
Robust Object Tracking based on RGB-D Camera*

Wenjing Qi
a
 , Yinfei Yang

b
, Meng Yi

b
, Yunfeng Li

c
, Zygmunt Pizlo

c
, Longin Jan Latecki

b

a. Dept. of Computer Science and Technology, Shandong Jianzhu University, China

b. Dept. of Computer and Information Sciences, Temple University, USA

c. Dept. of Psychological Sciences, Purdue University, USA

qiwj@sdjzu.edu.cn, latecki@temple.edu

* This work is partially supported by Grant OIA-1027897 from US National Science Foundation, Shandong NSF Grant # ZR2013FL024 and Doctor

Foundation # XNBS1261 from Shandong Jianzhu University

 Abstract - A novel object tracking method based on RGB-D

camera is proposed to handle fast appearance change, occlusion,

background clutter which may arise for vision-based robot

navigation. It makes use of appearance and depth information

that are complementary to each other in visual perception to get

robust tracking. First, RGB image and depth information are

captured by the RGB-D camera. Then, an online updating

appearance model is created with features extracted from RGB

image. A motion model is created on plan-view map that is drawn

from depth information and camera parameters. The estimation

of object position and scale is performed on the motion model.

Finally, appearance features are combined with position and scale

information to track the target. The performance of our method is

compared with a state-of-art video tracking method. It shows that

our tracking method is more stable and accurate, and has

overwhelming superiority when there is a great appearance

change. A vision-based robot using our tracking method can

navigate in cluttered environment successfully.

 Index Terms - Object Tracking, RGB-D camera, Plan-view,

Detection, Robot Navigation.

I. INTRODUCTION

 Vision ability of robot will broaden its applications in

surveillance, search and rescue, outdoor and indoor building

inspection, especially in high risk missions. Vision-based

navigation can be roughly divided into map-based navigation

that need previous knowledge of the whole environment and

mapless navigation that perceive the environment as they

navigate through it [1]. We intend our robot can take a mapless

navigation like human, and handle the dynamically changed

scene, a “look and move” strategy is employed by our robot,

which means robot move a step then stop to detect and localize

the target, renew the path and walk a step on the new path,

repeat this process till it reaches the target.

One of the most challenging problems during this process

is how to recognize and localize the target correctly in each

separate step. Traditional tracking methods [2][3][4] mainly

depend on appearance features of objects, they perform well in

video tracking tasks, but are weak in handling abrupt

appearance change. In our application, robot takes one picture

per step, the appearances of objects in pictures vary a lot due

to the views and scales changes between two steps.

Furthermore, the movement of target objects and robot camera

may also add the instability of appearance features. To tackle

these problems, we combine the depth information and RGB

together to get a robust tracking. An RGB-D camera will be

employed as vision system of robot, which will provide robot

with appearance features and depth information.

Fig. 1 shows how the robot responded to intentionally

blocked way during walking towards target. The first row

shows the scene that robot saw, the second row shows the

planned path in each step. In third step, it found there was a

change happened in the scene, a chair was put in the way of

heading for target, it recalculated a new path to bypass the

chair.

 In this paper, we will first introduce our application

briefly, and then focus on discussing how to make tracking

more robustly by using RGB-D camera. The main

contributions of our work include: (1) Plan-view maps

generated from depth information are used to predict the scale

and location of target. (2) The combination of Appearance and

location information makes tracking more robust, meanwhile,

the predicted scale and location makes detection more

efficient. (3) Adaptable position probability map is used to

help improve the accuracy in tracking occluded target, moving

target and distinguishing the correct target from other objects

with same appearance.

 The rest of the paper is organized as follows: section 2

reviews recent object detection and tracking methods, section

3 outlines how our robot navigates among obstacles, section 4

describes our object tracking method in detail. Then

experimental results and performance evaluation are presented

in section 5, and a conclusion will close this paper.

Fig.1 Plan the path dynamically. Top row: RGB images show what robot had

seen, object in bounding box is the target. Bottom row: planned path in plan-

view map, path is recalculated according to the changes of scene.

latecki
Text Box
 The 11th World Congress on Intelligent Control and Automation, 2014

II. RELATED WORKS

A. Traditional Object Tracking

 Object tracking is widely used in many applications, such

as surveillance, robot navigation, and human-computer

interaction. The main challenges include changes of object

appearance and view, occlusion between objects, abrupt

motion of object and camera motion[6]. Some recent

literatures make use of tracking-by-detection method, which

usually perform one-shot learning at the first frame, then

perform an online updating by using the tracking result of the

successive frames to adapt to the changes of appearance of

objects[7]. A critical problem in tracking-by-detection

methods is the stability-plasticity dilemma, which means how

can a system retain old memories but learn new ones. In [8], a

method of one-shot semi-supervised learning problem using

online boosting was proposed. Supervised updates are only

performed at the 1st frame and all subsequent patches are

exploited as unlabeled data with the help of a non-adaptive

prior classifier. Although this method is less susceptible to

drifting and more adaptive than an off-line learner, it is still

not adaptive enough to fast appearance changes. Stenger et al.

[9] investigated in different combinations of tracking methods.

Given a particular tracking scenario, they tried to learn which

methods are useful and how they can be combined to yield

good results. Santner et al.[3] also employed a combination of

several trackers: template matching based on normalized cross

correlation, mean shift optical flow and online random forests

to predict the target location, the main difference between[9]

and[3] is that [3] did not require off-line pre-training of

possible combinations. Babenko et al.[10] adopt Multiple

Instance Learning [2] to alleviate the possible drift and

degraded model led by the inaccuracies in the tracker. In [4], a

tracking-by-detection framework combines nearest-neighbor

classification of bags of features, efficient sub-window search

and a novel feature selection and pruning method to achieve

stability and plasticity in tracking targets of changing

appearance. In most of these object detection, sliding widows

scheme is employed to search for the potential matched target

in images, it is a time consuming process, efficient sub-

window search[5] improved the searching efficiency by

employing a divide and conquer strategy.

B. Stereo or RGB-D camera based tracking or detection

 Recently, stereo or RGB-D camera have been widely used

in object detection and tracking. Many literatures show

dramatically increases in the robustness. Ess et al.[11][12]

describe a stereo based system for the creation of dynamic

obstacle maps for automotive or mobile robotics platform. The

authors showed that the use of sparse three dimensional

structures significantly improved the performance of

pedestrian detection and tracking. [13] describe a fast and

stable human detection based on subtraction stereo with HOG

features[14] which can measure distance information of

foreground regions.[15][16] present a new general detector

HOD(Histogram of Oriented Depths),both of them show that

their proposal is faster and less false detection than that in

[14]. [17] proposed a new method to quickly and accurately

predict 3D positions of body joints from a single depth image.

Bo et al.[18] use their hierarchical kernel descriptors over

RGB-D images for real-life recognition. We don’t use 3D

features or 3D structure analysis directly as the above

literatures did. Instead, our work makes use of plan-view maps

constructed from depth information.

C. Tracking with Plan-view Map

 Plan-view maps were used in human detection and

trajectory estimation [19][20][21]. The differences between

our method and theirs are as followings: First, their tracking

method is only based on the plan-view maps, which will likely

lead to error detection when two objects are too close or

trajectories cross each other. While in our method, appearance

features in RGB image helps to correct the error. We predict

possible position of object in plan-view, and combine it with

appearance to determine the actual target and position.

Second, the detection of the foreground objects must be

performed first in the plan-view map by background

subtraction, so it requires cameras keep static and learn the

background model. In contrast, our approach works with

moving cameras and dynamic changing background. Third,

many assumptions were made in their papers, e.g. known

environment, fix camera [19], and constant velocity, no great

pose change and no change in occlusion [21] in consecutive

frames. All of these assumptions are not valid happen in our

application, so appearance feature must be employed to help

padding the gap of great changes happened in each step of

robot.

III. OVERVIEW OF ROBOT NAVIGATION

 Robot performs three main operations during his

navigation, tracking the target, planning a path, then moving

forward, which repeated until it reach the target. Our robot

equipped with a Kinect sensor as his vision system, which

provide depth information aligned with image pixels from a

standard camera. From the depth map, plan-view maps (PVM)

is extracted, which provide us with a spatial distribution of

objects on ground. Appearances from RGB image and position

information from plan-view map are both used as cues for

target object detection. Then, A* algorithm[22] is used to find

a reasonable path, and a motion command is issued to steer

robot walking. The working process of robot can be

summarized by pseudo-code as follows:

__

Main(){

 Initialize();

 while robot does’t reach target{

 Track();

 PlanPath();

 Move(); }

}

sub-routine Initialize() {

 Startup robot, robot takes the first look at the scene;

 Designate a target object for robot in the 1st RGB image;}

sub-routine Track() {

 Reconstruct plan-view map aligned with RGB image;

 Online updated appearance model;

 Construct motion model based on plan-view map;

 Detect target with appearance and motion model; }

sub-routine PlanPath(){

 Find the target object in plan-view map;

 Plan a path to the target. }

sub-routine Move() {

 Robot turns to target and moves a step on planned path;

 Turns to the target again, takes another RGB-D image;

 Get the motion parameters of robot; }

__

 Obviously, tracking the object correctly is the critical step

for our “look and move” robot, if it fails, all subsequent

operations can’t proceed. The key points in our tracking

method include: (a) Finding the objects correspondence

between RGB image and plan-view image. (b) Predicting of

position and scale of object in plan-view image. (c) Integrating

position and appearance together to detect the object. We will

describe these key points in detail in next section.

IV TRACKING THE TARGET OBJECT

A. Plan-view Map Reconstruction

 Data from RGB-D camera include both an RGB image

and depth information, which allows us to recover a 3D point

cloud of objects in the view of robot. Then 3 steps are

performed to get a PVM [23]: (1) finding the ground plane

(e.g., floor), (2) removing the ground plane points from the

scene, (3) projecting the remaining 3D points to ground plane.

An RGB image and its corresponding PVM are shown in Fig.

2. As we can see, some furniture are occluding each other in

RGB image, but are clearly separated in PVM. Since PVM

provide us with additional information about the layout and

position of objects, object tracking can take advantages of

these facts to get more accurate results. The color of of object

footprint in Fig.2(right) represents the maximum height of 3D

points that project to this location.

Fig. 2: An RGB image and its corresponding PVM.

 Each detected object footprint in PVM can be back

transformed to the RGB image. This fact is illustrated in Fig.

3, where each footprint marked with a red cross in PVM

represents a detected object. The convex hulls of detected

objects are overlaid on the RGB image. We illustrate the

correspondence relation with arrows from PVM to RGB

image. With the correspondence between RGB image and

PVM, we can just evaluate windows with predicted scale

around the detected convex hulls to find the target, which

definitely improves the efficiency of object detection.

Fig. 3: Object correspondence between PVM and RGB image

B. On-line Updated Appearance Model on RGB Images

 Our target tracking method is a tracking by detection. We

use the idea of one-shot learning [24] and online updating

scheme [4] to generate an accumulated appearance model. The

object features in first frame form the initial appearance model.

Then in the subsequent frames, matched features from detected

object are used to update the appearance model. In this way,

we keep both the initial features and the new features due to

the changes in object view, scale and other properties.

 The object appearance is described by dense-sift[25]

features and bag-of-features. Dense-SIFT calculate features on

evenly sampled points with predefined grid size while key-

point SIFT only make use of key-points which produced by

using scale-space extrema in the difference-of-Gaussian

function. Compared to key-point SIFT, dense-SIFT can

unbiasedly capture features on object, while key point SIFT

probably lose some features due to key-points detection failure

which may arise when the resolution or illumination change.

Although dense-SIFT feature is not scale-invariant, we can

overcome this shortcoming by that we estimate the scale of the

object in PVM.

 In the first image taken, the target is manually labeled with

a rectangle around it. Let rect denote the set of sampled

points of dese-SIFT in the rectangle. All features in the

rectangle are considered as object features and form the initial

object appearance model 1O . All features outside the rectangle

form background model 1B . Let),(yxf denote feature at

point),(yx , then:

 }),(|),({1 rectyxyxfO  (1)

 }),(|),({1 rectyxyxfB  (2)

In subsequent frames, a sub-window with highest score is

taken as the detected object. The sampled points matched with

the object model, matched , will be add to the object model,

and at the same time, the sampled points outside the bounding

box bdbox is used to update the background model.

 }),(|),({1 matchedkk yxyxfOO    (3)

 }),(|),({ bdboxk yxyxfB  (4)

We always keep the first object model and the matched

features in M nearest frames, i.e. the object features in first

frame and matched features in k-M+1,…,k frame forms the kth

object model kO . In our experiments, M = 5

C. Motion model based on Plan-view Map

 We use the current position of target and camera motion

parameters to estimate the possible position and scale of target

in next PVM. Assume that),(ii ypxp is the coordinates of

target position in the ith PVM, the position of camera is origin

O, axis-x is from left to right, axis-y is from bottom to top,

assume robot rotates by an angle α and headed to target by

distance d, then the position of target in i+1th frame is:



























































1100

cossin

0sincos

1

1

1

i

i

i

i

yp

xp

dyp

xp





 (5)

 The predicted position as shown in Fig. 4(a) is marked

with blue star, a red cross represent the existence of an object,

the green point means the real position of target. There

sometimes exists deviation between predicted and real target

position due to the small inaccuracy of robot motion, which

probably lead to confusion when two objects are very close. In

addition, if we want to track a target object among many

objects with same looks as the target, position prediction will

be more critical to avoid appearance confusion. On the other

hand, we hope robot can track a moving object, which means

an active deviation will generate from predicted position. To

handle all these conditions, we calculate an adaptable position

probability map on PVM. Assume the probability of a position

to be the target subject to Gaussian distribution centers on

predicted position:

 2

2222

2

)()(

2

1
),,;,(




ee ypxpypxp

ee eypxpypxpp



 (6)

Where),(ee ypxp is the coordinates of predicted target, σ is

an adjustable parameter that can be set to adapt to certain

conditions. E.g. if we want to move the target in a relatively

large range, σ is set to a larger value, while if the target keeps

still or we need track one among some same looking objects, σ

should be small. We can also use anisotropic Gaussian

distribution to make robot adaptable to target movement in

different direction. Fig. 4(b) shows the position probability

map.

 We can also estimate the scale of the object after we get

the predicted position. Let kH and 1kH denote the object

scale in k and 1k frame, kD and 1kD is the distance between

camera and target in k and 1k frame, we simplify the camera

imaging as a pinhole imaging, then we get:

1

1



 
k

k
kk

D

D
HH (7)

1H is the scale of the target in first frame. Then we just need

to evaluate sub-window of estimated scale in each step to find

the target in image, this will definitely decrease computation

cost.

D. Target object detection

In i+1th frame, each sampling point is evaluated to

determine if it is an object feature or a background feature.

 (a) (b)

Figure 4: (a) detected position (green point) and predicted position(bluepoint)

of target,(b) Position probability map

First, we find its N nearest neighbors in both models. Let

oL and bL represent the average L2 distance to its N nearest

neighbors in object model 1iO and background model 1iB .

A score was given to each point:










otherwiseca

thresholdLLifa
yxs

bo

ii
/

/
),(, (8)

where threshold is a statistical value that measures the

difference between features of background and object,

thresholdLL bo / means sampling points match with object

model, and assigned positive score a . For unmatched

sampling points are assigned a penalty value 0,0,/  caca .

For all possible sub-windows Ww j that an object may exist,

the score of the window is defined as:

  
i

jiiiiw wyxyxsS
j

}),(|),({ (9)

We need guarantee that
jwS is always non-negative. Suppose

that maximum number of matched sampling points in sub-

window is oN , and bN is background feature, ob NNc / , if

we assume that at least 10 matched object points means a

target, then 10/bNc . The value of a, c and threshold used in

our application is 2, 100 and 1.5.

 For each possible sub-window, we got an appearance score

jwS , then a position factor
jwp , which got from (6) with

center coordinates of sub-window jw , is added to the score,

the target window is defined as follows:

)(maxarg
jwjwj pSt ww  (10)

V. EXPERIMENTAL RESULTS

By integrating appearance feature extracted in RGB image

with position and scale information got from PVM, robot can

track the target robustly. In our experiments, robot walked 27

rounds on tracking 9 kinds of different objects, including 4

different chairs, 1 garbage can, 2 tables and 2 boxes, there are

totally 173 steps and detections. Here we show some

experimental results in different conditions and we compared

its performance with nntracker[4] in same features. In Fig. 5 to

Fig. 12, bounding boxes or curves in red and blue are

corresponding to results of our method and nntracker

respectively. Green bounding box in Fig.5 is ground truth,

since it is easy to tell the right target, we did not show ground

truth in other figures.

A. Robustness to Scale and View Change

 In Fig. 5(a), the scale of target was changing greatly

among frames as robot moving towards it. In Fig5(b), we

intentionally changed the view of the chair in each step. The

results show that our method is robust to great appearance

changes.

(a) Scale change

(b) view change

Fig.5 Robustness to appearance change

B. Robustness to Occlusion

In Fig. 6, there were occlusions in second and third

frames. When occlusion occurs, some “noise features” will

be added to appearance model during model updating process,

this will lead to the tracking results of method merely based on

appearance drift greatly from target. While in our method, the

position factor complements the negative effect of noise in

appearance by (10), and the tracking results are stable.

Figure 6. Robustness to Occlusion

C. Self-Recovery from Error

Another advantage of our method is that it has self-

recovery ability when a wrong detection occurs in a frame.

The error will not affect the successive frame because we do

not only rely on appearance, the location information will help

to recover from fault. As shown in Fig. 7, we observe that a

large detection error occurred in 1
st
 and 2

nd
 images, but this

error did not accumulate in next frames, it eventually

recovered from the error and got a good result.

Fig. 7 Robustness in recovery from error

D. Distinguish similar objects

In Fig.8, there are two chairs with similar appearance, the

left one was designated as target. There is only a little drift

from target with our tracking method, while nntracker get a

totally wrong detection.

Fig. 8 Robustness in distinguish similar objects

E. Tracking Performance Evaluation

We evaluate tracking results with 3 methods. First we test

our method with a common evaluation criterion as being used

in [4], which computes the mean distance error(MDE) e:

  


n

i

g

ii OO
n

e
1

||||
1

 (11)

where n is the number of frames in each round, and

||||
g

ii OO  is the Euclidean distance between the tracked

window centroid iO and the ground truth window centroid

g

iO . The results of ||||
g

ii OO  for 173 frames are shown in

Fig. 9, it shows that the distance errors of our method are

lower than that of nntraker. The average of e in 173 frames is

shown in Table I.

Fig. 9 Mean distance error

Although (11) is mostly used in video tracking scenarios, it

can only tell the accuracy of the position (centroid) of tracked

window. But in our application it is not enough to represent

tracking accuracy, because there are great scale changes of

target, we need also to guarantee the right scale of the tracking

target. Since our method is a tracking-by-detection method, we

can naturally evaluate the accuracy of tracking by commonly

used method[3] in object detection:

)(

)(

det

det

gt

gt

RRA

RRA
Accuracy




 , (12)

where A(·) denotes the area of a region, gtR is the region of

ground truth and detR is the region of detected object, a higher

value means a more accurate detection. Fig. 10 shows that our

tracking accuracy is higher and more stable. In Fig.11, we

illustrate the accuracy for each round, It shows that accuracy

of our method is relatively stable from the first step to the last

step in each round, while accuracy of nntracker drops a lot as

robot approaching the target. It means robot using our tracking

method will eventually reach the target, despite the great view

change and occlusion occurred during this process.

If %50Accuracy means a right detection, there are only

8 out of all 173 frames in which the target was missed. The

detection rate, average accuracy and tracking error are shown

in TABLE I

Fig. 10 Comparison of tracking accuracy

Figure 11: Accuracy for each navigation round

TABLE I

EVALUATION OF PERFORMANCE

Method feature

Performance Evaluation

Detection

rate

Average

accuracy

MDE

e (pixels)

Ours dense-

SIFT

95.38% 76.66% 13.54

nntracker 57.14% 48.48% 28.67

VI. CONCLUSIONS

In video tracking, the difference between two frames are

not so salient, the appearance changes gradually or relatively

stable. It is not the case when robot navigate with a mapless

and “look and move” pattern, the images taken are not

continuous, together with robot walking or target moving, the

changes of view, scale, and occlusion are unpredictable, which

makes target tracking difficult. RGB-D cameras that provide

depth information aligned with RGB image present a new way

for object detection and tracking. Plan-view map constructed

from depth information provides the position and scale

information of objects. By integrating this information with

appearance features from RGB image, we get robust tracking

results. Moreover, another two kinds of useful information can

be obtained from depth information, one is convex hulls

around objects in RGB image, and the second is estimated

scale of object. These two kinds of information help to

improve detection speed, which is critical for real-time robot

navigation. Presented experiments show our tracking method

is very robust and efficient in tracking object with appearance

changes and occlusions; also, it works well at tracking a

moving object. Since our method is closely related to depth

information and there may exist small errors occasionally in

convex hull inference, we will refine this part in the future

work in order to further improve the performance of our

method.

REFERENCES

[1] F. Bonin-Font, A. Ortiz, and G. Oliver. Visual navigation for mobile

robots: A survey. Journal of Intelligent and Robotic Systems, 53(3):263–

296, 2008.

[2] P. Viola, J. C. Platt, and C. Zhang. Multiple instance boosting for object

detection. In: NIPS, 18:1419–1426, 2006.

[3] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof. Prost parallel

robust online simple tracking. In: CVPR’10, pages 723–730,2010.

[4] S. Gu, Y. Zheng, and C. Tomasi. Efficient visual object tracking with

online nearest neighbor classifier. In: ACCV2010, 2010.

[5] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Efficient subwindow

search: A branch and bound framework for object localization. IEEE

Trans. Pattern Analysis and Machine Intelligence, 31:2129–2142, 2009.

[6] Y. Alper, J. Omar, and S. Mubarak. Object tracking: A survey. ACM

Computing Surveys, 38(4), 2006.

[7] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line

boosting. In Proceedings British Machine Vision Conference, 1:47–

56,2006.

[8] H. Grabner, C. Leistner, and H. Bischoff. Semi-supervised on-line

boosting for robust tracking. In ECCV’08, pages –, 2008.

[9] T. Stenger, B. Woodley, and R. Cipolloa. Learning to track with with

multiple observers. In: CVPR’09, 2009.

[10] B.Babenko, M.Yang, and S.Belongie. Visual tracking with online

multiple instance learning. In : CVPR’09, pages 983–990, 2009.

[11] A. Ess, B. Leibe, and L. V. Gool. Depth and appearance for mobile

scene analysis. In: ICCV’07, 2007.

[12] A. Ess, B. Leibe, K. Schindler, and L. van Gool. A mobile vision system

for robust multi-person trackin. In CVPR’08, 2008.

[13] M. Arie, A. Moro, Y. Hoshikawa, T. Ubukata, K. Terabayashi, and K.

Umeda. Fast and stable human detection using multiple classifiers based

on subtraction stereo with hog features.

[14] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. In CVPR, pages 886–893, 2005.

[15] L. Spinello, M. Luber, and K. O. Arras. Tracking people in 3d using a

bottom-up top-down detector. In: ICRA’11), pages 1304–1310, 2011.

[16] M. Luber, L. Spinello, and K. O. Arras. Learning to detect and track

people in rgbd data. In:Workshop on RGB-D Cameras RSS), 2011.

[17] J. Shotton, A. Fitzgibbon, and M. C. et al. Real-time human pose

recognition in parts from single depth images. In: CVPR2011, 2011.

[18] L. Bo, X. Ren, and D. Fox Depth Kernel Descriptors for Object

Recognition. In: IROS2011, 2011

[19] T. Darrell, D. Demirdjian, N. Checka, P. Felzenszwalb. Plan-view

trajectory estimation with dense stereo background models. In:

ICCV’01,2001.

[20] Michael Harville. Stereo person tracking with adaptive plan-view

templates of height and occupancy statistics. Image and Vision

Computing,22(2)127-142,2004

[21] F. Bonin-Font, A. Ortiz, and G. Oliver. People detection and tracking

using stereo vision and color. Image and Vision Computing, 25(6): 995-

1007, 2007.

[22] Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic

determination of minimum cost paths. IEEE Trans. on Systems Science

and Cybernetics 4 (1968) 100 – 107

[23] D. Burschka and G. Hager. Stereo-Based Obstacle Avoidance in Indoor

Environments with Active Sensor Re-Calibration. In: ICRA 2002, 2066-

2072,2002

[24] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object

categories. IEEE Trans. Pattern Analysis and Machine

Intelligence,24(4):594 – 611, 2006.

[25] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman. SIFT flow:

dense correspondence across different scenes. In: European Conference

on Computer Vision (ECCV), 2008

