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a b s t r a c t

Shape representation is a fundamental problem in computer vision. Current approaches to shape
representation mainly focus on designing low-level shape descriptors which are robust to rotation,
scaling and deformation of shapes. In this paper, we focus on mid-level modeling of shape representa-
tion. We develop a new shape representation called Bag of Contour Fragments (BCF) inspired by classical
Bag of Words (BoW) model. In BCF, a shape is decomposed into contour fragments each of which is then
individually described using a shape descriptor, e.g., the Shape Context descriptor, and encoded into
a shape code. Finally, a compact shape representation is built by pooling shape codes in the shape. Shape
classification with BCF only requires an efficient linear SVM classifier. In our experiments, we fully study
the characteristics of BCF, show that BCF achieves the state-of-the-art performance on several well-
known shape benchmarks, and can be applied to real image classification problem.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Shape is an intrinsic feature for image understanding, which is
stable to illumination and variations in object color and texture.
Because of these advantages, shape is widely considered for object
recognition. In particular, with the recent advance in contour
detection proposed by Arbelaez et al. in [1], shape based object
recognition in natural image is becoming more practical and
attracts more attention in computer vision community. Main
challenges in shape based object recognition include deformation,
occlusion and viewpoint variation of objects. Various shape
descriptors have been proposed to address these challenges, e.g.,
[2–5]. Shape based object recognition is usually considered as
a classification problem. Given a set of training shapes and
category label of each training shape, we need to determine which
category a testing shape belongs to. Traditional shape classification
methods are usually based on matching shape descriptors from
two different shapes: for every training shape, we find correspon-
dences between its shape descriptors and the shape descriptors in
the testing shape using matching algorithms, such as Hungarian
algorithm, dynamic programming algorithm; then we compute
matching costs according to the matching results; finally, we rank
training shapes based on the matching costs and classify the
testing shape using the nearest neighbor (NN) classifier. This
exemplar-based shape classification strategy has been widely
used, for example, in [2,3,6]. However, it has its own limitations.

With few training samples, it is difficult to capture the large intra-
class variation using these algorithms. For large training samples,
it is extremely time consuming to perform shape matching one-
by-one.

Different from exemplar-based shape matching, in this paper,
we propose a compact shape representation and handle the
large intra-class variation by discriminative learning. Inspired by the
huge progress in image classification and representation with
Bag-of-Words (BoW) [7,8], we decompose shape into contour frag-
ments and quantize the contour fragments into shape codes. The
contour fragments under different scales contain both local and global
shape information which can be encoded utilizing coding strategies
for local descriptors [9,10]. Then, a statistical histogram of shape codes
is used to represent each shape and similarity of shapes can be directly
computed from these histograms. Matching shapes based on this new
shape representation does not explicitly give correspondences
between contour fragments. But using a classifier for shape classifica-
tion is muchmore efficient than using the typical matching algorithms
such as Hungarian, thin plate spline (TPS), dynamic programming,
dynamic time warping, and so on. In fact, BoW model is a natural
solution for finding correspondences between two sets of features and
can be used efficiently for recognition tasks. However, it has seldom
been successfully applied to shape analysis, since the popular image
descriptors such as SIFT [11] and LBP [12] are mainly designed for
describing the local texture/appearance variations. These image fea-
tures are not good at capturing the intrinsic structure in shape. Toward
this end, we directly work on shape contour by decomposing it into
contour fragments. We name our method Bag of Contour Fragments
(BCF), which can not only provide a compact and informative
representation, but also achieve the state-of-the-art classification
performance on several popular shape benchmarks.
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Pipeline of building shape representation in BCF is shown in
Fig. 1. The outer contour of each shape is decomposed into salient
contour fragments using a well-known contour decomposition
method named discrete contour evolution (DCE) [13]. Each contour
fragment is then described by collecting the shape context features
[2] on its reference points, and encoded into shape codes. Finally,
the shape codes are pooled into a compact image representation
with spatial pyramid. We utilize the current advances in image
classification, such as local-constrained linear coding (LLC) [9] for
feature coding and spatial pyramid matching (SPM) [14] in our BCF
shape classification framework. Both LLC and SPM are seldom used
in shape analysis. LLC utilizes the locality constraints and encodes
each descriptor with its local-coordinate system in a codebook. In
practice, it first performs k-nearest-neighbor search to find local-
coordinates for feature to be encoded, and then solves a constrained
least square fitting problem on the local-coordinates. The state-of-
the-art performance on PASCAL VOC [15] image classification has
shown effectiveness of LLC. SPM is a simple and computationally
efficient extension of the orderless BoW model for image represen-
tation. It works by partitioning the image into increasingly fine sub-
regions and computing histograms of local features found inside
each sub-region. Histograms of different sub-regions are concate-
nated as final image representation. SPM can capture the spatial
information in contour fragments which are useful for shape
recognition. BCF naturally utilizes LLC and SPM to improve the
accuracy of shape classification.

One of the major difficulties involved in shape classification for
many shape-matching based algorithms is to directly match two
shapes with large deformation since shapes are only partially
similar to each other. BCF can easily solve this problem caused by
large shape deformation, and is good at classifying shapes with
partial similarity. As each shape contour is divided into contour
fragments in BCF, the contour fragments contain partial shape
information. After coding, a discriminative classifier such as SVM
or Adaboost can be used to select the representative and informa-
tive contour parts for each shape category. Fig. 4 shows some
contour fragments selected by linear SVM in four shape categories
in our experiments. We can see that even though contour frag-
ments are parts of the shapes, they are very informative for
recognizing shape category. Thus, BCF is able to deal with partial
occlusion in shape, especially, in the edge map extracted from real
image. Besides, we find that BCF is also robust to noisy contour in
our experiments.

In summary, the proposed BCF has several good properties:

1. It provides a very compact shape representation which is a
single vector rather than a set of feature vectors used in many
other methods.

2. It precisely preserves information of individual shape contour
via LLC and spatial layout of contour fragments in one shape
via SPM.

3. For shape classification it avoids pairwise matching between
local shape descriptors and significantly reduces the time cost.

4. It is robust to the shapes with occlusions or parts missing, and
can be easily applied to real image classification.

The rest of the paper is organized as follows. We review the
related works in Section 2. Then, we introduce the details of our
shape representation with BCF in Section 3, including extracting,
encoding and pooling contour fragments, and so on. We evaluate
the proposed method on several popular shape benchmarks,
illustrate good properties of BCF in applications, and demonstrate
its effectiveness in shape classification in various datasets in
Section 4. Finally, we conclude this paper in Section 5.

2. Related work

Here, we briefly review the recent progress in shape classifica-
tion. Sun and Super [16] proposed a shape classification frame-
work for recognizing contour shapes using class contour segments
as input features with Bayesian classifier. Bai et al. [6] adopted
contour segments and skeleton paths as the input features for
shape classification with a Gaussian mixture model. Daliri and
Torre [17,18] transformed the contour points into a symbol
representation, and then used the edit distance between pair of
strings is used for classification with a kernel support vector
machine. Wang et al. [19] proposed a tree-union [20] representa-
tion as the prototype for each shape category, and performed
shape classification is determined by the shape similarity between
a test shape and each prototype. Edem and Tari [21] also used
a skeletal tree model to represent the prototype of each category,
and then used the edit distance between a given shape and each
prototype is used as the input feature for a linear SVM. Thus, each
prototype in [21] can be considered as a shape codebook. Shape
classification by skeleton matching has been studied by [22–25].

Various shape descriptors have been proposed for shape
matching and recognition. There are some region-based methods,
such as Zernike moments [26] and generic Fourier descriptor [27].
Other methods based on contour include curvature scale space
(CSS) [4], multi-scale convexity concavity (MCC) [28], triangle area
representation (TAR) [5], hierarchical procrustes matching (HPM)
[29], shape-tree [30], contour flexibility [31], shape context (SC)
[2], inner-distance shape context (IDSC) [3] and so on. In this
paper, we only use shape context to describe contour fragments in
BCF. Generally speaking, most of these shape descriptors can be

Fig. 1. Pipeline of building shape representation using BCF. (a) Shows contour of a shape; (b) shows critical points detected using DCE method; (c) shows some contour
fragments in blue color; (d) shows that we use shape context [2] to describe each contour fragment; (e) shows shape codes; (f) shows we use 1�1, 2�2, and 4�4 spatial
pyramid for max-pooling; (g) shows the histogram for shape representation. (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this article.)
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adopted as low-level representation in BCF, since each contour
fragment can be considered as a shape. We use discrete contour
evolution (DCE) [13] for decomposing shape into contour frag-
ments. Other recent shape evolution methods, e.g., [32], can also
be adopted in BCF.

Our BCF approach can be considered as a two-layer feature
learning framework on shape contours. In the first layer, contour
fragment features are encoded into shape codes using local-
constrained linear coding (LLC), which is first proposed in [9] for
encoding SIFT [11] features in real images. Other feature coding
methods include fisher kernel (FK) [10] and kernel codebook
encoding (KCB) [33]; we choose LLC for its high efficiency. In the
second layer, we use spatial pyramid matching (SPM) for pooling
the shape codes. Theory of SPM is given in [34]. SPM is first
proposed by Lazebnik et al. for image classification in [14].
Recently deep learning is very popular for feature learning and
obtains good results on large-scale image classification [35].
Different from BCF, deep learning approaches have more layers;
in [36], for example, a shape model based on deep Boltzmann
machine called shape Boltzmann machine (SBM) is proposed; SBM
directly works on raw shape pixels and learns probability dis-
tributions over object shapes, which is good at shape completion
task but hardly works on the challenging Mpeg-7 shape dataset
[37] for shape classification. However, BCF learns shape represen-
tation over shape contours, which is more robust to deformation
of shape and more suitable for shape recognition. Textures feature
and BoW model are directly used for shape classification in [38].
BCF utilizes contour fragment as shape feature, which is obviously
superior to [38].

The strategy of partitioning shape into contour parts for shape
recognition has been adopted by [16,39,6]. Unlike these previous
works where contour parts are put in an orderless set as shape
representation, BCF explores the spatial layout of contour parts
and builds a compact shape representation via feature coding and
pooling.

3. Bag of contour fragments

In this section, given a shape S, we show how to build BCF
shape representation fðSÞ for S and use fðSÞ for shape classification
step by step.

3.1. Contour fragments

Contour fragments have been validated as powerful shape
features in several previous approaches [16,6], since they contain
both local and global shape information. We adopt contour
fragments as basic shape features for learning a shape codebook
and building our shape representation. An object boundary can be
decomposed into contour fragments in different ways, such as
dense sampling and sampling based on curvature like in [16].
Here, we use a more robust technique named discrete contour
evolution (DCE) [13] for partitioning the whole object contour into
meaningful contour fragments. Let SðtÞ ¼ ðxðtÞ; yðtÞÞ be the outer
contour of a shape S parameterized by tA ½0;1�. We first apply the
DCE to obtain a simplified polygon on S with vertices denoted as

u!¼ ðu1;…;uT Þ;
where T denotes number of vertices, which is not previously
known but can be automatically computed given a threshold
parameter τ. u! includes critical points on S. Fig. 1(b) shows the
critical points extracted by DCE for an input contour S.

Given an object contour S, its contour fragments set is denoted by
CðSÞ, which are the segments between every pair of critical points
ðui;ujÞ. Let cij denote the contour fragment between ui and uj,

we have

CðSÞ ¼ fcij ¼ ðui;ujÞ; ia j; i; jA ½1;…; T �g: ð1Þ
Note that ui and uj do not have to be adjacent to each other. Also

S¼ cij [ cji; ð2Þ
since one represents a fragment and the other is its counterpart. CðSÞ
contains very rich information in shape S, since contour fragments
between all pairs of critical points are extracted. All the contour
fragments extracted from a shape contain multi-scale information,
which can be summarized as short-range, middle-range and long-
range information as shown in Fig. 2. Therefore, contour fragments
are totally different from local descriptors (SIFT, HOG, or LBP, etc.) for
image classification, since the local descriptors only contain informa-
tion of local patches in image. In the rest of this section, we will show
how we describe contour fragments and how we select informative
contour fragments for shape recognition.

For each contour fragment cij, we describe it using shape context
xijARd�1 where d is the dimension of the feature vector of cij. As
illustrated in Fig. 3, xij is computed as follows: we sample 5 reference
points on cij from ui to uj equidistantly, and then compute 5 shape
context histograms based on the reference points individually. Shape
context descriptor for cij is a concatenation of the 5 shape context
histograms.

3.2. Encoding of contour fragments

Encoding contour fragment features xij is to map feature
vectors of contour fragments into a new space B spanned by
a shape codebook B; in this new space, contour fragments are
represented by shape codes wij.

Many codebook learning methods have been proposed for
image representation, including unsupervised methods [9] and
supervised method [40,41], and so on. In this paper, we choose k-
means [42] as the codebook learning since it is a simple yet stable
one. A set of training shape features is randomly selected from all
the contour fragment features. We then run k-means algorithm on
the selected shape features for clustering. The clustering centers
are used as shape codebook B¼ ½b1;…;bM �ARd�M , where each
column is a clustering center. So the obtained M clustering centers
can be approximately considered as M prototypes for describing
the whole shape space.

To compute shape codes xij, a traditional way is to do vector
quantization (VQ) like in [14]. VQ only assigns a shape feature xij to
its nearest neighbor in shape codebook B; it is fast but its
quantization error is large. Local-constraint linear coding (LLC) is

Fig. 2. Three exemplar contour fragments containing short-range (left), middle-
range (middle) and long-range (right) information in shape.

Fig. 3. Shape context feature for contour fragment cij. Note that circles in this figure
are plotted for showing the positions to compute shape context which do not stand
for the area in which to compute shape context.
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a very good choice for feature coding proposed in [9], as it is both
fast and effective. The LLC method is inspired by the theory of local
linear embedding (LLE) [43]. To represent xij in the space B
spanned by shape codebook B, LLC uses k nearest neighbors in B
as local bases for xij to form a local coordinate system. The k
nearest neighbors of xij are denoted as Bπij ARd�k where πij is a set
containing the indexes of the k nearest neighbors in B, denoted as
πij ¼ fπ1

ij⋯πk
ijg. Bπij is a matrix consisting of the π1

ij⋯πk
ijth columns

of B. Following the assumption in LLE, we expect that xij and its
nearest neighbors lie on or close to a local linear patch of the
manifold. The local geometry of xij and Bπij can be characterized by
linear coefficients obtained through reconstructing xij from Bπij .
The coefficients wπij ARk�1 can be obtained by solving the follow-
ing minimization problem:

min
wπij

Jxij�Bπijwπij J
2 s:t: 1Twπij ¼ 1; ð3Þ

where weight vector wπij summarizes the contributions of local
bases to xij

0s reconstruction, which is required to be summed to 1.
The minimization problem in (3) is a small-scale least square
problem, and its time complexity is Oðk2Þ. In our experiments, we
always set the value of k as 5. We denote code of xij as wijARd�1:
values of the π1

ij⋯πk
ijth entries of wij are equal to wπij and the rest

of entries in wij are set to zero.

3.3. Max-pooling with spatial pyramid

In this subsection, we build a compact shape representation
based on statistics of shape codeswij. In addition, we utilize spatial
pyramid matching (SPM) [14] method to add spatial layout
information of contour fragments into our shape representation.

The process of building shape representation is given as
follows: First, we divide shape into different regions. Specifically,
shape is divided into 1�1, 2�2 and 4�4 regions, as shown in
Fig. 1(f); in total, there are 21 regions. Then for each region
Regionr ; rA ½1;…;21�, we do max-pooling. Let wz denote an
encoded contour fragment in the position of z in shape (position
of a contour fragment is defined as its the median point). Max-
pooling works as follows:

fðS; rÞ ¼maxðwzjzARegionrÞ; ð4Þ

where the max function works in row-wise, returns a feature
vector of Regionr, fðS; rÞ, with the same size as wij. For each
codeword, we take the max value of all shape codes in a region
for shape representation, so we called this method as max-pooling.
Max-pooling procedure is well established by biophysical evidence
in visual cortex (V1) [44]. Its correctness empirically verified by
many algorithms applied into image classification, such as
[9,45,10], etc. It also works well with linear classifiers. Final
representation fðSÞ for shape S is a concatenation of the feature
vectors for all regions.

fðSÞ ¼ ½fðS;1ÞT ;…; fðS;21ÞT �T : ð5Þ

It is easy to know the dimension of fðSÞ is 21�M.
SPM can encode spatial information among the short-range

contour fragments in a coarse-to-fine way. We train a classifier on
training shape to decide whether the classifier fires on a coarse
level (1�1 region) or a fine level (2�2 and 4�4 regions). More
specifically, if the training shapes are well aligned, it contains
similar contour fragments in each small grid, so the classifier will
fire on a fine level. On the other hand, if the training shapes are
rotated in different directions, it contains different contour frag-
ments in a single small grid; but all contour fragments are
contained in the coarse level; so the classifier will fire on a coarse
level. Thus, SPM is a very flexible strategy.

3.4. Shape classification using linear SVM

Since our shape representation is a simple vector, we directly
adopt SVM for shape classification. For multi-class SVM, we use
the formulation proposed by Crammer and Singer in [46]. Given
a set of training shapes ff ig with labels fyiA ½1;…;N�g where N is
the number of shape classes. Crammer and Singer0s multi-class
SVM can be used to solve the following optimization problem:

min
ω1 ;…;ωN

∑
N

n ¼ 1
Jωn J2þλ∑

i
maxð0;1þωT

ri
f i�ωT

yi
f iÞ; ð6Þ

where ri ¼ arg maxnA ½1;…;N�;nayiω
T
nf i. In Eq. (6), the left part is a

regularization term; the right part is multi-class hinge-loss;
parameter λ controls the relative weight of the regularization
term. To solve (6), we use the off-shelf SVM solver, LibLinear
developed by Fan et al. [47]. In the testing stage, shape label is
predicted by

by ¼ arg max
nA ½1;…;N�

ωT
nf: ð7Þ

Learning with SVM is a process of selecting support vectors,
during which certain contour fragments important for recognition
are selected in every shape. In Fig. 4, we show some examples. For
a shape, we find top 20 values in all f i �ωyi . We then find the
contour fragments that contribute to the top 20 entries in f i; in
other words, we find the contour fragments which have maximal
code value in the top 20 entries in f i. As shown in Fig. 4, the
selected contour fragments by coding (with LLC), max-pooling and
SVM are meaningful. There are a few trivial fragments in top 20,
such as, the 17th and 19th in (c), because the values of their codes
are large as it is easier for them to be precisely encoded. But their
corresponding value in ωyi is small.

Time consuming kernels, such as the RBF kernel and intersec-
tion kernel, and so on can further improve the shape classification
performance. But for faster speed, we use linear SVM.

4. Experiments

In this section we test our method for shape classification on a
variety of shape datasets and compare results of our method with
the state-of-the-art shape classification approaches, available for
those datasets in the literature. We also study the robustness of
our method. First of all, we give implementation details as
following.1

4.1. Implementation details

Extracting contour fragments: We use DCE to extract about 400
contour fragments per shape; max curvature τ of DCE is set to 0.5.
When computing shape context for contour fragment, we have
5 reference points given in Section 3.1, and set number of bins of
shape context to be 60 (10 for dividing angle space and 6 for
dividing radius space). Thus, dimension of our shape context
descriptor for a contour fragment is 300. Besides, positions of
contour fragments in shape are also recorded which are used for
pooling with spatial pyramid.

Learning shape codebook: Standard k-means clustering is
adopted for training the codebook. The number of the contour
segments collected from the dataset could be enormous. As a
result, the codebook training can be very time consuming and
computationally expensive. Therefore, we randomly select 1000
images and for each image only 300 shape context features are

1 MATLAB code of these experiments is available at https://bitbucket.org/
xinggangw/bcf
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picked for training the codebook. The number of clustering centers
is set to 1500 if it is not specified. In addition, we will study the
performance of BCF with different number of clustering centers.

Coding, pooling and classification: In the coding scheme, the
approximated LLC with 5 nearest neighbors is adopted. When
pooling, a shape is divided into 1�1, 2�2, and 4�4, in total 21
regions. The final feature vector for shape representation is
normalized by its ℓ2 norm. For shape classification, a fast off-
shelf linear SVM toolbox, LibLinear [47], is used.

Datesets: We evaluate our BCF method on shape classification
benchmark dataset which is the MPEG-7 dataset [37], and use BCF
for 70 classes animal classification on Animal dataset [6], for leaf
classification on Swedish Leaf dataset [3], and for multi-view
object classification on ETH-80 image dataset [48]. In the rest of
this section, we give experimental results and analysis.

4.2. MPEG-7 dataset

The MPEG-7 dataset is widely used for shape analysis in the
field of computer vision. It has 1400 silhouette images divided into
70 classes with high shape variability. Each class has 20 different
shapes (see Fig. 5 for some typical images). We use two strategies
for evaluating shape classification performance: (1) half training,
we randomly select 10 shapes in each class for training and use
the rest shapes for testing in each round; this procedure is
repeated for 10 times; average classification accuracy and standard

derivation of classification accuracies are reported; (2) leave-one-
out, for each shape, we use all shapes except the current one for
training and use the current one for testing; average classification
accuracy is reported.

BCF is compared with other shape classification methods in
Table 1. In [16,6] contour fragments are used for shape classifica-
tion. BCF outperforms [16,6] by over 6% when using half of shapes
for training. The superior performance may be attributed to the
fact that the discriminative learning via SVM in our approach can
maximize the margins between different shape categories and find
very informative contour fragments for each category. In [16,6],

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Fig. 4. Top 20 contour fragments which contribute the most for recognition in a butterfly shape (a), an elephant shape (b), a camel shape (c), and a bat shape (d).

Fig. 5. Typical shapes from the Mpeg-7 dataset [37]. One image from each class.

Table 1
Classification accuracy comparison on Mpeg-7 dataset [37].

Algorithm Classification accuracy

Half training Leave one out

Class segment set [16] 90.9% 97.93%
Contour segments [6] 91.1% –

Skeleton paths [6] 86.7% –

ICS [6] 96.6% –

Polygonal multi-resolution [50] – 97.57%
String of symbols [49] – 97.36%
Robust symbolic [17] – 98.57%
Kernel-edit distance [18] – 98.93%
BCF 97.1670.79% 98.93%
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however, all contour fragments have equal weights. Preconditions
of discriminative learning with SVM are that BCF provides a
compact shape representation and LLC precisely preserves infor-
mation of contour fragment. In [49,17,18], shape is described based
on the symbolic representation. BCF achieves the state-of-the-art
performance when using leave one out for testing which is the
same as the result in the most recent work in [18].

4.3. Animal dataset

The animal dataset was introduced in [6], it contains 2000
shapes describing 20 kinds of animals, including horse, rabbit,
monkey, and so on. Each category has 100 animals images. Some
of shapes form the two most difficult classes (Cat and Monkey)
and the easiest class (Spider) in this dataset are shown in Fig. 6.
The dataset has much more intra-class variability since the same
kind of animals may have various gestures. We use 50 shapes
randomly selected per class for training and the rest of shapes
for testing. We run experiments for 10 times and average

classification accuracy of our method is compared with that of
other methods in Table 2.

As shown in Table 2, the proposed BCF method obtains a
classification accuracy of 83.40% which significantly outperforms
the classical shape descriptor, inner distance shape context [3],
and the previous state-of-the-art method [6] which integrates
contour segments and skeleton paths for shape classification.
Average classification accuracy for each of the 20 classes in Animal
dataset is reported in Table 3. BCF dramatically improves classifi-
cation accuracy in Cat and Monkey classes. This shows that BCF
can capture the intra-class partial similarity within the highly
deformed objects from Animal dataset. Bag of SIFT method [38]
directly uses texture feature for shape classification, obtains a
classification accuracy of 74.9% which is much lower than BCF0s
accuracy. This shows that our contour fragment feature is more
suitable for shape classification than SIFT.

4.4. Swedish Leaf dataset

In this subsection, we use BCF for leaf image recognition on the
Swedish Leaf Dataset [51]. The Swedish leaf dataset comes from a leaf
classification project at Linköping University and Swedish Museum of
Natural History. The dataset contains isolated leaves from 15 different
Swedish tree species, with 75 leaves per species. Some typical binary
shapes of leaf images are shown in Fig. 7. Note that some species are
indistinguishable to the untrained eye, e.g., the 1st, 3rd, 9th, 11th and
15th species. We follow the experimental setting in [3]. In each
species, 25 shapes are randomly selected for training and the rest of
shapes are used for testing. We run training and testing for 10 times
and report the average and standard deviation of the classification
accuracies. We compare classification accuracy of our method with
other pure shape-based recognition methods in Table 4. The methods
compared include a preliminary work [51] using some simple features
like moments, area and curvature and so on, the Fourier descriptor, the
shape context with dynamic programming (SCþDP), the inner
distance shape context with dynamic programming (IDSCþDP), the
multi-scale matrix distance matrix [52], the morphological strategy
method in [53], a robust symbolic representation method [17] and the
shape-tree method in [30]. BCF obtains the state-of-the-art perfor-
mance among these methods.

4.5. ETH-80 dataset

The ETH-80 dataset [48] contains 80 3-D high resolution
objects (Fig. 8) from eight categories. For each object, there are
41 color images from different viewpoints. So the dataset contains

Fig. 6. Some shapes form Animal dataset [6]. The first, second and last row show
8 shapes from Cat (1st row), Monkey (2nd row) and Spider (3rd row) class from this
dataset respectively.

Table 2
Classification accuracy comparison on Animal dataset [6].

Algorithm Classification accuracy (%)

Class segment set [16] 69.7
IDSC [3] 73.6
Bag of SIFT [38] 74.9
Contour segments [6] 71.7
Skeleton paths [6] 67.9
ICS [6] 78.4
BCF 83.4071.30

Table 3
Detailed classification accuracy on Animal dataset [6].

Method Bird (%) Butterfly (%) Cat (%) Cow (%) Crocodile (%) Deer (%) Dog (%) Dolphin (%) Duck (%) Elephant (%)

CS [6] 76 89 39 70 54 69 69 87 83 95
ICS [6] 76 93 48 80 66 79 75 89 89 97
BCF 87.6 92.2 73.8 77.4 76.8 90.4 82.6 89.0 87.0 95.2

Method Fish (%) Fly-bird (%) Hen (%) Horse (%) Leopard (%) Monkey (%) Rabbit (%) Rat (%) Spider (%) Tortoise (%)

CS [6] 70 57 89 96 56 21 81 52 98 81
ICS [6] 74 65 94 97 65 33 87 84 100 90
BCF 79.8 72.0 94.2 95.4 66.4 58.4 85.8 70.6 99.2 93.6

Fig. 7. Typical shape of images from the Swedish leaf dataset [51]. One image from each species.
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3280 images in total. Segmentation masks of all images are
provided to evaluate shape-based object recognition approaches
with this dataset. The test mode of this dataset is leave-one-
object-out cross-validation [48]. Specifically, in each round images
from 79 objects are used for training and images from the
remaining one object are used for testing. We compare the average
classification accuracy of BCF to many other previous approaches
in Table 5. BCF gets a classification accuracy of 91.49% which
outperforms pervious state-of-the-art approach in [18].

4.6. Robustness to noise

In the above experiments, the shapes are quite smooth in these
datasets. To evaluate the performance of our descriptor under
noisy conditions, we add Gaussian noise to shape boundaries and
carry out image classification using BCF. We use the whole Mpeg-7
dataset [37] as the original shape boundaries. Noise is added by
perturbing all pixels on each shape contour in both x- and
y-coordinates by values drawn from a Gaussian random variable
with zero mean and standard derivation s. As the parameter s
increases, we add increasing Gaussian noise to the shape bound-
aries. Fig. 9 shows an example of shape boundaries with increasing
Gaussian noise. We report the classification accuracies using half

for training and leaving one out for testing as noise ratio s varying
from 0 to 1 in Fig. 10. Classification accuracy using half training
drops about 4% when s increases from 0 to 1, which shows that
BCF is robust to noise. This is due to the fact that both DCE and the
shape context are robust to noise.

4.7. The effect of codebook size

In this experiment, we do shape classification using shape
codebooks of different sizes on the full Mpeg-7 dataset. Shape
classification accuracies of BCF using codebooks of different sizes
are reported in Fig. 11. Generally, shape classification accuracy
improves as the size of codebook increases, but gets saturated
when codebook size increases to 1500.

Fig. 8. 80 3-D objects from ETH-80 image set. Each row shows one category.

Table 5
Classification accuracy comparison on ETH-80 dataset [48].

Algorithm Classification accuracy (%)

Color histogram [48] 64.86
PCA gray [48] 82.99
PCA masks [48] 83.41
SCþDP [48] 86.40
IDSCþDP [3] 88.11
IDSCþMorphological strategy [53] 88.04
Height function [54] 88.72
Robust symbolic [17] 90.28
Kernel-edit [18] 91.33
BCF 91.49

Fig. 9. An example of shape boundaries with increasing Gaussian noise.

Table 4
Classification accuracy comparison on Swedish leaf dataset [51].

Algorithm Classification accuracy (%)

MomentþAreaþCurvature [51] 82
Fourier [3] 89.6
SCþDP [3] 88.12
IDSCþDP [3] 94.13
MDM [52] 93.60
IDSCþMorphological strategy [53] 94.80
Robust symbolic [17] 95.47
Shape-tree [30] 96.28
BCF 96.5670.67
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4.8. Generalization ability of shape codebook

In this experiment, we investigate the generalization ability of
the shape codebook learned by k-means. As the space of contour
fragments of shapes is much smaller than the space of local
features of natural images, e.g., SIFT and HOG, we investigate
whether it is possible to learn a universal codebook of contour
fragments for shape classification. Therefore, we use the codebook
learned from Mpeg-7 dataset for descriptor coding, building shape
representation and performing shape classification on Animal
dataset. We also use the codebook learned from Animal dataset
for descriptor coding, building shape representation and perform-
ing shape classification on the Mpeg-7 dataset. The sizes of both
codebooks are 1500. Except the codebook, all other experimental
settings are the same. We call this experiment “codebook exchan-
ging”. Shape classification results (half shapes for training for both
datasets) are shown in Table 6. The results show that there is only
about one percentage drops in classification accuracy after code-
book exchanging on both datasets. These results show that the
generalization ability of our shape codebook is very good. The
reason why codebook exchanging can work is that different
datasets share lots of common contour fragments. For example,
the legs of a horse are very similar to the ones of a dog, and the leaf
of an apple may be very similar to the wing of a bat. The success of
codebook exchanging implies that we may use a universal shape
codebook for all codebook-based shape recognition system.

4.9. Image classification on Caltech 101 dataset

The Caltech 101 dataset contains 9144 images in 101 object
classes including animals, vehicles, flowers, and so on, with
significant variance in shape, color and texture, and a background
class. The number of images per category varies from 31 to 800.
We follow the common experiment setup for Caltech 101, training
on 30 images per class and testing on the rest, and measure the
performance using average accuracy over the 102 classes.

The color/gray images in Caltech 101 dataset are different from the
binary shapes we tested in the previous experiments. Now we show
how to use the proposed BCF approach to build an image representa-
tion for a color/gray image. Given a color/gray image, we first
compute its edge map using the gPB algorithm in [1] (some of the
edge maps are shown in Fig. 12(b) and (e)), and set all the pixels on
the edge map with their values larger than 0.1n255 as edge pixels.
Then, the edge-linking algorithm in [55] is applied on the binary edge
image to retrieve a set of contours shown in Fig. 12(c) and (f). Finally,
steps (b)–(g) in Fig. 1 are taken to build image representation. Similar
to shape classification, we use linear SVM for image classification.

Comparison with SIFT-based method: We directly compare our
contour fragment feature in BCF with dense SIFT feature in [9]

Table 6
Classification accuracy before and after shape codebook exchanging.

Algorithm Mpeg-7 dataset (%) Animal dataset (%)

Original 97.1670.79 83.4071.30
Codebook exchanging 95.5570.55 82.4071.07

Fig. 12. Example images in Caltech 101 dataset in (a) and (d) together with their gPB edge maps [1] in (b) and (e) and binary shapes obtained by post processing in (c) and (f).
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Fig. 11. Classification accuracies of using half for training and leaving one out for
testing are reported as size of codebook changing from 100 to 1800.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Noise ratio: σ

Half for training
Leave one out for testing

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Fig. 10. Classification accuracies on Mpeg-7 dataset are reported as noise ratio s
varying from 0 to 1 under both half for training setting and leave one out setting.
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using the same coding method (LLC), the same pooling method
(SPM), the codebooks of the same size (1024) in Table 7, and the
same classifier (linear SVM). The results of LLC [9] and RBC [56] are
obtained by running the source code released the authors. The
performance of BCF with SPM is 54.5%, which is worse than 71.7%
of the SIFT feature with LLC and SPM. Contour fragment feature
performs worse for two reasons: (1) some object contours (e.g.,
the outline of car in Fig. 12) and some object parts (e.g., the noses
of person in Fig. 12) are missing in the edge maps; even though the
edge maps are obtained by the state-of-the-art edge detector;
(2) contextual information, such as, the ground in car image and
the grass and tree in the elephant image, cannot be captured by
our contour fragment feature. All this information is useful for
recognition and can be capture by SIFT feature. Although, BCF
performs worse than SIFT, we show BCF and SIFT feature are
complementary to each other in Table 7. LLC [9] and RBC [56] are
two SIFT based approaches; by combining BCF with them using
the simple LP-β method in [57], the average image classification
accuracy can be improved by 3.7% and 2.2%, respectively.

Comparison with previous shape-based method: We implemented
shape context [44] method for image classification by setting 16
reference points in binary edge image resulting 960-dimensional
feature vector. Then we use a linear SVM for image classification
based on the shape context feature vector. The average image
classification accuracy of shape context feature is only 3%. Both shape
context and BCF are pure shape-based method. By diving contour into
fragments and encoding their shape context features, BCF can obtain
an average classification accuracy of 54.5% which is a significant
improvement. It means that BCF is more robust to occlusions/edge-
broken in real image than the previous shape descriptor.

The effectiveness of spatial pyramid: In Table 7, we show that
from level 1�1 to 4�4 the accuracy of BCF improves from 23.9%
to 51.7%; by combining the four levels, the accuracy of BCF
(denoted as “pyramid”) is 54.5%. This shows that SPM is effective
for BCF in image classification.

We also quote some results fromvery recent literatures, e.g., [59,60],
and a classical method called SVM-KNN in [58] in Table 7. In summary,
we give comprehensive studies of BCF for real image classification and
show good performance by combining BCF with SIFT-based methods,
which is better than the most recent results in [59,60].

5. Conclusions

In this paper, we present a novel shape representation called BCF
for shape classification. To the best of our knowledge, this is the first
paper that introduces the idea of BoW together with LLC and SPM for
shape representation. Since BCF is a part-based model, it is

intrinsically robust to occlusion and deformation of shape. In the
experiments, we have extensively tested the performance of BCF; all
these experimental results on shape benchmarks show that BCF is
able to achieve the state-of-the-art performance; moreover, we have
tested BCF for image classification on the real image dataset and
stress it can dramatically outperform the other shape-based method
and is complementary to the texture descriptor. In the future, we will
study how to use BCF for object recognition in real image; for
example, on edge map extracted from real image, BCF can either do
object recognition by combining with sliding window method, or
provide shape cue for other off-shelf object detectors.
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