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Indoor environment is a common scene in our everyday life, and detecting and tracking multiple

targets in this environment is a key component for many applications. However, this task still

remains challenging due to limited space, intrinsic target appearance variation, e.g. full or
partial occlusion, large pose deformation, and scale change. In the proposed approach, we give a

novel framework for detection and tracking in indoor environments, and extend it to robot

navigation. One of the key components of our approach is a virtual top view created from an

RGB-D camera, which is named ground plane projection (GPP). The key advantage of using
GPP is the fact that the intrinsic target appearance variation and extrinsic noise is far less likely

to appear in GPP than in a regular side-view image. Moreover, it is a very simple task to

determine free space in GPP without any appearance learning even from a moving camera.
Hence GPP is very di®erent from the top-view image obtained from a ceiling mounted camera.

We perform both object detection and tracking in GPP. Two kinds of GPP images are utilized:

gray GPP, which represents the maximal height of 3D points projecting to each pixel, and

binary GPP, which is obtained by thresholding the gray GPP. For detection, a simple connected
component labeling is used to detect footprints of targets in binary GPP. For tracking, a novel

Pixel Level Association (PLA) strategy is proposed to link the same target in consecutive frames

in gray GPP. It utilizes optical °ow in gray GPP, which to our best knowledge has never been

done before. Then we \back project" the detected and tracked objects in GPP to original, side-
view (RGB) images. Hence we are able to detect and track objects in the side-view (RGB)

images. Our system is able to robustly detect and track multiple moving targets in real time.
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The detection process does not rely on any target model, which means we do not need any

training process. Moreover, tracking does not require any manual initialization, since all en-

tering objects are robustly detected. We also extend the novel framework to robot navigation by

tracking. As our experimental results demonstrate, our approach can achieve near prefect
detection and tracking results. The performance gain in comparison to state-of-the-art trackers

is most signi¯cant in the presence of occlusion and background clutter.

Keywords : Online tracking; robot navigation; depth camera.

1. Introduction

Online detection and tracking multiple targets in cluttered indoor environments are

challenging tasks due to high intrinsic variation in appearance, shape, scale, pose,

viewpoint, and extrinsic noise like illumination variance. In this paper, we present a

uni¯ed framework that can be used for online category free object detection,

tracking, and extend our framework to online, autonomous mobile robot navigation.

Figure 1 gives the processing °ow of the proposed approach. Figure 1(a) shows our

mobile robot Pekee II26 and its Kinect RGB-D sensor27 mounted at 2m height. Given

a depth image (shown in Fig. 1(b)), we recover the 3D point cloud and detect the

ground plane, which usually represents the °oor. Then we compute a top-view of the

scene, called GPP. To obtain GPP, we project all the 3D points to the ground plane,

and remove the ground plane points themselves. Two kinds of GPP images are

utilized in this paper: gray GPP (shown in Fig. 1(e)), which represents the maximal

height of 3D points projecting to each pixel, and binary GPP (shown in Fig. 1(d)),

which is obtained by thresholding the gray GPP. Detecting moving targets in GPP is

a signi¯cantly simpler task than in the original RGB or depth images. The detected

moving targets are back projected to the original RGB image (shown in Fig. 1(g)).

Based on the detection results, a novel pixel level association (PLA) algorithm is

proposed to estimate the motion of multiple targets, Fig. 1(h). Since we are able to

not only detect moving objects but also static objects in GPP, our framework easily

extends to online robot navigation by tracking. The path planning is performed

completely in GPP, Fig. 1(i).

Compared with outdoor environment,45 e.g. Fig. 2(a), the typical indoor envi-

ronment, e.g. Fig. 2(b), is often more cluttered in side-view (RGB) images, the

objects often occlude each other by the law of projective geometry, but when viewed

from above, i.e. in GPP, they are clearly separated. Therefore, detecting and tracking

targets in GPP is signi¯cantly easier than in the standard side-view images. In

addition, bene¯t from GPP, the potential position and scale of the target can be

predicted by using the parameters from previous frames. This is the main motivation

for the proposed framework.

Since the ground plane pixels are removed from GPP, the footprints of objects

can be simply segmented as connected components in binary GPP (after some

simple ¯ltering), e.g. Fig. 1(d). Hence our approach is a completely category free,

unsupervised foreground object segmentation without using any color or other

appearance information.
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Fig. 1. Flow chart of our system. (a) Pekee II mobile robot equipped with a Kinect sensor. The ground
plane projection (GPP) in (c) is obtained from the depth image in (b). (d) The foreground in GPP and

their optical °ow map. (e) The detected foreground objects in GPP. (f) Our multiple person tracking

process in GPP. The tracked objects in GPP and their back projections to the RGB images are shown in
(g) and (h). (i) Illustrates robot navigation process in GPP.

(a) (b)

Fig. 2. Indoor Environment versus Outdoor environment. (a) Outdoor environment with multiple tar-

gets from PETS dataset. (b) Indoor environment with multiple targets from our dataset.
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Although ground plan is commonly utilized for object location of mobile robots

equipped with stereo cameras, the objects need to be ¯rst detected in the side-view

(RGB) images in conventional methods.9,25 The goal of this paper is not to present a

novel GPP. In contrast, we aim to present a novel framework to utilize GPP. The key

di®erence in our approach is that objects are ¯rst detected in GPP directly and then

back projected to the side-view (RGB) images. This di®erence leads to nearly perfect

detection results in the original RGB images in our system, with very low false

negative and false positive rates.

Based on the footprints detection results in binary GPP, a novel PLA algo-

rithm is proposed to link the detected target in consecutive gray GPP frames,

which is the main contribution of our approach. Conversional multiple targets

tracking methods use instance level association, where object detection is followed

by a linking process. Hence when object detection fails, the linking process is likely

to make mistakes, and the tracking process may fail. In contrast, in our approach,

instance association is performed in gray GPP as PLA, where pixels are linked

based on their optical °ow (also computed in gray GPP). Here, the critical ob-

servation is that height value of a pixel in gray GPP is almost identical to the

value in the previous frame due to high frame rate. Hence it naturally satis¯es the

brightness constancy property.32 A °ow map obtained from consecutive gray GPP

frames is shown in Fig. 1(f). Since targets are clearly separated in GPP, we can

easily track multiple moving targets in the cluttered scene.

We should mention that the existing online tracking algorithms4,23,37 have great

di±culty handling tracking multiple targets. \Online" means that the information

from forthcoming frames cannot be used in current frame, only the information from

previous frames can be used. On the other hand, existing multiple targets tracking

algorithms39,41 use the information from the whole sequence, and hence it may not

be possible to extend them to \online" applications. The proposed approach per-

forms online tracking and its implicity makes it possible to run it in real time, in

particular, since our approach only uses pixel level cues in consecutive frames for

linking.

With the inexpensive Kinect sensor, it is easy to extend our system to other

applications like video surveillance in indoor environment, human–computer inter-

action, and robot vision. We utilize our approach for real-time robot navigation.

While the navigation target is usually characterized as a static location on the map,

many real life applications require the robot to navigate towards a speci¯ed moving

target. For this kind of tasks, the robot needs to continuously identify and localize

the target. We focus on such tasks and perform navigation by tracking in our

framework. Hence the moving target is detected based on the footprints segmenta-

tion in binary GPP and tracked based on the PLA in gray GPP. Finally, a con-

strained A� searching is utilized for path planning in GPP.

As we will demonstrate in our experimental results, the proposed approach yields

robust and stable object detection results in both world coordinates of GPPs and in
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the original, RGB images, and the multiple targets tracking can achieve perfect

performance even in very challenging environments. For robot navigation, our sys-

tem is able to track moving targets successfully, which leads to correct navigation

results.

Furthermore, we also consider dark indoor environments so that it is even im-

possible for humans to see anything in the side-view (RGB) images. With the help of

Kinect sensor, our framework still works ¯ne in such conditions as we will demon-

strate in our results for detection, tracking, and robot navigation. This is a dis-

tinctive feature of our system, made possible by performing detection, tracking, and

navigation in GPP. It is very useful for special environments like industrial and

military environment where the normal lighting condition maybe unavailable.

The main contributions of the proposed approach are summarized as follow:

. A novel tracking framework based on GPP image. It not only allows for tracking in

world coordinated, but also for robust tracking in side-view (RGB) images, by

back projecting the tracked objects to them.

. A novel PLA algorithm is proposed for multiple targets tracking, PLA works on

gray GPP and it works extremely well with both a static camera and a moving

camera. It utilizes optical °ow in gray GPP, which is a novel and extremely useful

application of optical °ow.

. The \online" and real-time computation speed makes our approach suitable for

many challenging applications, in particular, since it works under normal light

condition as well as in darkness.

The paper is organized as follows: Sec. 2 reviews the related work. In Sec. 3, GPP

is introduced. The proposed detection, tracking and robot navigation algorithms are

described in Secs. 4–6, respectively. Experiments are carried out in Sec. 7.

2. Related Work

The plan view-like representations are common for mobile robots.2,21,38 Ess et al.16

present a stereo-based system for the creation of dynamic obstacle maps for auto-

motive or mobile robotics platform. There, pedestrians are ¯rst detected in 2D RGB

images using a standard appearance-based detector. Then the position of detected

objects on the ground plane is computed. This approach is then utilized to improve

human tracking results14 and in obstacle detection in crowded scenes.10,15,34 In

summary, those methods follow the traditional steps: ¯rst, detect objects in side-view

(RGB) images by using appearance and color, and then ¯nd their locations on the

ground plane. Hence these methods are sensitive to the detection results on side-view

(RGB) images, the robot will not see the object if the 2D image detector cannot ¯nd

the object in the side-view (RGB) image. As stated in the introduction, our frame-

work is very di®erent, since object detection and tracking are both performed in GPP

image. If needed, the detection and tracking results are back projected to the RGB
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images. Our approach can achieve excellent detection and tracking results. More-

over, it can also be used to improve the performance of the above mentioned

methods. Li et al.31 demonstrated the fact that GPP makes object detection easier

and more robust, even in cluttered scenes. Burschka et al.9 propose a plan-view based

obstacle detection and avoidance system for mobile vehicles equipped with a stereo

camera. Their work includes ground plane estimation, plane removal, and grouping.

Although their approach provides a vision-based alternative to the range sensors for

robots, they only focus on detection of obstacles in plan view images. As we will

show, GPP is also able to play an important role in object detection and tracking in

the original color images. Harville and Li25 describes a person tracking and activity

recognition method that utilizes the maximum height of objects above the ground

plane, which is represented as 2D height image. However, it does not back project the

objects detected on the ground plane to the original images, i.e. it does not consider

the relationship between GPPs and original images. As we show, the interaction

between GPP and the side-view RGB image is a powerful tool to improve the

detection and tracking.

Object detection is an intensely studied topic in computer vision, and there exists

many kinds of detection strategies, like appearance-based detection paradigm.13,19 In

appearance-based detection, SIFT33 or HOG12 features are often used to capture the

appearance information of the target. Shape information is also commonly used in

detection.6,40,48 All those methods work only with RGB images, and the main dif-

ference of the proposed approach is that we do not perform object detection by

analyzing the original RGB image, instead, we perform detection as object footprint

detection in the GPP image. Another di®erence is that all the detection methods

mentioned above need to train a target model for a speci¯c class, but our method is

unsupervised and category free. This makes our algorithm easy to use for di®erent

applications.

Visual tracking is known as online category free tracking.3,17,18,29,30,35,44,46,47 In

this tracking paradigm, the target is manually selected in the ¯rst frame. Then the

tracker will online track the target. Those methods use di®erent strategies to learn

the appearance model during tracking progresses. Our approach can also online track

the targets, however, we do not need any manual labeling of the target in the ¯rst

frame, since it detects moving targets automatically. Furthermore, our approach can

easily track multiple targets, which is beyond the ability of most traditional visual

tracking algorithms.

State-of-the-art approaches for multiple target tracking7,22,36,42,43 do not need any

initialization and can handle multiple targets naturally. These approaches are known

as association-based trackers. The key di®erence between our approach and those

multiple targets tracking methods is that our method is an online algorithm, while all

those methods are o²ine algorithms, where multiple targets tracking problem is

formulated as global optimization task. Another di®erence is that those multiple

targets tracking methods need to train appearance model for speci¯c class, hence
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they are sensitive to the detection results in RGB images. A comparison of our

tracking framework with other tracking methods is given in Table 1.

3. Ground Plane Projection

3.1. Generating GPPs

Given are a RGB frame It and a corresponding depth frame Dt at time t obtained

with a Kinect sensor, as shown in Figs. 3(a) and 3(b), respectively. We ¯rst obtain

the set of 3D points Kt from the depth map Dt, which represents a rough 3D scene

reconstruction result, Fig. 3(c). The ¯rst step of our system is to ¯nd the ground

plane Pt in Kt. We utilize a RANSAC algorithm20 to estimate it. We assume that

the largest plane (measured in point count) such that there is no other points below

it is the ground plane Pt. This assumption is usually satis¯ed if the camera is

looking down, and the °oor, which is usually the ground plane in indoor applica-

tions is not too cluttered. This assumption can be weakened if rough estimates of

roll and pitch angles of the camera relative to the ground plane and of the camera

height are known. Then the ground plane is the largest plane with no other points

below it within the limits set by the rough estimates.

We denote with Pt the set of 3D points that lie on the ground plane Pt. (The

RANSAC plane ¯tting algorithm returns both the plane equation and the set of its

points.) Then we perform coordinate change transformation T from the original

camera coordinates of points Kt to new coordinates T ðKtÞ such that the ground

plane is the ðx; yÞ-plane and the camera ðx; y; zÞ coordinates are ð0; 0;hÞ, where h is

the camera height (above the ground plane). We also observe that the z coordinate

of each point in T ðKtÞ denotes its height (above the ground plane).

After removing the ground plane points T ðPtÞ, we project the remaining points to

the plane T ðPtÞ, i.e. to ðx; yÞ-plane. More precise, we project points in T ðKtnPtÞ to
plane T ðPtÞ by simply dropping their z coordinates. We obtain the GPP imageHt by

¯rst quantizing plane T ðPtÞ to a square grid with the square size of 1 cm� 1 cm and

then counting the number of points projected to each square. The value of a pixel of

Ht, representing a square, is set to the maximum height of pixels projecting to the

corresponding square. Hence Ht is a gray level image.

A simple ¯lter operation is performed to achieve a binary GPP image Gt. A pixel

of Gt representing a square is set to 1 if there is more than k 3D points projecting to

Table 1. Comparison of our framework with association-based tracking paradigm and category
free tracking paradigm.

Our Framework Association-Based Tracking Category Free Tracking

Target category Category free Speci¯c category Category free
Initialization Auto, perfect Auto, imperfect Manual, perfect

Track solution Individual Global Individual

Online/O²ine Online O²ine Online

Motion Cue Consecutive frames Entire sequence Consecutive frames

Online Multiple Person Detection and Tracking
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it, and it is set to 0 otherwise. The 0 values in Gt indicate vacant space, while the 1

values represent occupied space. The threshold k, which is set to 12 in all our

experiments, allows us to eliminate noisy and outlier 3D points. The threshold on the

count of 3D points acts as a low-pass ¯lter that removes such noisy points. In

particular, it e±ciently eliminates points on the °oor that are incorrectly recovered

as points above the °oor. This is important to eliminate phantom objects. Ht and Gt

are both important for our approach. In particular, Gt is very useful for object

detection in GPP while Ht for motion estimation.

3.2. From GPP back to the original image

It is easy to determine the \back projection" from Ht or Gt to the depth frame Dt at

time t. We know the correspondence between pixels inDt and 3D points cloudKt. We

also know the correspondence between 3D points cloud Kt and pixels in Ht or Gt.

(a)

70

80

90

100

110

120

130

(b)

(c)

Fig. 3. Scene layout reconstruction. (a) Side-view (RGB) frame, (b) depth frame and (c) the scene layout
(3D point cloud).
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Hence we can de¯ne a mapping � fromDt to Ht. The \back projection" is the inverse

mapping ��1. We can also interpret ��1 as the mapping from Ht to It (the RGB

frame at time t), since It and Dt can be calibrated so that the correspondence of their

pixels is known.

4. Multiple Object Detection

4.1. Object detection with footprint segmentation in GPP

There are several reasons why the task of object detection in GPP is greatly sim-

pli¯ed as compared to the original images. There is no perspective distortion in GPPs

and the scale is known. Moreover, the impact of occlusion that is typical to per-

spective (or orthographic) projection in regular 2D images is signi¯cantly reduced

in GPPs.

Since the GPP frame Gt is a binary image, we can simply use a connected com-

ponents labeling algorithm as footprint detector in Gt. This simple process allows us

to detect all the targets supported by the ground plane, but the disparity maps

usually only provide good information at the edges, and consequently GPPs may

contain object footprints that are incomplete (in particular, objects farther away

from camera). As Fig. 1(c) shows, there exist lots of invalid pixels (holes) in GPPs.

To reduce the invalid pixels, a two-step preprocessing is applied to ¯ll the vacant

pixels:

(1) A value of each 0 pixel is replaced with the value of its nearest neighbor in a

4� 4 window.

(2) A median ¯lter with 3� 3 window is used to smooth GPP images.

Although this preprocessing substantially improves the quality of GPPs, it cannot

¯ll larger gaps. Therefore, we enclose the detected connected components with

bounding boxes. We also utilize a prior on the expected size of the bounding boxes.

Bounding boxes which are too large or strip-like are not considered, for they are

probably background clutter or walls. This allows us to focus on foreground objects

and ignore the background. A representative set of detected footprints and the

corresponding back projected objects is shown in Fig. 1(g). The upper image shows

our footprint detection results in GPP image Ht, the lower image shows the \back

projected" objects on the side-view (RGB) image.

4.2. Background model

Our footprint detection detects all objects on the ground plane, which include both

targets and obstacles, but we only interested in the moving targets like persons in

this work. On the other hand, the depth information from Kinect is sometimes

unstable, which makes some static objects in GPP look like moving objects. To focus

Online Multiple Person Detection and Tracking
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on moving targets like persons, a background model is learned as follows:

Bðx; yÞ ¼ 1 if Htðx; yÞ > �; t 2 f1; . . . ;Tg;
0 else;

�
ð1Þ

whereHt is the gray level GPP frame at time t, e.g. Fig. 4(b), T is the total number of

video frames used to build the background model, and � is a threshold. With this

simple background learning, we are able to obtain a stable background model,

e.g. Fig. 4(c).

In order to detect all the moving target on Ht, we remove the scene noise by pixel

wise multiplication between GPP frame Htþ1 and B:

Htþ1 ¼ Htþ1 � B; ð2Þ
where Htþ1 is the GPP image after removing the scene noise, e.g. Fig. 1(e), the

moving targets in Htþ1 are clear enough compared with Htþ1, e.g. Fig. 1(c). We also

generate the binary image Gtþ1 based on Htþ1, e.g. Fig. 1(d). Then it is easy to locate

multiple moving targets in Gtþ1 using only the footprint detection described above.

5. Multiple Moving Target Tracking with PLA

In this section, we present a robust and e±cient multiple target tracking algorithm

based on GPP. In our system we do not need to learn any model of the target nor

manually label the target to initialize the tracking, since all entering objects could be

robustly detected in Gtþ1 as described in Sec. 4.

We formulate the multiple target tracking as index ID assignment task. Suppose

we have M targets fOð1;tÞ; . . . ;OðM;tÞg in frame Ht at time t, each has an numerical

index ID L 2 f1; . . . ;Lg, where L is the total number of di®erent targets that appear

in all the previous frames. L may not be equal to M at time t. As described in Sec. 4,

we can detect the candidates set in frame Htþ1 at time tþ 1, i.e. N connected

components denoted as fOð1;tþ1Þ; . . . ;OðN;tþ1Þg are detected. Then we assign an index

ID L to each pixel inside the candidate set. The probability of Oðn;tþ1Þ being assigned

Fig. 4. Background model of a GPP video (a) are the original RGB images up to time T , (b) are the GPP

frames of the scene, and (c) is the background model learned from the GPP frames.
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an index ID is de¯ned as

P ðOðn;tþ1Þ;LÞ ¼
#fLðpÞ ¼ Lg

R
; ð3Þ

where # is the count operation, R denotes the total pixel number inside the con-

nected component Oðn;tþ1Þ, and Lð�Þ indicates the index ID of a pixel at the spatio-

temporal position p ¼ ðx; y; tÞ in Ht, it is de¯ned in Sec. 5.2.

Finally, the index ID with the highest probability is selected, i.e. the index ID

function L for Oðn;tþ1Þ is given by

LðOn;tþ1Þ ¼ argmaxP ðOðn;tþ1Þ;LÞ: ð4Þ
Here we enforce a hard constrain that L can only assign each index to at most one

candidate. If a target is in a start state, we assign a new index ðM þ 1Þ for it.

5.1. State prior

In our system, the objects can be detected automatically when they appear in the

scene. We only have two simple states prior for the index ID, called Start State and

Stop State. Such states prior are not a special assumption for our system, but they

belong to common-sense assumptions used in the multiple-target tracking litera-

tures, e.g. Refs. 7, 22 and 36.

Start State: A new index ID will be assigned to a new target appearing from the

boundary of the scene. If a target appears near the scene center, then it might not be

a new target, but the background noise. This common-sense prior makes our system

robust to phantom regions.

Stop State: A index ID will not be assigned to any target if the ID holder target

leaves the scene. If the same target comes back later, we will still assign a new index

to it.

Another special case we should mention is that if there exist multiple targets in

the ¯rst frame, we will randomly assign an index for each target. This does not

contradict the Start State assumption, because it is possible that many targets exist

at the center area in ¯rst frame.

5.2. PLA in GPP

The index assignment task in multiple target tracking is also known as instance

linking task, where an instance in the previous frame is linked to an instance in the

current frame if they are the same target. We follow the linking paradigm, but

decompose the traditional instance linking task into PLA. The whole process is

illustrated in Fig. 5, where the input is two consecutive GPP frames Ht and Htþ1.

We recall that each pixel in GPP image Ht represents the maximal height above

the ground plane of 3D points projecting to this pixel. We observe that the height

value of a pixel inHt is almost identical to the value in the previous frame due to high

Online Multiple Person Detection and Tracking
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frame rate. Hence it naturally satis¯es the Brightness Constancy property5:

Htðx; yÞ ¼ Htþ1ðxþ u; yþ vÞ; ð5Þ
where ðx; yÞ represents pixel coordinates in Ht and ðu; vÞ are the horizontal and

vertical components of the °ow ¯eld.

Let the spatiotemporal position of a pixel be denoted with p ¼ ðx; y; tÞ. The PLA
is expressed as the estimation for ðdu; dvÞ which denotes the motion of p. We follow

the incremental °ow framework. Let the °ow ¯eld be known as w ¼ ðu; v; 1Þ. The
objective is to estimate the best increment dw ¼ ðdu; dvÞ. We use the Iterative

Reweighed Least Squares (IRLS)32 to obtain the solution optical °ow vectors

ðdu; dvÞ. Figure 5(c) shows the optical °ow map obtained from (a) and (b), where the

direction of the optical °ow vectors is color coded according to the chart in (e).

Figure 5(d) shows the vectors of the selected region in (c).

Based on ðdu; dvÞ, we can easily ¯nd a pair of corresponding pixels pðx; y; tÞ and
p 0ðx 0; y 0; tþ 1Þ in consecutive frames Ht and Htþ1. For pðx; y; tÞ belongs to a con-

nected components in Ht, it has a index L. We propagate it to p 0ðx 0; y 0; tþ 1Þ:
Lðp 0ðx 0; y 0; tþ 1ÞÞ ¼ Lðpðx; y; tÞÞ; ð6Þ

where x 0 ¼ xþ du and y 0 ¼ yþ dv.

Finally, Eqs. (3) and (4) are used to assign labels to objects, i.e. each connected

component is assigned the label of the majority of its pixels.

Fig. 5. PLA. (a) and (b) are consecutive GPP frames; (c) is the optical °ow map obtained from (a) and
(b); (d) shows optical °ow vectors of the selected region in (c); (e) is the optical °ow direction chart color

encoded.
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5.3. Splitting and merging connected components

Based on PLA, split and merging operation are employed to handle multiple targets

cross walking and partial/full \occlusion" in GPP. Occlusion can still happen in

GPP, since we perform online tracking, and consequently, use only a single view at

each time step t.

Targets cross walking often lead to the index ID switch, as shown in Fig. 6(b).

This is also a problem in the GPP, since both targets are labeled as a single

connected component as shown in (c). However, the optical °ow in GPP provides a

useful tool for solving this problem. The optical °ow estimation is shown in

Fig. 6(d). Obviously, we can split the two targets for they have very di®erent °ow.

Hence we utilize the optical °ow information to split connected components

in GPP.

As mentioned above, although occlusion in GPP is less likely than in the side-view

(RGB) images, it is possible, since GPP construction is based on a single depth image

and a target can be colluded or partially occluded in the depth map. This leads to

missing or incomplete height information in GPP Ht. We call this phenomenon as

\occlusion in GPP ", e.g. in Fig. 6(f), the target is partially occluded by a chair,

which splits its connected component into many parts in Fig. 6(g).

The proposed PLA can handle such condition naturally, since in the previous

frame, shown in Fig. 6(e), the target is not occluded, and based on our PLA shown in

Fig. 6(h), the split connected components can be merged. The merged component

will be assigned the same index, because at most one index can be assigned to one

target. Hence PLA in GPP provides us with simple but very robust means for

handling partially occluded targets.

To handle the long time fully occluded targets in GPP, we utilize the following

criterion. For a target candidate Oðn;tþ1Þ at certain location, its index has strong

association with indexes of spatially nearby targets in previous several frames. We

consider all the indexed targets ON (N means neighbors) within a small temporal

window, and compute the probability of assigning index L to Oðj;tþ1Þ, which can be

stated as:

P ðOðj;tþ1ÞÞ ¼ expð�Dð�n; �ðj;tþ1ÞÞÞ; ð7Þ

where �n;n 2 f1; . . . ;Ng is the location of target On in the previous frames, and

�ðj;tþ1Þ is the location of target Oj in current frame. D is Euclidean distance. While

location information can successfully separate target candidates that are far away

from each other, there is a serious danger that the indices of target candidates will be

wrongly switched when they are relatively close.

Optical °ow seems to be e®ective for low level motion estimation, but if the pixel

do not move in consecutive frames, e.g. a person stay in the same location in several

frames, then the optical °ow cannot be used. In this case, the °ow map will appear

white color as shown in Fig. 5(e), the center region. Again our PLA can handle this

case naturally. This is so, since the detected regions (connected components) in
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binary GPP will at the same location in consecutive frames. Consequently, there is

no doubt that we should link the candidates at the same location even the optical

°ow vectors are close to zero in this region.

6. Robot Navigation

In this section, we extend out multiple targets detection and tracking framework to

robot navigation in cluttered indoor environments. Our navigation framework is

implemented on a Pekee II mobile robot shown in Fig. 1(a). It has a round base with

a tall extension (approximately 200 cm). The robot is equipped with Kinect sensor,

which can also be replaced with a BumbleBee2 stereo camera.28

The pipeline of our navigation framework is illustrated in Fig. 7. After the target

object is manually selected in the ¯rst frame, the robot approaches it through a

series of small movements in the perception/action cycle. In each cycle, the robot

¯rst acquires RGB-D frame. Next, it estimates the ground plane Pt and the GPP

images Ht and Gt as we described in Sec. 3. Here, binary GPP image Gt is used to

indicate free space for robot motion and space occupied by obstacles. We should

claim that we do not learn any background model for robot navigation, this is

di®erent from Sec. 3. However, our PLA algorithm still can identify and track the

target successfully.

Next, A� path planning24 with constraints is used to plan a path toward the target

object. Finally, the robot executes the ¯rst segment of the path only and turns to face

the target. Then the whole procedure repeats.

6.1. Target identi¯cation

To identify the navigation target in consecutive frames, an extension of our multiple

target detection and tracking algorithm is proposed in this section. Same with the

detection and tracking, our identi¯cation of the speci¯ed target is also executed on

GPP images. The di®erence is that we do not need any background model.

Suppose we know the speci¯ed target Ot in frame Ht at time t (shown in

Fig. 8(d)). To identify the target inHðtþ1Þ, the detection algorithm described in Sec. 4

is used to generate a candidate set, e.g. fOð1;tþ1Þ; . . . ;OðN ;tþ1Þg (shown in Fig. 8(e)).

Fig. 7. Navigation system pipeline.
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The modi¯cation is that we do not need to remove the background noise, hence the

candidate could be the moving target or the obstacle. We also formulate the iden-

ti¯cation of the target task as index assignment task as described in Sec. 5. In the

navigation case, only the speci¯ed target is treated as having an index ID. Then the

PLA algorithm is used to propagate the index from the target to the candidates.

Based on Eq. (6), only the real target Oðtþ1Þ at time ðtþ 1Þ can obtain the index from

the speci¯ed target at time t, hence it is easy to identify and relocate the speci¯ed

target in frame Htþ1 at time ðtþ 1Þ.
As shown Fig. 8, (a) is Ht and (c) is Hðtþ1Þ, which are both plotted in color space.

(e) is the estimated °ow map based on (a) and (c). For the color in the °ow map

encodes the motion of the pixel betweenHt andHtþ1, it is clear to see that the motion

of the speci¯ed target region is very di®erent from the surrounding region.

6.2. Constrained A* algorithm

To plan the path for the mobile robot, the basic A� algorithm24 with two constraints

is utilized in our framework.
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Fig. 8. Target tracking from mobile platform using optical °ow in GPP. Two consecutive GPP images
are shown asHt;Htþ1 in (a,b) and asGt;Gtþ1 in (d,e). The green bounding box marks the tracked target in

(d). The candidate footprints are marked with green rectangles in (e). (c) Shows the optical °ow ¯eld

obtained from Ht and Htþ1. It is used to link the target to correct candidate at time tþ 1 as shown by the
green bounding box in (f ).
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Constraint 1: The robot should always face to the target, we implement this

constraint by calculating the angle between the robot and the target, and controlling

the robot to turn the angle before path planning. This constraint is used to guarantee

the target is always inside the view of the robot, e.g. Fig. 9(a). The path planning is

then performed based on the new view of the robot.

Constraint 2: The robot should avoid going too close to obstacles. We imple-

mented this constraint by adding a distance transform term to the A� cost function.
This constraint is used to guarantee the robot will never collide with an obstacle in its

path. As shown in Fig. 1(i), the black regions are occupied by object, the gray regions

denote the constraint area that the robot could not walk, the white regions represent

the free space. The comparison between the A� algorithm with Constraint 2 and

without Constraint 2 is shown in Figs. 9(b) and 9(c).

7. Experimental Results

In this section, we evaluate our framework on following tasks: multiple moving target

detection, multiple moving target tracking, and autonomous navigation by tracking

in cluttered indoor environments.

DataSet: For detection and tracking experiments, we ¯x the position of the mobile

robot and use static Kinect camera to collect eight challenging test videos. The

videos are collected at 5 FPS with the resolution of 640� 480. In the test videos, up

to six people are shown in di®erent poses, with full and partial occlusion, large pose

deformation, large scale variation, and motion with di®erent speeds. There also exists

six foreground obstacles in the videos. The annotations identify all humans present in

the area of 3m� 2m on the ground plane, which is the area where the Kinect depth

map readings can be obtained. The videos are summarized in Table 2.

We also collected two videos in dark indoor environments so that almost nothing

can be seen in the side-view (RGB) images. These are sequences 09 and 10 in Table 2.

(a) (b) (c)

Fig. 9. The in°uence of our constraints on A� algorithm. (a) The turning angle needed for the robot to
face the target. (b) A� path with distance transform term as used in our framework. (c) A� path without

the distance transform.
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Since it is hard to annotate the RGB images in these videos, we only evaluate

detection and tracking results in Sec. 7.2.

For robot navigation evaluation, we use the Pekee II robot equipped with Kinect

sensor to track a speci¯ed person in di®erent indoor environments with various

obstacles and multiple person walking.

In all the experiments the Kinect camera is facing down, which is needed to

estimate the ground plane in all images.

7.1. Multiple targets tracking

In this section, we focus on evaluating performance of tracking multiple moving

persons. Experiments are carried out to validate the proposed approach presented in

Sec. 5.

Quantitative Comparisons: We evaluate our tracking performance with CLEAR

Metrics.8 We use four metrics: Multiple Object Tracking Precision (MOTP), False

Positive Rate (FPR), Miss Rate (MR), Number of Miss Match (IDs) and Multiple

Object Tracking Accuracy (MOTA). We give a short description for those evalua-

tion methodologies in the following.

MOTP is the total error in estimated location for matched object-hypothesis pairs

over all frames, averaged by the total number of matches made, which can be repre-

sented as MOTP ¼ P
i;t d

i
t=
P

t ct, where d
i
t denotes the distance between the object-

hypothesis i and the ground truth, ct indicates the number of matches made in time t.

MOTA is used to account all object con¯guration errors made by the tracer and is

de¯ned as

MOTA ¼ 1�
X
t

ðmt þ fpt þmmetÞ
.X

t
gt;

where mt, fpt and mmet are the number of misses, false positives, mismatches (ID

switch) at time t, respectively.

Table 2. Test videos.

Frames Max # Persons Per Frame # Persons in All Frames

Seq.01 210 2 354
Seq.02 230 4 743

Seq.03 220 2 243

Seq.04 210 3 521

Seq.05 200 3 462
Seq.06 240 3 587

Seq.07 200 6 1017

Seq.08 220 6 1211

Seq.09 150 3 —

Seq.10 140 3 —
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fp ¼ P
t fpt=

P
t gt is the total FPR, �m ¼ P

t mt=
P

t gt is the ratio of the misses

(MR) in the sequence, where gt is the number of targets present at time t. mme ¼P
t mmet=

P
t gt is the mismatch rate (IDs).

The multiple targets tracking results are compared with the state-of-the-art

multiple target tracking algorithms DP and its extension DPþNMS, which are both

proposed in Ref. 36. Both DP and DPþ NMS use detected targets in RGB images as

the candidates for linking. LSVM19 is used for human detection in RGB image as the

preprocessing for DP and DPþNMS.

Table 3 report the performance measured with CLEAR Metrics. Our method

signi¯cantly outperforms the other two algorithms. The reason is that the methods in

Ref. 36 rely on the detection results in RGB images. Hence a high detection FPR and

MR a®ect the tracking result greatly. Furthermore, Ref. 36 also have an assumption

that appearance and trajectory should not change greatly. It is well known that this

assumption is not adequate for challenging indoor environments.

Since our PLA works on consecutive GPP frames and since the targets are clearly

separated, due to the removal of the background noise, the GPP motion cues are

Table 3. Performance evaluation in CLEAR metrics.

MOTP MR (%) FPR (%) IDs MOTA (%)

Seq.01 Our 15.48 4.52 0 0 95.48

DPþ NMS 18.82 27.31 68.85 4 2.93
DP 18.83 26.64 69.53 9 1.81

Seq.02 Our 16.85 6.19 0.81 0 93.00

DPþ NMS 31.16 43.07 49.26 7 6.64
DP 31.15 41.15 51.18 9 6.34

Seq.03 Our 19.10 8.23 0.82 0 90.95

DPþ NMS 38.11 52.03 42.97 5 2.73
DP 38.11 50.88 44.82 7 1.12

Seq.04 Our 16.28 5.17 0.74 0 94.09
DPþ NMS 26.11 41.30 53.99 3 3.29

DP 26.15 39.98 54.63 4 3.49

Seq.05 Our 21.19 4.73 1.07 0 94.20
DPþ NMS 42.89 38.14 51.88 3 8.48

DP 42.88 36.99 53.50 4 7.51

Seq.06 Our 15.83 6.21 1.31 0 92.48
DPþ NMS 35.66 31.33 55.35 4 11.66

DP 35.67 30.90 56.97 4 10.47

Seq.07 Our 17.61 8.72 4.31 2 86.02

DPþ NMS 59.31 54.96 43.21 1 1.33

DP 59.30 53.11 44.85 2 1.04

Seq.08 Our 29.83 17.69 6.11 5 73.93

DPþ NMS 51.11 69.11 30.13 0 0.76

DP 51.13 68.42 30.89 0 0.69

Average Our 19.02 7.68 1.89 0.86 90.02

DPþ NMS 37.89 44.65 49.45 3.38 4.73

DP 37.90 43.51 50.79 4.88 4.06
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clearly su±cient to link the di®erent targets. Because the detection process on GPP

gives good detection results, we have a very low MR as shown in Table 3. Only in the

Seq. 08 the MR is a bit higher. The reason is that in this video, we always have about

six persons in a limited indoor space. As shown in Fig. 10 (Seq.08(a)–(c)) this video is

1

2

1

2

2

1

2

3

1

4

3

4

2

1

4

3

1

2

1

2

2

1

1

2

3

2

1

2

1

3

2

1

3

1

2

1

3

1

2

3

1

3

2

3

1 2

3

1

2

2

1

2

3

1

3

2

4

1

6

5

4

3

1

2

6

5

4 3

1
2

3

5

2

4

1

6

3

5 2

4
1

6

1

4

2

5

6

3

1 4
2 5

6
3

Fig. 10. The top row shows our tracking results in GPP frames, and the second row shows the tracking

results back projected to the RGB frames. Bounding boxes with the colors represent the same target.
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very challenging for the scene is very cluttered, occlusions exist in almost very frame.

The detection and tracking is a few orders of magnitude more challenging in RGB

images. As shown in Table 3, MR for Seq.08 of the two methods in Ref. 36 is 69:11%

and 69:42%, which means that they fails to track most of the targets. In contrast our

MR is 17:69%.

We have low FPR in all videos, which means that we successfully track most of

the targets. Our method and the two methods in Ref. 36 have low IDs in all videos,

but the reason is di®erent, since the IDs are counted only in frames in which moving

targets are detected. So our IDs make sense for we have a high success tracking rate,

and low IDs mean that we can always separate the di®erent targets. In contrast,

Ref. 36 have a very a low tracking rate. The MOTA shown in Table 3 clearly show

that our overall performance greatly outperforms the two methods in Ref. 36.

Example tracking results are shown in Fig. 10.

7.2. Multiple target detection and tracking in dark indoor environments

In this section, we test our framework in dark cluttered indoor environments. As

shown in the ¯rst row in Fig. 12, Seq.09 and Seq.10, we almost cannot see anything in

the RGB images. Hence the traditional detection and tracking algorithm cannot work

on this case. Thanks to Kinect sensor, the depth information is not a®ected. Conse-

quently, our tracking framework in GPP images still can be utilized, and its perfor-

mance is una®ected. Figure 12 illustrates some of our detection and tracking results.

7.3. Robot navigation

In this section, we evaluate our method for real-time robot navigation by tracking.

Our robot Pekee II is used. For navigation, we need the user to manually label the

target we want to track in the ¯rst frame. Then the robot autonomously performs

navigation by tracking as described in Sec. 6.

Figure 11 shows some navigation results. The obstacle locations are di®erent in

each video, and there are also other moving target that walk access in the environ-

ment as shown in Figs. 11(b) and 11(c). The tracking of the target is a very chal-

lenging task, as illustrated in Fig. 11. However, with the detection and tracking in

GPP, our robot can always track the target person successfully, even in the presence

of other moving persons in close proximity. We need to stress that no appearance

information nor learning was utilized. The reason for the successful navigation by

tracking is obvious: although in the RGB frames, the scene is very cluttered as shown

in Fig. 11, the ¯rst row of (a)–(d), the target is clearly separated from the back-

ground in the GPP images.

We also illustrate robot navigation in dark indoor environments in Fig. 13, where

¯rst we have the normal lighting condition for the user to label the target, and then

the robot navigation is done in dark environments. The proposed navigation by

tracking method was also successful under such conditions.
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(a)

(b)

(c)

(d)

Fig. 11. The ¯rst row of each sequence shows the side-view RGB images. The second row shows the GPP

images and the green box indicating the tracked target. The third row of each sequence shows the path

planning results in GPP (color online).
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Fig. 13. Navigation results on dark indoor environments. The ¯rst row shows the side-view RGB images.

The second row shows the GPP images and the green box indicating the tracked target. The third row
shows the path planning results on GPP (color online).
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Fig. 12. Detection and tracking results in dark indoor environments. The ¯rst rows show the back

projected tracking results on RGB images. The second rows show the tracking results in GPP images. The
third rows show the detection results in GPP images.
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8. Conclusion

In this paper, we focus on the indoor environment and utilize the depth information

from RGB-D cameras in a novel way. The key contributions of the proposed method

are: (1) a novel tracking representation based on GPP, (2) the detection process is

performed in GPP by simple footprints segmentation, which is a category free and

unsupervised detection method, (3) based on the detection results in GPP, a novel

motion analysis named PLA is proposed on GPP, (4) PLA is based on optical °ow in

GPP. As clearly demonstrated, the optical °ow in GPP is signi¯cantly more robust

and stable than the commonly used optical °ow in RGB images.

By back projecting the detection and tracking results to the original RGB images,

we obtain a system for object tracking in RGB images. The key property of the

proposed method is that no computation is actually performed in the side-view RGB

images.

As our experimental results demonstrate, the proposed approach outperforms the

state-of-the-art appearance-based object detection and tracking algorithms by a few

orders of magnitude. We also achieve excellent results in robot navigation by

tracking.

Acknowledgments

We would like to thank Zygmunt Pizlo and Yunfeng Li from Purdue University for

their inspiring discussions. This work was supported by National Science Foundation

under Grants OIA-1027897 and IIS-1302164, and by the National Natural Science

Foundation of China (NSFC) Grants 61222308, 60903096 and 61173120, Funda-

mental Research Funds for the Central Universities HUST 2013TS115, the Program

for New Century Excellent Talents in University.

References

1. A. Adam, E. Rivlin and I. Shimshoni, Robust fragment-based tracking using the integral
histogram, in Proc. IEEE Computer Vision and Pattern Recognition (NY, USA, CVPR)
(2006), pp. 798–805.

2. M. Arie, A. Moro, Y. Hoshikawa, T. Ubukata, K. Terabayashi and K. Umeda, Fast and
stable human detection using multiple classi¯ers based on subtraction stereo with
HOG features, IEEE Int. Conf. Robotics and Automation (Shanghai, China, ICRA)
(2011), pp. 868–873.

3. S. Avidan, Support vector tracking, IEEE Trans. Pattern Anal. Mach. Intell. 29 (2007)
261–271.

4. B. Babenko, M. H. Yang and S. Belongie, Robust object tracking with online multiple
instance learning, IEEE Trans. Pattern Anal. Mach. Intell. 27 (2004) 1619–1632.

5. S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black and R. Szeliski, A database and
evaluation methodology for optical °ow, Int. J. Comput. Vis. 92 (2011) 1–31.

6. S. Belongie, J. Malik and J. Puzicha, Object detection with discriminatively trained part-
based models, IEEE Trans. Pattern Anal. Mach. Intell. 27 (2004) 1619–1632.

Y. Zhou et al.

1455001-24



7. J. Berclaz, F. Fleuret, E. Turetken and P. Fua, Multiple object tracking using K-shortest
paths optimization, IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011) 745–770.

8. K. Bernardin and R. Stiefelhagen, Evaluating multiple object tracking performance: The
CLEAR MOT metrics, J. Image Video Process. 2008 (2008) 1–10.

9. D. Burschka, S. Lee and G. Hager, Stereo-based obstacle avoidance in indoor environ-
ments with active sensor re-calibration, IEEE Int. Conf. Robotics and Automation
(Washington, DC, USA, ICRA) (2002), pp. 2066–2072.

10. A. Collet, M. Martinez and S. S. Srinivasa, The moped framework: Object recognition and
pose estimation for manipulation, Int. J. Robot. Res. 30 (2011) 1284–1306.

11. D. Comaniciu, V. R. Member and P. Meer, Kernel-based object tracking, IEEE Trans.
Pattern Anal. Mach. Intell. 25 (2003) 564–575.

12. N. Dalal and B. Triggs, \Histograms of oriented gradients for human detection, in Proc.
IEEE Computer Vision and Pattern Recognition (San Diego, CA, USA, CVPR) (2005),
pp. 886–893.

13. C. Desai, D. Ramanan and C. Fowlkes, Discriminative models for multi-class object
layout, in Proc. IEEE Computer Vision and Pattern Recognition (Colorado, USA,
CVPR) (2011), pp. 229–236.

14. A. Ess, B. Leibe, K. Schindler and L. van Gool, A mobile vision system for robust multi-
person tracking, IEEE Computer Society Conf. Computer Vision and Pattern Recogni-
tion (Anchorage, AK, USA, CVPR) (2008), pp. 1–8.

15. A. Ess, B. Leibe, K. Schindler and L. Van Gool, Moving obstacle detection in highly
dynamic scenes, IEEE Int. Conf. Robotics and Automation (Kobe, Japan, ICRA) (2009),
pp. 56–63.

16. A. Ess, B. Leibe and L. Van Gool, Depth and appearance for mobile scene analysis, IEEE
Interestial Conf. Computer Vision (Rio de Janeiro, Brazil, ICCV) (2007), pp. 1–8.

17. J. Fan, X. Shen and Y. Wu, \Scribble tracker: A matting-based approach for robust
tracking", IEEE Trans. Pattern Anal. Mach. Intell. 34(8) (2012) 1633–1644.

18. J. Fan, Y. Wu and S. Dai, Discriminative spatial attention for robust tracking, in Proc.
European Conf. Computer Vision (Heraklion, Crete, Greece, ECCV) (2010), pp. 480–
493.

19. P. F. Felzenszwalb, R. B. Girshick, D. McAllester and D. Ramanan, Object detection
with discriminatively trained part-based models, IEEE Trans. Pattern Anal. Mach.
Intell. 27 (2004) 1619–1632.

20. M. Fischler and R. Bolles, Random sample consensus: A paradigm for model ¯tting with
applications to image analysis and automated cartography, ACM Commun. 24 (1981)
381–395.

21. D. M. Gavrila and S. Munder, Multi-cue pedestrian detection and tracking from a moving
vehicle, Int. J. Comput. Vis. 32 (2010) 1627–1645.

22. H. Gong, J. Sim, M. Likhachev and J. Shi, Multi-hypothesis motion planning for visual
object tracking, IEEE Interestial Conf. Computer Vision (Barcelona, Spain, ICCV)
(2011), pp. 619–626.

23. H. Grabner, M. Grabner and H. Bischof, Real-time tracking via on-line boosting, British
Machine Vision Conf. (Edinburgh, UK, BMVC) Vol. 1 (2006).

24. P. Hart, N. Nilsson and B. Raphael, A formal basis for the heuristic determination of
minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (1968) 100–107.

25. M. Harville and D. Li, Fast, integrated person tracking and activity recognition
with plan-view templates from a single Stereo Camera, IEEE Computer Society Conf.
Computer Vision and Pattern Recognition (Washington, DC, USA, CVPR) (2004),
pp. 398–405.

26. http://www.wanyrobotics.com/store/.

Online Multiple Person Detection and Tracking

1455001-25



27. http://www.xbox.com/en-US/Kinect.
28. http://www.ptgrey.com/products/bumblebee2/.
29. J. Kwon and K. M. Lee, Visual tracking decomposition, in Proc. IEEE Computer Vision

and Pattern Recognition (San Francisco, CA, USA, CVPR) (2010), pp. 1269–1276.
30. J. Kwon and K. M. Lee, Tracking by sampling trackers, IEEE Interestial Conf. Computer

Vision (Barcelona, Spain, ICCV) (2011), pp. 1195–1202.
31. Y. Li, T. Sawada, L. J. Latecki, R. Steinman and Z. Pizlo, A tutorial explaining a machine

vision model that emulates human performance when it recovers natural 3D scenes from
2D images, J. Math. Psyc. 56 (2012) 217–231.

32. C. Liu, Beyond pixels: Exploring new representations and applications for motion anal-
ysis, Doctoral Thesis, MIT (2009).

33. D. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis.
60 (2004) 91–110.

34. J. Ma, T. H. Chung and J. Burdick, A probabilistic framework for object search with
6-DOF pose estimation, Int. J. Robot. Res. 30 (2011) 1284–1306.

35. X. Mei and H. Ling, Robust visual tracking and vehicle classi¯cation via sparse repre-
sentation, IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011) 2259–2272.

36. H. Pirsiavash, D. Ramanan and C. Fowlkes, Globally-optimal greedy algorithms for
tracking a variable number of objects, IEEE Computer Society Conf. Computer Vision
and Pattern Recognition (Colorado, USA, CVPR) (2011), pp. 1201–1208.

37. D. Ross, J. Kim, R.-S. Lin and M.-H. Yang, Incremental learning for robust visual
tracking, Int. J. Comput. Vis. 77 (2008) 125–141.

38. S. Thrun, W. Burgard and D. Fox, Probabilistic Robotics, Intelligent Robotics and
Autonomous Agents (The MIT Press, 2005).

39. B. Yang, C. Huang and R. Nevatia, Learning a±nities and dependencies for multi-target
tracking using a CRFmodel, IEEE Computer Society Conf. Computer Vision and Pattern
Recognition (Colorado, USA, CVPR) (2011), pp. 1233–1240.

40. X. Yang, H. Liu and L. J. Latecki, Contour-based object detection as dominant set
computation, Pattern Recogn. 45 (2012) 1927–1935.

41. B. Yang and R. Nevatia, An online learned CRF model for multi-target tracking, IEEE
Computer Society Conf. Computer Vision and Pattern Recognition (Providence, RI,
USA, CVPR) (2012), pp. 2034–2041.

42. B. Yang and R. Nevatia, Multi-target tracking by online learning of non-linear motion
patterns and robust appearance models, IEEE Computer Society Conf. Computer Vision
and Pattern Recognition (Providence, RI, USA, CVPR) (2012), pp. 1918–1925.

43. B. Yang and R. Nevatia, Online learned discriminative part-based appearance models for
multi-human tracking, in Proc. European Conf. Computer Vision (Florence, Italy,
ECCV) (2012), pp. 484–498.

44. Z. Yao, Y. Zhou, J. Liu and W. Liu, A fast and e®ective appearance model-based particle
¯ltering object tracking algorithm, Int. Conf. Pattern Recognition (Tsukuba, Japan,
ICPR) (2012), pp. 1475–1478.

45. D. Young and J. Ferryman, Pets metrics: On-line performance evaluation service, Joint
IEEE Int. Work-Shop on Visual Surveillance and Performance Evaluation of Tracking
and Surveillance (Mumbai, India, VS-PETS) (2005), pp. 317–324.

46. Y. Zhou, X. Bai, W. Liu and L. J. Latecki, Fusion with di®usion for robust visual
tracking, Neural Information Processing Systems Conf. (Lake Tahoe, USA, NIPS)
(2012), pp. 2987–2995.

47. Y. Zhou, C. Rao, Q. Lu, X. Bai and W. Liu, Multiple feature fusion for object tracking,
Intelligent Science and Intelligent Data Engineering (Xian, China, 2012), pp. 145–152.

Y. Zhou et al.

1455001-26



48. Y. Zhou, J. Wang, Q. Zhou, X. Bai and W. Liu, Shape matching using points
co-occurrence pattern, IEEE Int. Conf. Image and Graphics (Hefei, Anhui, China, ICIG)
(2011), pp. 344–349.

Yu Zhou received his
B.S. degree in Electrical
Engineering from Wuhan
Polytechnic University
(WHPU), Wuhan, P.R.
China in 2007, and his
M.S. degree in Electronics
and Information Engi-
neering from Huazhong
University of Science and
Technology (HUST),

Wuhan, P.R. China in 2009. He is currently
working towards his Ph.D. at HUST. From
January 2012 to January 2013, he worked in the
Department of Computer Sciences and Infor-
mation, Temple University. His research inter-
ests include computer vision and pattern
recognition.

Yinfei Yang received his
B.E. degree in Computer
Science from Nanjing
University of Posts and
Telecommunications in
2009. He received his M.S.
degrees in Computer Sci-
ence from the Saint
Joseph's University and
University of Pennsylva-
nia in 2012 and 2013. He

was a research assistant at Grasp Lab of Univer-
sity of Pennsylvania from 2012 to 2013. He joined
Amazon at 2013, where he is currently a software
developing engineer of corporate applications.

MengYi received her B.S.
degree in Computer Sci-
ence from Beihang Univer-
sity (BUAA), Beijing, P.R.
China in 2006. Currently
she is working toward her
Ph.D. at Temple Universi-
ty, Philadelphia, USA. Her
research interests include
computer vision and pat-
tern recognition.

Xiang Bai received his
B.S. and M.S. degrees
both in Electronics and
Information Engineering
from Huazhong Universi-
ty of Science and Tech-
nology (HUST), Wuhan,
China, in 2003 and in
2005, respectively. He
obtained his Ph.D. from
HUST in 2010. From

January 2006 to May 2007, he worked in the
Department of Computer Sciences and Infor-
mation, Temple University. From October 2007
to October 2008, he worked at the University of
California, Los Angeles as a joint PhD student.
Currently he is a faculty member of EI Depart-
ment, HUST. His research interests include
computer graphics, computer vision, and pattern
recognition.

Online Multiple Person Detection and Tracking

1455001-27



Wenyu Liu received his
B.S. degree in Computer
Science from Tsinghua
University, Beijing, China,
in 1986, and his M.S. de-
gree and Ph.D. in Elec-
tronics and Information
Engineering from Huaz-
hong University of Science
and Technology (HUST),
Wuhan, China, in 1991

and 2001, respectively. He is currently a Professor
and Associate Dean of the Department of Elec-
tronics and Information Engineering, HUST. His
current research interests include computer gra-
phics, multimedia information processing, and
computer vision. He is a member of the IEEE and
the IEEE Systems, Man, and Cybernetics Society.

Longin Jan Latecki
received his Ph.D. in
Computer Science from
Hamburg University,
Germany, in 1992. He is a
Professor of Computer
Science at Temple Uni-
versity, Philadelphia. His
main research interests
include shape representa-
tion and similarity, object

detection and recognition in images, robot per-
ception, machine learning, and digital geometry.
He has published 200 research papers and books.
He is an editorial board member of Pattern
Recognition and International Journal of Math-
ematical Imaging. He received the annual Pat-
tern Recognition Society Award together with
Azriel Rosenfeld for the best article published in
the journal Pattern Recognition in 1998. He is
the recipient of the 2000 Olympus Prize, the
main annual award, from the German Society for
Pattern Recognition (DAGM).

Y. Zhou et al.

1455001-28


	ONLINE MULTIPLE TARGETS DETECTION AND TRACKING FROM MOBILE ROBOT IN CLUTTERED INDOOR ENVIRONMENTS WITH DEPTH CAMERA
	1. Introduction
	2. Related Work
	3. Ground Plane Projection
	3.1. Generating GPPs
	3.2. From GPP back to the original image

	4. Multiple Object Detection
	4.1. Object detection with footprint segmentation in GPP
	4.2. Background model

	5. Multiple Moving Target Tracking with PLA
	5.1. State prior
	5.2. PLA in GPP
	5.3. Splitting and merging connected components

	6. Robot Navigation
	6.1. Target identification
	6.2. Constrained A&lowast; algorithm

	7. Experimental Results
	7.1. Multiple targets tracking
	7.2. Multiple target detection and tracking in dark indoor environments
	7.3. Robot navigation

	8. Conclusion
	Acknowledgments
	References


