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Abstract
Recognizing cartoon characters accurately is important for animators to design and create cartoon scenarios by utilizing
existing cartoon materials. Current deep learning approaches are sensitive to image rotation and heavily rely on rich textures
that rarely exist in cartoon figures. In order to address this problem, the focus of our work is on the distinct nature of shapes,
which mostly encodes the geometric structure of contours, rendering more discriminative and robust features than textures.
We propose a rotation robust shape transformer for cartoon character recognition. As the filters in deep learning hardly detect
discriminative gradient information in cartoon figures, we leverage multi-scale shape context (SC) to obtain the geometry of
contour sampling points other than differences in gray level. Further, we propose a rotation-invariant positional encoding to
depict the geometric relations of local shape features. The contributions of the different scales of SC templates are learned
by attention-based transformer encoder. The obtained network is able to learn shape information effectively from cartoon
contours only. The simplistic design attains surprisingly nearly 100% recognition accuracy, which beats both handcrafted
and deep learning methods on the proposed challenging Cartoon dataset and traditional datasets. In particular, we gain
86.19% recognition accuracy on rotation test set, rendering an overwhelming superiority of 58.30 percentage higher than the
state-of-the-art methods. Moreover, we develop an online cartoon character recognition application for animation scenarios.

Keywords Shape representation and learning · Transformer · Positional encoding · Cartoon character recognition

1 Introduction

Cartoon plays important roles in entertainment, education,
and advertisement, attracting much research attention in the
field ofmultimedia and computer graphics.As cartoon or ani-
mation creation is usually of high cost and labor-intensive,
it is crucial for animators to effectively create new anima-
tion scenarios by recognizing and reusing existing cartoon
characters [1].

Recognizing cartoonfigures in animationor greeting cards
accurately is quite challenging, as they lack distinctive tex-
ture information, and the same character may be represented
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in different colors or various dramatic gestures. Typical fea-
tures of cartoon characters are mainly outlined by their
structure or shape which consists of sharp and clear edges.
Therefore, the key to distinguish different cartoon characters
is to precisely spot the sparse and critical shape structures
[2].

Shape, which provides geometric structure of objects,
plays a crucial role in human visual perception, in particu-
lar, in object recognition. Recent neuropsychological studies
reveal that humans have a specific brain area to process shape
information [4]. Since shapes do not have brightness, color
and texture information, shapes are stable to the variations
in object color, texture, and light conditions. Due to these
advantages, recognizing cartoon character by their shapes
belongs to the oldest problems in computer vision. Shape
recognition is usually considered as a classification problem.
A large intra-class variation is one of the main challenges in
cartoon character recognition. It is induced by deformation,
articulation, occlusion, and a view point change. However,
deep learning computer vision algorithms routinely focus on
object textures and are heavily sensitive to image rotation
[5]. In order to bridge this gap, we propose a deep archi-
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tecture that learns cartoon feature representation from object
contours only.

Early studies resorted to handcrafted features for shape
representation.Most of them compute one or several geomet-
ric quantities, e.g., position, distance, and angle, of sample
points along a shape and then apply pooling or coding tech-
niques1 to generate a shape descriptor. Shape context (SC) [6]
and its variants [7] are among themost popular shape descrip-
tors. Wang et al. [8] apply the clustering to contour segments
as the coding strategy, yielding a powerful descriptor.Yu et al.
[1] combine color histogram, edge, and skeleton features for
cartoon character retrieval. These handcrafted features are
good at representing the geometric information of shapes.
However, most of them use the concatenation vector of local
features as the whole shape descriptor, neglecting the geo-
metric relations between these features. Moreover, feature
engineering by manually setting various parameters highly
relies on experience, lacking the flexibility to accommodate
significant shape variations, such as rotation and dramatic
changes of cartoon character’s gesture.

Recently, deep learning-based features have gained great
success in visual recognition [9]. Their strong learning abil-
ity made it possible to go beyond the limits of handcrafted
features in cartoon recognition. Li et al. construct jigsaw
puzzles to enhance shape features in the cartoon face classi-
fication network [10]. However, the ImageNet-trained CNNs
are strongly biased toward recognizing textures rather than
shapes. A cat with elephant texture inside is recognized as
an elephant, which is in stark contrast to human behavioral
evidence and reveals fundamentally different classification
strategies [11]. The reason is that most existing learning
models neglect geometric information in feature detection

1 The histogram is one of the most commonly used.

and representation.Most learning-based feature detectors are
based on convolutional filters, and the convolution between
filters and pixel values of images is taken as feature map [5],
while geometric information should characterize the location
distribution of contour points, which is not directly related to
the pixel values. Moreover, most existing models only focus
on detecting and learning features but neglecting explicitly
learning the relations among them [3, 12]. Therefore, the
existing deep networks are designed for detecting texture
induced features in gray level, and little attention has been
paid to the special nature of shapes, which mostly encode the
geometric structure of contours.

We demonstrate some successful classification cases of
our method in the first row of Fig. 1, which Vision Trans-
former (ViT) [3] failed to recognize. The classes wrongly
assigned by ViT are illustrated in second row with red labels.
As ViT mainly relies on texture feature for classification,
ViT recognized Smurf as pigeon for their similar colors.
In contrast, our method is able to distinguish different car-
toon characters and capture even fine shape differences like
between dolphin and plane.

Specifically, we design a shape transformer to learn
attention-based multi-scale shape features and employ a
rotation-invariant positional encoding for shape representa-
tion, as shown in Fig. 2. Since the input to our system are
only outer shape contours, we need a local filter that can
deal with this sparse contour information. We select shape
context (SC), which can characterize the local differences
of contour points, e.g., straight, curved left or right, and the
degree of turning. SC templates of different scales are set
to detect the geometric features of each sample point along
the shape contour. Their contributions to the final shape fea-
tures are learned and balanced by attention-based encoder of
transformer. Furthermore, global geometric features should

Fig. 1 Some successful
classification cases of our
method in the first row, which
Vision Transformer (ViT) [3]
failed to recognize. The classes
wrongly assigned by ViT are
illustrated in the second row
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Fig. 2 Overview of the proposed framework for cartoon character
recognition. Shape context (SC) templates are applied to extract feature
vectors representing the geometry of the contour at different scales. For
each shape, the SC features are collected clockwise at n sample points

and sequentially concatenated with positional encoding. The contribu-
tions of SC features are then learned by attention-based encoding. A
fully connected layer outputs the final probabilities of C categories

describe correlations of local features.We propose a rotation-
and scale-invariant positional encoding to depict the geo-
metric relation of adjacent features. Finally, the feature and
positional embeddings are combined for the final results. Our
contributions are summarized as follows:

• A novel shape transformer framework on explicit geo-
metric features is constructed to learn pure geometric
features other than textures in a deep fashion.

• Shape context (SC) templates in different scales are used
to detect local shape features instead of traditional convo-
lution filters to obtain the distribution of contour sample
points other than differences in gray level.

• Wepropose a rotation-invariant position encodingmethod
that embeds the relative distance between the local
shape and the centroid, rather than introducing rotation
instances in the training set, resulting in significant gains.

• We propose a new challenging Cartoon dataset and an
online application based on it, assisting users to design
cartoon scenarios for greeting cards or cartoon anima-
tions.2

Experiments on both Cartoon datasets and various shape
recognition benchmarks show that our method significantly
outperforms both handcrafted shape features and recent deep
learning-based algorithms [3, 13]. In particular, the proposed
method achieves 95.16% recognition rate, while ResNet 50
[13] only gains 25.52% on the challenging Cartoon dataset.
We also gain overwhelming superiority of 58.30 percentage
higher over Vision Transformer [3] on rotation test images.
Moreover, an online application is developed based on car-
toon character recognition of the proposed method.

2 Weprovide the introduction video of the application in the supplement
material.

2 Related works

This section reviews three lines of related works, i.e., hand-
crafted shape features, deep learning for images of few
textures, and sequential learning strategies.

Cartoon or animation is popular and successful media in
our life, and cartoon character recognition has been studied
in computer vision for a long time [1]. The frequently used
low-level features such as texture, intensity, and color cannot
provide a comprehensive representation for cartoon recogni-
tion. Therefore, traditional methods tend to employ shape
features for character representation [14].

Traditionally, shape is considered the contour information
of the object. Given a set of finite sample points on the con-
tour, the geometric relationship among these points can be
used as a shape feature [15]. Wang et al. [16] explore shape
feature by the distance between the tangent of each point
and the other points. Researchers also develop descriptors
to accommodate a wide range of geometric transformations
[17]. There are also descriptors for some special shapes, such
as lines and ellipses [18, 19]. The classic method Shape Con-
text (SC) and its variants [6, 7] are among the most popular
shape descriptors, which leverage the distribution of sample
points other than their exact positions tomake themmore sta-
ble to noise anddeformations.TheSC feature is easy toobtain
andwidely used as basic feature for middle-level descriptors.
Wang et al. develop the bag of contour fragments (BCF) [8]
based on SC which achieves good performance for shape
classification. However, the parameters are fixed for all cat-
egories neglecting the differences between them. Here, we
explore our learnable descriptors based onSC,while utilizing
neural networks to obtain adaptive parameters.

Deep learning framework explores robust features learned
from extremely large datasets, which cover various object
transformations and illumination changes [9]. Thereafter,
numerous deep learning architectures have been designed
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deliberately for low-texture targets. For cartoonlike images,
such as sketches [20, 21] andChinese handwritten characters,
researchers enlarge the size of the filters to adopt networks
to their sparse and structural nature [22, 23]. Lee et al. [24]
classify the leaves by extracting the features of veins with
CNN. Unfortunately, traditional handcrafted shape features
[6, 16] are abandoned, since deep learning framework detects
features upon pixel differences in gray level other than their
geometry structure. Hilton et al. devise a capsule network to
get the relations between features for handwritten number
recognition, while neglecting the geometric nature of num-
bers [12]. PointNet [25] is able to learn shape information
directly from sample points on 3D surfaces. We applied it to
2D sample points on contours, but its performance is signif-
icantly below the proposed approach (see Sect. 4).

In order to learn the relation of features, many works
resort to memorable network architectures. Classic recurrent
neural network (RNN) [26, 27] is designed for process-
ing input sequence, which can deliver the outputs from
the former sequence to the latter ones. However, it has a
notorious limitation called “gradient vanishing.” In order to
overcome the limitation of RNN, LSTM [28–30] networks
have been proposed. However, recurrent network can only
learn the order of the feature sequence, neglecting geometric
positional relations. In contrast, Vision Transformer (ViT)
[3] uses a sequence of embedded image patches as input
[3, 31–33], which has explicit representations of positional
information for features. There are mainly two classes of
methods to encode positional representations for transformer.
One is absolute, while the other is relative. Absolute methods
[34, 35] encode the absolute orders of input image patches,
while relative position methods [36, 37] encode the rela-
tive distance between input elements and learn the pairwise
relations of features [3, 38, 39]. However, existing encod-
ing methods have no invariance to sequence order changes,
which are undesirable for modeling geometry data structures
with translation, rotation or reflection.

3 Shape transformer framework

The proposed shape transformer framework consists of shape
feature extracting, rotation-invariant positional encoding,
attention-based feature encoder, and classification output
layer. As shown in Fig. 2, feature extraction is set to explore

the local geometric feature of each sample point under dif-
ferent SC template scales. Then, the space relations of local
features are represented by positional encoding. Thereafter,
the features of the sample points incorporated with positional
encoding are fed into feature encoding layer. Attention-
based encoder is used to balance the contribution of different
template scales and acquire the optimal SC parameter com-
bination. Finally, a fully connected layer outputs the final
classification probability. In the following, we describe in
detail each of the steps involved in this process.

3.1 Local shape feature extraction

As we mentioned in previous sections, shape feature should
be represented and learned according to its geometric nature.
Shapes are usually expressed by contours and composed of
lines, points, and curves, which are sparse structures. Thus,
instead of sliding convolution kernel on the whole image in
deep learning framework, we describe local shape features
along its contour by shape context [6], which is easy to com-
pute and widely used as a basic shape feature.

For each cartoon character, we sample n points P =
{p1, p2, . . . pn} on the shape contour clockwise equidis-
tantly. At each sample point pi ∈ P , we center a shape
context (SC) descriptor, i.e., a circle divided into several cells.
Two examples are shown in Fig. 3. A SC template is divided
into ndist regions according to the radius in log-polar, and into
nθ angular regions. The number of sample points in each cell
obtained by the intersection of these regions is accumulated
and represented by histogram. The histogram shows the dis-
tribution of sample points surrounding pi , which is used as
the local feature at point pi . The features for n sample points
{p1, p2, . . . , pn} are denoted as {x1, x2, . . . , xn}.

In the traditional method, the parameters should be
selected deliberately, as they can affect the robustness and
distinctiveness of the features. Take parameter ndist as an
example, which reflects the range of local feature covered.
As shown in Fig. 3a, if it is set too small, local features tend
to be similar and lower down the distinctiveness. While in
Fig. 3b, the larger template may cover non-local parts of the
shape, and the features are totally different for the shapes in
the same category.

Generally speaking, templates with more cells are better
at detecting details than the ones with fewer cells, and they
can work well on complicated shapes. Templates with fewer

Fig. 3 Influence of template
sizes: a small templates at
different points produce similar
features and b large ones at the
same point on shapes of the
same category produce different
features
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cells can be used for simple shapes to reduce redundancy.
In order to balance the effect of different parameters, we
design m different templates M = {l1, l2, . . . lm} to describe
local features at each point coarse to fine. Thus, the tem-
plates are used to detect features at different scales, and the
local features produced by templates li ∈ M are noted as
{x1li , x2li , . . . xnli } for 1 ≤ i ≤ m. We concatenate the fea-
tures of all templates as the feature for each sample point.
The sequential concatenation features of all sample points
are the original features of the whole shape.

The shape features are invariant under scaling and trans-
lation, and robust enough to resist geometric distortions.
Completely rotation-invariant features could be provided by
rotating the SC templates, but this seems not to be necessary
as rotation mainly affects the order of the feature vectors. For
example, the features {x1, x2, . . . , xn} for n sample points are
converted to {x j , x j+1, . . . , xn, x1, . . . , x j−1}(1 ≤ j ≤ n)

after rotation. As cartoon characters usually exhibit rotation,
even reflection, it is crucial to explore rotation-invariant spa-
tial relations among the features.

3.2 Geometric positional encoding and
self-attention

Even though relations between features are crucial for recog-
nition, they have been seldom considered. This makes the
learned shape features geometrically less discriminative and
causes severe matching ambiguity, especially when inter-
class differences are relatively minor in comparison with
intra-class variability.A straightforward recipe is to explicitly
inject positional embeddings of 2D sample point coordinates.
However, cartoon recognition requires scale and rotation
robustness as the input figure can be in arbitrary poses.

We design a novel geometric structure embedding to
encode both the sequential property and rotation-invariant
geometric relations of the sample points. The core idea is
to leverage the relative distances computed by each sam-
ple point and the shape centroid. As shown in Fig. 4, O
denotes the centroid of the shape, and dist1 is the distance
between sample point p1 and O . Obviously, the distance
keeps unchanged after shape rotation. We also normalize
the distances for each shape to make the encoding scale-
invariant.

The concatenation feature sequence produced by all tem-
plates keeps the sequential character of sample points, while
the proposed positional encoding improves the rotation
invariance of the overall features,which is calculated asEq.1:

PE(k,2q) = sin

(
dist k

10000
2q
d

)
, PE(k,2q+1) = cos

(
dist k

10000
2q+1
d

)
,

(1)

Fig. 4 The distance from each sample point to the centroid is rotation-
invariant

where k is the order of the sample point, d is the feature
dimension of each sample point, and q is the dimension. That
is, each dimension of the positional encoding corresponds to
a sinusoid. distk is the normalized distance from point k
to shape centroid. Meanwhile, we have a learnable position
embedding Ecls for [class] token.

We employ a geometric self-attention to learn the global
correlations in both feature and geometric spaces among the
sample points and multi-scale templates. Given the input
feature coupled with positional embedding matrix z0, the
attention function is defined by scaled dot-product attention
[35]:

Attention(Q, K , V ) = so f tmax(
QKT

√
dz

)V ,

Q = z0W
Q, K = z0W

K , V = z0W
V ,

(2)

where WQ , WK , and WV ∈ R
d×dz are parameter matrices

which are unique per layer and attention head, and dz is the
dimension of queries and keys. These matrices not only learn
different weights for different scales of templates, but also
give different attention to local features.

3.3 Sequential shape feature learning in
transformer

As shown in Fig. 2, the proposed shape transformer includes
a stack of identical layers as encoder, while each layer has
two sub-layers. The first sub-layer employs amulti-head self-
attention (MSA) to learn and balance the features of different
templates. The second layer is a simple, position-wise fully
connected feed-forward network (FFN), which is used to
combine the geometric attention-based shape features of all
templates and sample points. We employ a residual connec-
tion around each of the two sub-layers, followed by layer
normalization (LN). Finally, we employ a fully connected
layer to output the class label.

To be specific, we take the local feature xi for sample point
pi ∈ P as an example. We concatenate the shape context
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features of all templates as the feature xi . Then the features
for n sample points are represented by x ∈ R

n×d in Eq. 3,
where d is the dimension of SC feature of each sample point
and n is the number of sample points. We refer to the x as a
feature embedding of the whole shape.

x = [x1; x2; · · · ; xi ; · · · ; xn], 1 ≤ i ≤ n. (3)

Similar to ViT’s [class] token, we prepend a learnable
embedding to the sequence of the embedded features. As
illustrated in Eq. 4, the class token xclass is added to the
positional embedding Ecls , while the original shape feature
vector x is incorporated with positional encoding (PE). The
concatenation of two parts is denoted as z0, which is the input
of transformer encoder, containing n+1 vectors. z00 = xclass
represents the first vector of z0.

z0 = [xclass + Ecls; x + PE], Ecls ∈ R
1×d , PE ∈ R

n×d

(4)

After L identical layers, we apply layer normalization
(LN) to z0L as the final shape representation. Finally, we
employ a fully connected layer to obtain the classification
probability. The classification loss is the cross-entropy.

4 Experiment results and analysis

In order to evaluate our method, we create a challeng-
ing Cartoon dataset, and employ 3 widely used datasets
for the evaluation of shape descriptors, i.e., Swedish Leaf
dataset [40], Animal dataset [41], and Caltech101 dataset
[42]. We compare our results with both handcrafted and
learning-based state-of-the-art classification approaches in
order to validate the effectiveness of our shape transformer.
The ablation study on multi-scale templates, feature learning
strategies, and positional encoding demonstrates high clas-
sification accuracy of the proposed method, especially on
rotation shapes.

4.1 Data preparation and compared algorithms

Our Cartoon dataset contains 25 categories, including car,
Doraemon, Snowman, MashiMaro, Mickey, PeppaPig, etc.
We show some instances and the corresponding silhouettes
per category in Fig. 5.3 Each category has about 100 images
with huge intra-class variations on both shape and texture.

SwedishLeaf dataset [40] contains isolated leaves from15
different Swedish tree species, with 75 leaves per category.
As shown in Fig. 6, the inter-class difference is quite small.

3 We provide more instances in supplement material.

Animal dataset [41] contains 2000 shapes of 20 categories,
with 100 animal images per category. Shapes in each category
have huge intra-class variations, e.g., as shown in Fig. 7, the
shape varies a lot in cat category. Therefore, the Leaf and
Animal datasets are used to evaluate the distinctiveness and
robustness of the proposed method. Caltech101 dataset [42]
is one of the largest shape datasets, which contains 9146
binary shapes of 101 categories, each category having 40 to
800 images. As shown in Fig. 8, the inter-class difference
is quite small, and the large number of categories makes it
challenging to evaluate our method on this dataset.

It is obvious that the amount of shapes in any dataset is
not sufficient for data training. We apply several data aug-
mentation strategies over these datasets, including horizontal
reflection and stretching. Taking the intra-class variation into
consideration, we also apply elastic distortion upon the orig-
inal shapes [43].

The data augmentation procedure results in 36 times of
the original images per category in Cartoon dataset, 12600
images per category in Swedish Leaf dataset, 8400 images
per category in Animal dataset, and 84 times of the original
images per category in Caltech101 dataset.We notice that the
Swedish Leaf dataset consists of color images, so we convert
them into binary images.

We compare the following algorithms with our method in
order to demonstrate the performance.
Handcrafted shape features: Both classical and newly devel-
oped methods are introduced to compare with the proposed
method. Inner Distance Shape Context (IDSC+DP) [7] and
IDSC+ Morphological [44] are classical shape descriptors,
which use the distribution of sample points as shape features.
Skeleton path [41] and Skeleton-based [45] methods clas-
sify shapes based on dissimilarity statistics between shortest
skeleton paths. Bag of Contour Fragments (BCF) [8] andBag
of Shape Feature (BoSCP-LP) divide a contour or skeleton
into coded fragments. A multi-class SVM is used to classify
the shape. We keep the same training and testing ratio with
[8, 46].
Learned features: In order to show the advantage of the
proposed method over deep learning framework on car-
toon character recognition, Lee’s method is introduced [24],
which is also designed for shape learning in leaf recognition.
Their method uses two branches of deep learning framework
to encode both shape feature and texture feature of veins.
As our evaluation is based on the datasets with almost no
texture information inside, we take their learning branch for
shapes to keep the same protocol. We also take the classical
ResNet 50 [13], PointNet [25], and newly developed ViT [3]
for comparison, which performwell on various classification
problems. The ratio of the training set to the test set is 1:1.
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Fig. 5 Some instances and the corresponding silhouettes in Cartoon dataset

Fig. 6 Shapes examples in Leaf dataset

Fig. 7 Shapes examples of category Cat in Animal dataset

Fig. 8 Similar categories in Caltech101 dataset
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Table 1 Feature dimensions by different parameters of SC templates

ndist 5 7 9 9 11 25

nθ 12 14 14 16 14 6

Feature dimension 60 98 126 144 154 150

4.2 Experimental settings

Shape context template: We select six groups of parameters
widely used in handcrafted shape descriptors [8, 47]. Table 1
lists the feature dimensions produced by six combinations of
parameters in the SC template. Therefore, six feature vectors
are produced for each sample point. For each sample point,
the input feature embeddings are the concatenation of fea-
ture vectors produced by six templates, and the dimension
is 60 + 98 + 126 + 144 + 154 + 150 = 732. We combine
feature embeddings and position embeddings to get the input
of transformer encoder. The output of the encoder keeps the
same dimension as the input.
Network details: For each shape, we sample 150 points on the
shape contour clockwise equidistantly. We take the sample
point with the smallest y-coordinate as the start point for each
shape. With the help of proposed positional encoding, our
method is robust to rotation with no need of pre-alignment
and careful selection of the starting point that are common
for traditional shape descriptors.
Training details:We set a initial learning rate 4×10−4 for our
network. The model uses cross-entropy as the loss function,
and is trained for 100 epochs, in which we decay the learning
rate 10 times at the 30th epoch and the 40th epoch. All the
experiments are conducted on a single NVIDIA RTX 3090
GPU. We use the ADAM optimizer. The weight decay is
set as 1 × 10−4. We use a batch size that maximizes the
occupancy of available GPUmemory. In this paper, the batch
size is set as 256 in each epoch. In order to keep the same
protocol with the baselines, the ratio of the training to test is
1:1, which is the lowest training ratio among the competitive
methods.

4.3 Experimental comparisons on benchmarks

For Cartoon dataset, our method only works on silhouettes,
while the other deep learning methods take the original
images as input. For Swedish Leaf dataset, Animal dataset,
and Caltech101 dataset, all the methods take the silhouettes
as input.

4.3.1 Cartoon dataset

The proposed Cartoon dataset is one of the most challenging
datasets with large intra-class differences in shapes. Since the

proposed method is vastly superior to handcrafted methods,
we compare it with deep learning-based methods, as images
all have inner color and texture in Cartoon dataset. The sec-
ond column of Table 2 shows the accuracy of the proposed
method is 95.16%, which is 41.13% and 69.64% higher than
Lee’s [24]method andResNet 50 [13]. The reason is that each
category in Cartoon dataset is designed in various colors and
shapes, and some of them are highly abstract and personi-
fied. They lack distinctive texture but have typical shapes in
common. Take the elephant category in Fig. 5 as an exam-
ple, cartoon elephants have different colors and textures, but
they all have the typical trunk. This is the reason that the
proposed method outperforms the other deep learning-based
methods. The gap betweenViT and our results is 1.7%,which
is remarkable since our method uses significantly less infor-
mation.

We gather some cases with low classification rates in ViT
but succeed in our method. The results of ViT are shown in
Fig. 1, the first row of Fig. 1 shows the query cartoon images,
including Smurf, Crayon, Dolphin, and Umbrella, and the
second row shows the misclassified results. We can see the
query and misclassified images have lots of similar local tex-
ture pattern and color, such as the purple body of Crayon
and PeppaPig. However, the major difference between them
is the body shape, which can be characterized by our atten-
tion structure according to the sequential features along the
contour.

4.3.2 Swedish Leaf dataset

Swedish Leaf dataset is a challenging dataset with large
inter-class similarities. The experimental results are shown
in the third column of Table2. Ourmethod obtains the highest
accuracy of 99.70% in average. All the other methods have
the accuracy over 85%, and the performance of BCF [8] is
96.56%, which is about 3 percentage lower than our method.
However, ResNet 50 obtains the lowest accuracy of 85.46%,
as the texture of leaves is not discriminative enough [13]. ViT
gets the second highest result of 98.78%, which is about 1%
lower than ours.

4.3.3 Animal dataset

Animal dataset includes severe intra-class variability since
the same kind of animals may have various postures. As
shown in Fig. 7, the category of cat includes the silhouettes
of various postures, some of which are totally different. The
experimental results are listed in the fourth columnofTable 2.
The performance of testingmethods drop a lot comparedwith
the other datasets. The basic handcrafted method IDSC [47]
and Skeleton paths [41] obtain the accuracy less than 74%.
The accuracy of mid-level features BCF [8] and BoSCP-LP
[46] is less than 90%. PointNet [25] is unable to performwell
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Table 2 Classification accuracy
on the whole datasets

Methods Classification accuracy (%)

Cartoon Swedish Leaf Animal Caltech101

BCF [8] – 96.56 83.40 69.04

BoSCP-LP [46] – – 89.77 –

IDSC+DP [7] – 94.13 73.60 –

IDSC+Morphological [44] – 94.80 – –

PointNet [25] – – 10.00 –

Lee [24] 54.03 95.79 66.91 80.48

ResNet 50 [13] 25.52 85.46 62.70 86.79

Skeleton paths [41] – – 67.90 –

Skeleton-based [45] – 94.43 – –

ViT [3] 93.48 98.78 99.16 91.24

Multi-scale shape feature+SVM – 75.85 49.96 18.05

Multi-scale shape feature+LSTM 69.20 97.78 98.63 93.27

Ours 95.16 99.70 99.76 92.11

Bold indicates the best performance

on this dataset. Its accuracy of only 10% is extremely low,
which is most likely due to the fact that it cannot describe the
neighborhood relations among contour points. Again, due to
the lack of texture information in the binary animal images,
ResNet 50 [13] obtains the accuracy of only 62.70%. How-
ever, ViT [3] gets 99.16%, which is only 0.6% lower than
ours. It shows the amazing performance of transformer. Our
method achieves an amazing performance of 99.76%, which
is at least 10% higher than the state-of-the-art except ViT. In
order to demonstrate the comparison results in an intuitive
way, we gather some cases with top four error rates in BCF
but succeed in our method. The results of BCF are shown
in Fig. 9, and the top four categories with the lowest classi-
fication rates are dog, crocodile, dolphin, and leopard. The
first row of Fig. 9 shows the query shapes and the second
row shows the misclassified results. Take dolphin shape as
an example, we can see the query and misclassified shapes
have lots of similar local parts, such as the fins and fishtails.
However, the major difference between them is their body
shape, which can be memorized and stored by our encoder
according to the sequential features along the contour. The
reason is that BCF detects features by shape structure, but
lacks the relation between local features.

4.3.4 Caltech101 dataset

Caltech101 dataset is one of the largest datasets with large
inter-class similarities and intra-class variability. The last col-
umn of Table 2 demonstrates that the accuracy of our method
is 92.11%, over 23 and 11 percentage points higher than BCF
[8] and Lee’s method [24], respectively. The performance of
our method also outperforms ResNet 50 [13] over 5 percent-
age points and ViT [3] about 0.8%.

4.4 Ablation study

4.4.1 Effectiveness of multi-scale features

We take an ablation study to demonstrate the effectiveness of
our multi-scale feature balance strategy. Table 3 provides the
accuracyof each single SC template and the proposedmethod
includes six templates. The first column is the list of alter-
native designs. The six different templates are labeled with
the corresponding SC parameters. The first column under
each dataset shows the overall results, and the second col-
umn lists the performance of a random category. The best
performances are shown in bold, showing significant advan-
tage of the multi-scale feature over individual template. The
only exception is the dog category of Animal dataset, where
a single encoder performs merely 0.07% higher than the pro-
posed method. We also label the best performance among
six templates in bold, which shows that the best performance
cannot be attributed to a single template. In particular, the
performance varies a lot for individual categories. Thus, we
cannot fix the parameters for all datasets and categories, and
our multi-scale feature balance strategy makes it possible to
gain the optimal results.

4.4.2 Effectiveness of sequential feature learning

In order to explore geometric relations of shape features,
we also try another two feature relation learning ways. As
shown in last three rows of Table 2. Firstly, we directly
concatenate multi-scale shape features and feed them to lin-
ear multi-class SVM for shape classification. The accuracy
is 75.85% on Swedish Leaf dataset and 18.05% on Cal-
tech101 dataset, which are the lowest among all the methods.
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Fig. 9 Some successful
classification cases of our
method in the first row, which
BCF [8] failed to recognize. The
classes wrongly assigned by
BCF are illustrated in the second
row

Table 3 Comparison between
single SC template and
geometric attention-based
methods on three datasets and
on specific categories

Alternative designs Swedish leaf Animal Caltech101
Overall Category-l9nr Overall Category dog Overall Buddha

l1 : 5 × 12 98.76 97.14 99.22 99.40 90.31 98.43

l2 : 7 × 14 99.26 97.71 99.29 99.24 90.17 98.35

l3 : 9 × 14 99.31 97.52 99.39 99.60 90.05 98.10

l4 : 9 × 16 99.27 97.37 99.68 99.69 91.35 98.35

l5 : 25 × 6 99.25 97.13 99.60 99.21 89.63 96.41

l6 : 11 × 14 98.78 97.10 99.68 99.86 88.15 97.17

Ours 99.70 99.11 99.76 99.79 92.11 98.80

Fig. 10 Comparison on rotated
shapes of Leaf dataset

The reason is that SVM takes the features as a whole and
does not learn the correlation between features of different
templates or sample points. Then we take long short-term
memory (LSTM) framework as basic blocks to exploit the
sequential feature of contours. This try obtains great gains
compared with SVM, which achieves over 90% accuracy on
three traditional datasets. However, the accuracy on the chal-
lengingCartoon dataset is lower than 70%, asLSTMcanonly
learn the order of features without geometric information.
Consequently, our shape transformer with rotation-invariant
positional encoding achieves almost the highest accuracy
among all the datasets. An exception of 1% lower than
LSTM framework appears on Caltech101 dataset. In fact,
our method beats LSTM framework on 99 categories out of
101. The little gap is generated by two categories of pizza

Table 4 Comparison on rotated shapes of the Leaf dataset

Methods Classification accuracy(%)

BCF [8] 13.33

ViT [3] 27.89

Ours with SA PE [35] 45.47

Ours 86.19

and soccer ball. As shown in the fifth column of Fig. 8, the
two categories have no distinguishable geometric features,
resulting little advantage of the positional encoding.
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4.4.3 Effectiveness of PE on rotation test set

In order to verify the robustness of the proposed posi-
tional encoding (PE) under rotation, we keep the training
set unchanged, and rotate the original Swedish Leaf dataset
every 30 degrees as the test set. The rotation test set has
15 × 75 × 12 = 13500 shapes. We compare our method
with both handcrafted method BCF [8] and learning-based
method ViT [3]. We also replace our positional encoding by
sinusoid absolute PE (SAPE) [35]with other part unchanged.
Table 4 shows that the accuracy of the proposed method
remains around 86%, which is at least 58% higher than the
state-of-the-art methods. The accuracy of BCF [8] and ViT
[3] drops a lot, which are both lower than 30%, as rotation
heavily affects the spatial relations of local features. Sinu-
soid absolute PE (SA PE) [35] assigns a fixed order to the
sequential sample points, which only encodes the sequential
relation of features. Our framework with SA PE only gains
45.47% accuracy. However, the accuracy of our PE is almost
twice of that with sinusoid absolute PE [35], as we have both
sequential and geometric relations in our positional encod-
ing strategy. Figure 10 shows the results on rotated shapes
of different degrees. Our method is far ahead of the others,
showing the effectiveness of the proposed rotation-invariant
positional encoding strategy.

4.5 Online application

Based on the proposed Cartoon dataset, we design a novel
app to help users to design cartoon scenarios by the car-
toon characters. After a user first creates a shape contour, the
app suggests most similar cartoon figures. The user can then
select one of them and complete a scene map. The system
overview is shown in Fig. 11. The app runs in real time and

submits the shape contour to the server. Both geometric fea-
tures and positional encoding are extracted and fed into the
proposed network on the server. The recognition result and
its corresponding instances are sent back to the app. Users
can choose any cartoon picture they like. Our results show
that the proposed network architecture and online applica-
tion generalize well to real user input and enable high-quality
recognition results without additional post-processing.

5 Conclusion

Since binary silhouette images as well as object contours
exhibit little to no texture information, which is essential
for convolutional neural networks (CNNs) for cartoon fea-
ture learning, we propose a novel way of feature learning.
The features of different scales are combined and their con-
tributions are integrated and weighted with a self-attention
layer. The novel positional encoding retains the geometric
position relation of sample points. All of these yield a novel
network architecture for shape recognition. The presented
experimental results demonstrate that our geometry-based
learning network is robust to intra-class variations and has
highdiscriminative ability to inter-class similarity for cartoon
character recognition. Particularly, we achieve a break-
through accuracy of 86.19% on rotation Leaf dataset, over
58 percentage points higher than the state of the art. As we
only employ the silhouette of objects for classification, it
is hard for our method to distinguish minor difference inside
the shape.Wewill try more challenging datasets in our future

Fig. 11 System overview of the
proposed online application
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work, such as corrupted inputs and shapes with inner struc-
tures.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00371-023-03123-
2.

Acknowledgements This work was supported in part by the Natu-
ral Science Foundation of China under Grant 62272083 and Grant
61876030, in part by the Liaoning Provincial Natural Science Foun-
dation under Grant 2022-MS-128, in part by the Fundamental Research
Funds for the Central Universities DUT23YG109, and in part by the
U.S. National Science Foundation under Grant I IS-1814745.

Data availability The datasets generated or analyzed during the current
study are available on Google drive (https://drive.google.com/drive/
folders/1vhw907BYVosw7wMKmhD7CAe4x0NbenIG?usp=sharing).

Declarations

Conflict of interest We declare that we have no financial and personal
relationshipswith other people or organizations that can inappropriately
influence our work, there is no professional or other personal interest of
any nature or kind in any product, service and/or company that could be
construed as influencing the position presented in, or the review of, the
manuscript entitled, “ARotationRobust ShapeTransformer for Cartoon
Character Recognition.”

References

1. Yu, J., Liu, D., Tao, D., Seah, H.S.: On combiningmultiple features
for cartoon character retrieval and clip synthesis. IEEE Trans. Syst.
Man Cybern. B (Cybern.) 42(5), 1413–1427 (2012)

2. Rios, E.A., Cheng, W.-H., Lai, B.-C.: Daf: re: A challenging,
crowd-sourced, large-scale, long-tailed dataset for anime character
recognition. arXiv preprint arXiv:2101.08674 (2021)

3. Dosovitskiy, A., et al.: An image is worth 16 × 16 words: Trans-
formers for image recognition at scale. In: InternationalConference
on Learning Representations (2021)

4. Wang, X., et al.: Domain selectivity in the parahippocampal gyrus
is predicted by the same structural connectivity patterns in blind
and sighted individuals. J. Neurosci. 37(18), 4705–4716 (2017)

5. Geirhos, R., et al.: ImageNet-trained CNNs are biased towards
texture; increasing shape bias improves accuracy and robustness.
arXiv preprint arXiv:1811.12231 (2018)

6. Belongie, S., Malik, J., Puzicha, J.: Shape context: a new descrip-
tor for shape matching and object recognition. Adv. Neural Inf.
Process. Syst. 13, 831–837 (2001)

7. Shekar, B., Pilar, B., Kittler, J.: An unification of inner distance
shape context and local binary pattern for shape representation and
classification. In: Proceedings of the 2nd International Conference
on Perception and Machine Intelligence, pp. 46–55 (2015)

8. Wang, X., Feng, B., Bai, X., Liu, W., Latecki, L.J.: Bag of con-
tour fragments for robust shape classification. Pattern Recognit.
47, 2116–2125 (2014)

9. Krizhevsky,A., Sutskever, I., Hinton,G.E.: ImageNet classification
with deep convolutional neural networks. Adv. Neural Inf. Process.
Syst. 25, 1106–1114 (2012)

10. Li, Y., Lao, L., Cui, Z., Shan, S., Yang, J.: Graph jigsaw learning
for cartoon face recognition. arXiv:2107.06532 (2021)

11. Ritter, S., Barrett, D.G., Santoro, A., Botvinick, M.M.: Cognitive
psychology for deep neural networks: a shape bias case study.
In: International conference on machine learning, pp. 2940–2949
(2017)

12. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between
capsules. Adv. Neural Inf. Process. Syst. 30, 3856–3866 (2017)

13. He,K., Zhang,X., Ren, S., Sun, J.:Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770–778 (2016)

14. Haseyama, M., Matsumura, A.: A cartoon character retrieval sys-
tem including trainable scheme. In: Proceedings 2003 International
Conference on Image Processing (Cat. No. 03CH37429), vol. 3, pp.
III–37 (2003)

15. Hu, R., Jia, W., Ling, H., Zhao, Y., Gui, J.: Angular pattern and
binary angular pattern for shape retrieval. IEEE Trans. Image Pro-
cess. 23, 1118–1127 (2014)

16. Wang, J., Bai, X., You, X., Liu, W., Latecki, L.J.: Shape matching
and classification using height functions. Pattern Recognit. Lett.
33, 134–143 (2012)

17. Jia, Q., et al.: Hierarchical projective invariant contexts for shape
recognition. Pattern Recognit. 52, 358–374 (2016)

18. Chen, S., Xia, R., Zhao, J., Chen, Y., Hu, M.: A hybrid method for
ellipse detection in industrial images. Pattern Recognit. 68, 82–98
(2017)

19. Micusik, B., Wildenauer, H.: Structure from motion with line seg-
ments under relaxed endpoint constraints. Int. J. Comput. Vis. 124,
65–79 (2017)

20. Yu, Q., et al.: Sketch me that shoe. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 799–
807 (2016)

21. Sarvadevabhatla, R.K., Kundu, J., Babu, R.V.: Enabling my robot
to play pictionary: recurrent neural networks for sketch recogni-
tion. In: Proceedings of the 24th ACM International Conference
on Multimedia, pp. 247–251 (2016)

22. Yu, Q., et al.: Sketch-a-net: a deep neural network that beats
humans. Int. J. Comput. Vis. 122, 411–425 (2017)

23. Wang, T.-Q., Liu, C.-L.: Fully convolutional network based skele-
tonization for handwritten Chinese characters. In: Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 2540–2547
(2018)

24. Lee, S.H., Chan, C.S., Mayo, S.J., Remagnino, P.: How deep learn-
ing extracts and learns leaf features for plant classification. Pattern
Recognit. 71, 1–13 (2017)

25. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep learning on
point sets for 3d classification and segmentation. In: CVPR, pp.
652–660 (2017)

26. Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recur-
rent neural networks. In: Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pp. 1017–1024
(2011)

27. Xu, P., et al.: SketchMate: deep hashing for million-scale human
sketch retrieval. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 8090–8098 (2018)

28. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Comput. 9, 1735–1780 (1997)

29. Miyagi, R., Aono, M.: Sliced voxel representations with LSTM
and CNN for 3D shape recognition. In: 2017 Asia-Pacific Signal
and Information Processing Association Annual Summit and Con-
ference (APSIPA ASC), pp. 320–323. IEEE (2017)

30. Dai, G., Xie, J., Fang, Y.: Siamese CNN-BiLSTM architecture for
3D shape representation learning. In: IJCAI, pp. 670–676 (2018)

31. Carion,N., et al.: End-to-end object detectionwith transformers. In:
European Conference on Computer Vision, pp. 213–229. Springer
(2020)

32. Touvron, H., et al.: Training data-efficient image transformers
& distillation through attention. In: International Conference on
Machine Learning, pp. 10347–10357. PMLR (2021)

33. Wang, X., Girshick, R., Gupta, A. He, K.: Non-local neural net-
works. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7794–7803 (2018)

123

https://doi.org/10.1007/s00371-023-03123-2
https://doi.org/10.1007/s00371-023-03123-2
https://drive.google.com/drive/folders/1vhw907BYVosw7wMKmhD7CAe4x0NbenIG?usp=sharing
https://drive.google.com/drive/folders/1vhw907BYVosw7wMKmhD7CAe4x0NbenIG?usp=sharing
http://arxiv.org/abs/2101.08674
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/2107.06532


A rotation robust shape transformer for cartoon character recognition

34. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.:
Convolutional sequence to sequence learning. In: International
Conference on Machine Learning, pp. 1243–1252. PMLR (2017)

35. Vaswani, A., Guyon, I., et al.: Attention is all you need. In: Guyon,
I., et al. (eds.) NIPS, vol. 30. Curran Associates Inc., Red Hook
(2017)

36. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative
position representations. In: NAACL (2018)

37. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.: Atten-
tive language models beyond a fixed-length context, Transformer-
xl. arXiv:1901.02860 (2019)

38. Chu, X., Zhang, B., Tian, Z., Wei, X., Xia, H.: Do we really need
explicit position encodings for vision transformers. arXiv preprint
arXiv:2102.10882 (2021)

39. Srinivas, A., et al.: Bottleneck transformers for visual recognition.
In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16519–16529 (2021)

40. Söderkvist, O.: Computer vision classification of leaves from
Swedish trees. Master’s thesis (2001)

41. Bai, X., Liu, W., Tu, Z.: Integrating contour and skeleton for
shape classification. In: 2009 IEEE 12th International Conference
on Computer Vision Workshops, ICCV Workshops, pp. 360–367
(2009)

42. Li, F.-F., Andreetto, M., Ranzato, M.A.: Caltech101 image
dataset. http://www.vision.caltech.edu/Image_Datasets/Caltech1
01/ (2003)

43. Simard, P.Y., Steinkraus, D., Platt, J.C., et al.: Best practices for
convolutional neural networks applied to visual document analysis.
In: Icdar, vol. 3 (2003)

44. Hu, R.-X., Jia, W., Zhao, Y., Gui, J.: Perceptually motivated mor-
phological strategies for shape retrieval. Pattern Recognit. 45,
3222–3230 (2012)

45. Sirin, Y., Demirci, M.F.: 2D and 3D shape retrieval using skeleton
filling rate. Multimed. Tools Appl. 76, 7823–7848 (2017)

46. Shen, W., Du, C., Jiang, Y., Zeng, D., Zhang, Z.: Bag of shape fea-
tures with a learned pooling function for shape recognition. Pattern
Recognit. Lett. 106, 33–40 (2018)

47. Ling, H., Jacobs, D.W.: Shape classification using the inner-
distance. IEEE Trans. Pattern Anal. Mach. Intell. 29, 286–299
(2007)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Qi Jia received the B.E. and Ph.D.
degrees in computer science and
technology from Dalian Univer-
sity of Technology , Dalian China,
in 2005 and 2014, respectively.
She joined the School of Soft-
ware, Dalian University of Tech-
nology in 2008, where she is cur-
rently an associate professor. Her
current research interests include
computational geometry, image
processing, and computer vision.

Xinyu Chen received the B E
degree from the Dalian Univer-
sity of Technology, Dalian, China,
in 2020. She is currently work-
ing toward the master’s degree in
software engineering at the Dalian
University of Technology, Dalian,
China. Her research interests
include computer vision and deep
learning.

Yi Wang received the BE and PhD
degrees in computer science and
technology from Jilin University,
Jilin, China, in 2002 and 2009,
respectively. Since 2009, she has
been with the Dalian University
of Technology, China. She is cur-
rently an associate professor. Her
research interests include machine
learning, image processing, and
computer vision.

Xin Fan (Senior Member, IEEE)
received the B.E. and Ph.D.
degrees from Xi an Jiaotong Uni-
versity, Xi an, China, in 1998
and 2004, respectively. He was
a Post Doctoral Research Fellow
with Oklahoma State University,
Stillwater, OK, USA, and the Uni-
versity of Texas Southwestern
Medical Center, Dallas, TX, USA,
from 2006 to 2009. He joined the
Dalian University of Technology,
Dalian, China, in 2009, where he
is currently a Full Professor. His
current research interes ts include

image processing and machine vision. Dr. Fan received the 2015 IEEE
ICME Best Student Award as the Corresponding Author and two arti-
cles were selected as the Finalist of the Best Paper Award at ICME
2017.

123

http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/2102.10882
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/


Q. Jia et al.

Haibin Ling received B.S. and
M.S. fr om Peking University in
1997 and 2000, respectively, and
Ph.D. from University of Mary-
land in 2006. From 2000 to 2001,
he was an assistant researcher at
Microsoft Research Asia; from
2006 to 2007, he worked as a
postdoctoral scientist at UCLA;
from 2007 to 2008, he worked for
Siemens Corporate Research as a
research scientist; and from 2008
to 2019, he was a faculty mem-
ber of the Department of Com-
puter Sciences for Temple Univer-

sity. In fall 2019, he joined the Department of Computer Science of
Stony Brook University, where he is now a SUNY Empire Innova-
tion Professor. His research interests include computer vision, aug-
mented reality, medical image analysis, visual privacy protection, and
human computer interaction. He received Best Student Paper Award
of AC M UIST (2003), Best Journal Paper Award at IEEE VR (2021),
NSF CAREER Award (2014), Yahoo Faculty Research and Engage-
ment Award (2019), and Amazon Machine Learning Research Award
(2019). He serves or served as associate editors for IEEE Trans. on
Pattern Analysis and Machine Intelligence (PAMI), IEEE Trans. on
Visualization and Computer Graphics (TVCG), Pattern Recognition
(PR), and Computer Vision and Image Understanding (CVIU). He has
served as Area Chairs various times for CVPR and ECCV.

Longin Jan Latecki (Senior Mem-
ber, IEEE) is currently a Profes-
sor with Temple University. He
has published over 300 research
papers and books. His main
research interests include compu-
ter vision and machine learning.
He received the Annual Pattern
Recognition Society Award toget-
her with Azriel Rosenfeld for the
best article published in the jour-
nal Pattern Recognition in 1998.
He was a recipient of the 2018
Amazon Research Awards. He is
also the Associate Editor-in-Chief

of Pattern Recognition, an Editorial Board Member of Computer
Vision and Image Understanding, and on the Advisory Board of Jour-
nal of Imaging.

123


	A rotation robust shape transformer for cartoon character recognition
	Abstract
	1 Introduction
	2 Related works
	3 Shape transformer framework
	3.1 Local shape feature extraction
	3.2 Geometric positional encoding and self-attention
	3.3 Sequential shape feature learning in transformer

	4 Experiment results and analysis
	4.1 Data preparation and compared algorithms
	4.2 Experimental settings
	4.3 Experimental comparisons on benchmarks
	4.3.1 Cartoon dataset
	4.3.2 Swedish Leaf dataset
	4.3.3 Animal dataset
	4.3.4 Caltech101 dataset

	4.4 Ablation study
	4.4.1 Effectiveness of multi-scale features
	4.4.2 Effectiveness of sequential feature learning
	4.4.3 Effectiveness of PE on rotation test set

	4.5 Online application

	5 Conclusion
	Acknowledgements
	References


