File Structure Design

of Video Capture and

Compress Application

submitted by

Ken Gorman

Temple University

CIS585 – Video Compression over IP

February 28, 2002

Modified by Longin Jan Latecki

March 7, 2002

Table of Contents
2Table of Contents

3Objective

3Configuration

3Case Study:

3Learning process

4Overview

4Implementation / Deployment

5File Header

5Frame Header

6Data

6Results / Summary

6Future Research

7Microsoft Developer Network CD – MSDN, October 2001

Objective
The objective of this project is to develop a file structure that will contain a file of compressed Motion JPEG images captured by an application. To date, various vendors have created their own proprietary solutions that apply JPEG to individual frames of a captured sequence of frames and have subsequently called this “motion JPEG”.

The goal of the file format is to implement a standard way to store a compressed video file so that other applications can interpret and use this data.

Configuration

Using the Microsoft Video Capture Library (VIDCAP.DLL) on a Microsoft Windows 2000 Professional machine utilizing a Logitech WebCam configured through the USB port, an image can be captured and worked with using the methods and functions provided by the VidCap DLL and extensions created to allow image capture, compression, archiving, and streaming.

Case Study:
Working with Microsoft Visual Studio on a Windows 2000 Professional machine, a video capture application was created that allowed the capture of video from a WebCam into a file. The file structure is defined below. The file is a compressed video file using Motion JPEG.

Through the use of Active Template Library (ATL), Microsoft Foundation Classes (MFC), and the Component Object Model (COM), this application made full use of the cutting edge, feature rich services offered by the Visual Studio environment.

Learning process

The creation of the Video Capture application required experience in many technologies and the rapid learning of other technologies. These included:

· several development tools (Microsoft Visual Studio, Microsoft VidCap API, event based programming, and Microsoft Foundation Classes.)

· several current and emerging languages and technologies, including networking fundamentals and SCTP (Stream Control Transmision Protocol). The application was written entirely in C++.

· and several utility tools (i.e. paintbrush for image manipulation)

Overview

The design of the ultimate VideoCapture application is still in progress, some fundamental design decisions have been made. In order to facilitate the ultimate goal of transmitting the captured video data over a network using networking calls, an object conforming to the IStream interface will be constructed suporting the basic Read, Write, and Seek methods. By doing this, the same inteface will be used to Stream a video capture sequence to a fixed storage medium (disk) in the initial program, and yet will be expanded to stream to a network in subsequent versions.

An Image object will be created that will support Save, Get, and Display methods. The Save method will pass a pointer to the IStream interface (either disk or network) and its implementation will remain constant regardless of where the video will be streamed to. The display method will display the image on the screen. Please note that a client application receiving the stream will simply by able to use the Get and Display methods to properly reconstruct the stream on the receiving end.

Implementation / Deployment

Requirements and Limitations

A proper file format cannot be constructed without understanding the requirements and limitations of that file format. Below is a first attempt at documenting the file format requirements for the VideoCapture application being proposed.

· File Size Limitation – initially, there will not be a file size limitation

· Frame Size limitation – all frames will be the same size, i.e. the height and width of successive frames will remain constant.

· Easily modifiable to support both file streaming and network streaming

· Portable across various operating systems

· Expandable and upgradeable to prevent future obsolescence

· Ease of implementation

File Header

	Name
	Size
	Description

	FileFormat Version
	4 byte integer
	As the design evolves and more requirements are added, a version identifier will identify the version of the file format used. Subsequent clients and servers will be able to decode files streamed in any previous version. We will use version value 1

	Encoding Type Used

	4 byte integer
	Value 0 means jpeg

	Height
	4 byte integer
	

	Width
	4 byte integer
	

	Number of Frames
	4 byte integer
	

	File Header offset
	4 byte integer
	the offset in bytes from the beginning of the file header

	Additional Data
	varies
	(optional) additional data to support future expandability

Frame Header

	Name
	Size
	Description

	Frame Number
	4 byte integer
	Each frame will be individually numbered to be able to determine dropped frames

	Time Stamp
	4 byte integer
	The timestamp of a particular frame measured in seconds

	Fractional Time Stamp
	4 byte integer
	The fractional piece of a particular frame measured in microseconds

	Size of Payload
	4 byte integer
	in bytes

	Frame Header 0ffset
	4 byte integer
	the offset in bytes from the beginning of the frame header

	Additional Data
	varies
	(optional) additional data to support future expandability

Data

Payload – The payload will consist of the actual compressed JPEG file.

Some additonal notes: both the file header and the frame header container header offset fields which indicate the start of the either the next frame or the payload content. This allows additional data to be located at the end of the header but before the next frame. This additional data field will allow both future versions of the file format to be backward compatible with current (existing) versions of this format.

Results / Summary
The objective of this project was to define a file format specification to be used as the basis for both file streaming and network streaming of a captured video sequence comrpessed using motion JPEG. Initially, the objectives of the project were reached, however, future development and implementation of the final full featured application will better indicate the results.

Future Research
This document represents the first step in the evolving development of a full featured video capture, streaming and distribution application running in the Windows environment. Subusequent steps will be to implement the rest of the requirements as outlined in the CIS585 course home page, i.e. http://www.cis.temple.edu/~latecki/Courses02/as585-02.htm

References

Microsoft Developer Network CD – MSDN, October 2001

CIS585 – Video Compression over IP Course Home Page

http://www.cis.temple.edu/~latecki/Courses02/as585-02.htm

