providing an Internet connection to a set of clients with the
cooperation of a set of helpers. In order to increase the total
utility of the clients, we use opportunistic scheduling to use
the resources efficiently. The reported simulation results show
the effectiveness of our proposed methods.
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