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ABSTRACT

Recently Latecki and Lakadmper (Computer Vision and Image Understanding 73:3, March 1999) reported a novel
process for a discrete curve evolution. This process has various application possibilities, in particular, for noise
removal and shape simplification of boundary curves in digital images.

In this paper we prove that the process of the discrete curve evolution is continuous: if polygon @ is close to
polygon P, then the polygons obtained by their evolution remain close. This result follows directly from the fact
that the evolution of @) corresponds to the evolution of P if () approximates P. This intuitively means that first all
vertices of () are deleted that are not close to any vertex of P, and then, whenever a vertex of P is deleted, then a
vertex of () that is close to it is deleted in the corresponding evolution step of Q.
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1. INTRODUCTION

Latecki and R. Lakdmper in Ref. 1 presented a shape similarity measure for object contours. An application of this
measure to retrieval of similar objects in a database of object contours is demonstrated in Figure 1, where the user
query is given by a graphical sketch.
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Figure 1. Retrieval of similar objects based on a similarity measure of object contours.
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Since contours of objects in digital images are distorted due to digitization noise and due to segmentation errors,
it is necessary to neglect the distortions while at the same time preserving the perceptual appearance at the level
sufficient for object recognition. To achieve this, the shape of objects is simplified by a novel discrete curve evolution
method, before the similarity measure is applied. This approach allows us

e to reduce influence of noise and

e to simplify the shape by removing irrelevant shape features without changing relevant shape features.

The robustness of the discrete curve evolution method with respect to noisy deformations has been verified by
numerous experiments (e.g., see Ref. 2 or online demos on our web site®). The continuity theorem (Theorem 1 in
Section 2) gives a formal justification of this fact: if a polygon @ is close to a polygon P, e.g., @ is a distorted version
of P, then the polygons obtained by their evolution remain close. Thus, continuity guarantees us the stability of the
discrete curve evolution with respect to noise.

Moreover, the digital curve evolution allows us to find line segments in noisy images, due to the relevance order
of the repeated process of linearization (see e.g., Figure 2). This fact follows from Theorems 1 and 2, which we prove
in Section 2, since if polygon @ is close to polygon P, then first all vertices of @ are deleted that are not close to
any vertex of P (Theorem 1), and then, whenever a vertex of P is deleted, then a vertex of @ that is close to it is
deleted in the corresponding evolution step of @ (Theorem 2). Therefore, the linear parts of the original polygon
will be recovered during the discrete curve evolution.

Figure 2. (a) — (b): noise elimination. (b) — (c): extraction of relevant line segments.

We assume that a closed polygon P is given. In particular, any boundary curve in a digital image can be regarded
as a polygon without loss of information, with possibly a large number of vertices. We denote the set of vertices of
P with Vertices(P) and the set of edges with Edges(P).

The discrete curve evolution produces a sequence of polygons P = P°, ..., P™ such that |Vertices(P™)| < 3,
where | . | is the cardinality function. The process of the discrete curve evolution is very simple. The outline of the
algorithm is the following.

For every evolution step ¢ = 0, ...,m — 1:

1. Each vertex v in P is assigned a relevance measure K (v, P?).

2. A polygon P! is obtained after the vertices whose relevance measure is minimal are deleted from P?.

The relevance measure K (v, P?) is defined below. A few stages of our curve evolution are illustrated in Figure 3.

The process of the discrete curve evolution is guaranteed to terminate, since in every evolution step, the number
of vertices decreases by at least one. It is also obvious that this evolution converges to a convex polygon, since
the evolution will reach a state where there are exactly three, two, one, or no vertices in P™. Only when the set
Vertices(P™) is empty, we obtain a degenerated polygon equal to the empty set, which is trivially convex. Thus,
we obtain for every relevance measure K

PROPOSITION 1. The discrete curve evolution converges to a convex polygon, i.e., there exists 0 < i < m such that
P is convex, and if i < m, all polygons P*+L ..., P™ are convex. [ |



Figure 3. A few stages of our curve evolution. The first contour is a distorted version of the contour on www-site.*

Now we give a precise definition of the discrete curve evolution.

Definition: Let ' ' '
K,in(P") = min{ K (u, P*) : u € Vertices(P")}

and
Vinin(PY) = {u € Vertices(P*) : K (u, P") = Ky (P},
i.e., Vinin(P?) contains the vertices whose relevance measure is minimal in P? for i = 0, ...,m — 1.

For a given polygon P and a relevance measure K, we call discrete curve evolution a process that produces
a sequence of polygons P = P, ..., P™ where |Vertices(P™)| < 3, such that

Vertices(P™) = Vertices(P') \ Vinin(P?).

An algorithmic definition of the discrete curve evolution is given in Ref. 5 (see also our www-site?).

The key property of this evolution is the order of the substitution. The substitution is done according to a
relevance measure K (v, P") = K (u,v,w), where u,w are neighbor vertices of vertex v in P*. The relevance measure
K (v,u,w) is given by the formula
Blils

: (1)
Iy + 1y
where 3 is the turn angle at vertex v in P?, [; is the length of vu, and [» is the length of vw. (Both lengths are

normalized with respect to the total length of polygon P?) The main property of this relevance measure is the
following

K(v,u,w) =

e The higher the value of K (v, u,w), the larger is the contribution to the shape of the polygon P! of arc vu Uvu.

A motivation for this measure and its properties are described in Ref. 5. Observe that the relevance measure is not
a local property with respect to the polygon P, although its computation is local in P* for every vertex v.

We prove in Theorem 1 that the discrete curve evolution is continuous: if polygon @ is close to polygon P, then
the polygons obtained by their evolution are close. Moreover, we show that the evolution of @) will correspond to the
evolution of P if () approximates P (Theorem 2). Before we state these theorems, we need a few more definitions.

Definition: Let p(P) = min{d(E,v) : E € Edges(P) and v € Vertices(P) and v ¢ E}, i.e., p(P) is the minimal
distance from vertices to edges they do not belong. For example, in Figure 4 p = p(P) is equal to the distance from
vertex B to edge C'D.

|

Definition: For every E € Edges(P) we call Stripy(E) = B(E, ) = U.er Bz,
we denote the set of all strips of P by Stripsgy(P) = {Stripu(E) : E € Edges(P)
strips of P.

) H-strip of P around E and
. Figure 4 shows the set of all

o

Definition: Two strips Stripg(E) and Stripg(F') are adjacent if sides E and F are adjacent, i.e., intersect in a
vertex of P.



Figure 4.

Observe that if H < p(P), then the intersection of two non-adjacent H-strips of P is empty.

Definition: For a closed polygon P and for every vy € Vertices(P), there exist exactly two linear orders <p on
Vertices(P) = {vg, v1, ..., V41 = vo} such that vg <p v1 <p ... <p Vg1 = Vo and T;0s41 is an edge of P, where Ty
is the line segment joining point = to y. We denote the set of all such linear orders on Vertices(P) by Op. Clearly,
|Op| = 2|Vertices(P)|.

Clearly, the set Vertices(P) together with one of the linear orders < p uniquely determines Edges(P). Any linear
order <p€ Op can be extended to a linear order on all points of P, i.e., on |J Edges(P).

Definition: For any two points z,y in a H-strip S around an edge wo of P, we say that z <g y iff n(z) <p 7(y),
where 7 : S — v is the metric projection.

Definition: A polygon ) has the same order as polygon P if there exists a function i : Vertices(Q) — Strips(P)
an order <pe€ Op and an order <g€ O¢g such that

q € i(q) for all g € Vertices(Q),

a1 <@ g2 iff (i(q1) <p i(g2)) or (i(q1) = i(g2) and q1 <i(4,) g2 in H-strip i(q1)).

For example, see Figure 4. If H < d, where d is the smallest distance between two vertices of (), then no two

vertices of () can be projected by 7 to the same point.

Definition: We say that y € Vertices(P) is a neighbor (vertex) of x € Vertices(P) if line segment Ty is an edge
of P. We also say in this case that z and y are adjacent.

Definition: A polygon @ is called an (H, d)-approximation of polygon P if () C B(P, %), @ has the same order
as polygon P, and the minimal length of edges of @ equal to d. (see e.g., Figure 4).

2. CONTINUITY OF THE DISCRETE CURVE EVOLUTION

Theorem 1 states that the discrete curve evolution is continuous. Intuitively, it says that if polygon @ is sufficiently
close to a polygon P, then the polygons obtained by the evolution of @ will remain close to P. This will be the case
until a stage k of the evolution of @ is reached at which exactly one vertex of Q¥ is contained in B(w,¢) for every
vertex w of P and all other vertices of ) are deleted.

THEOREM 1. Continuity of the discrete curve evolution. Let P be a simple polygon. For every 0 < d and
every 0 < e < %, there exist 6 > 0 and k € Zy such that if polygon Q is (6, d)-approzimation of P, then

Vi€ {0,1,...,k} Q°C B(P,e)
and

3 bijection b : Vertices(Q") — Vertices(P) Yv € Vertices(Q¥) Yw € Vertices(P) [v € B(w,¢) < w = b(v)].



Proof: Let 0 < dand 0 < e < % be given. Let Hy be given by Theorem 3, below.
Let § be determined by Proposition 2, below, for n = min{e, %}

Let polygon @ be (4, d)-approximation of P. Then, by Proposition 2, @ is also a (25, d)-approximation of P for
which additionally holds that for every vertex v of P at least one vertex of ) is contained in B(v, 7).

Since 2n < Hy, we obtain by Theorem 3 for H = 25 that there exists an evolution stage k of @ such that
Vi€ {0,1,...,k} Q' c B(P,n)
and

3 bijection b : Vertices(Q") — Vertices(P) Vv € Vertices(Q¥) Vw € Vertices(P) [v € B(w,n) & w = b(v)].
Since 1 < ¢, .
Vi e {0,1,..,k} Q' C B(P,e),

and since at most one v € Vertices(Q¥) can be contained in B(w,€) for w € Vertices(P), due to e < £, we obtain
Vv € Vertices(Q¥) Yw € Vertices(P) [v € B(w,e€) & w = b(v)],

which proves the theorem. [

Theorem 2 says that if Q* is a sufficiently close approximation of P and vertices of Q¥ correspond to vertices of
P, then the discrete curve evolution of Q* follows the evolution of P.

THEOREM 2. Let P = PP, ..., P™ be polygons obtained from a polygon P in the course of discrete curve evolution
such that P™ is the first convex polygon and all minimal relevance measures are obtained for only one vertex, i.e.,
[Vinin(P)| =1 for i =0,...,m — 1.

There exists 0 < & such that if polygon Q% be (&, d)-approzimation of P and
3 bijection b : Vertices(Q¥) — Vertices(P) Vv € Vertices(Q") Yw € Vertices(P) [v € B(w,&) & w = b(v)],

then for the evolution stages i € {0,1,...,m — 1} of P we have:

v € Vertices(Q¥?) \ Vertices(Q¥) & b(v) € Vertices(P?) \ Vertices(P').

Proof: Let ' . ' . '
C; = min{K (u, P') — Kpnin(P*) 1 u € Vertices(P*) and K (u,P") # Kpin(P")}
and let
Cmin <min{C; :i=0,...,m — 1}.

If u,w are neighbors of vertex v in P?, then the relevance measure is denoted by K (v, P') = K (u,v,w). Since
K(u,v,w) is a continuous function of I = |vu|,ls = |v,w|, and the turn angle 3 at v, it is also continuous with
respect to the position of vertices:

VC >0 3e; >0 [u' € B(u,e1),v' € B(v,e1),w' € B(w,e1)] = |K(u,v,w) — K(u',v",w")] < C.

We take £ to be the €; > 0 obtained for C*gi" and for all triples of vertices v, u,w in P. Thus, we have

Cmin
2

[v' € B(u,&),v" € B(v,€),w' € B(w,¢)] = |K(u,v,w) — K(u',v",w")| <

and
Vv € Vertices(Q¥) Yw € Vertices(P) [v € B(w,€&) < w = b(v)].



Thus, for every there vertices v, u,w in Q* we have

Cmin

[u € B(b(u), €),v € B(b(v), ), w € B(b(w),§)] = [K(u,v,w) = K(b(u),b(v),b(w))] < —;

Hence for w1, vi, w1, us, va, ws vertices in QF
K(b(ul), b(’Ul), b(wl)) — K(b(UQ), b(’U2), b(UJ2)) > szn = K(ul,vl,wl) — K(U2,v2,w2) > 0.

Consequently, |Vyin(Q*F)| =1 for i =0,....,m — 1.

Let u € Vpyin(P?) and z € Vertices(P?) \ Vipin(P?). Then K(z,P') — K(u,P?) > Cpin, and therefore,
K(b1(2), Q") — K(b~(u), Q¥*?) > 0. Therefore, u € Vipin(P?) implies b~ (u) € Vipin(Q*1?), and consequently,
for every i € {0,1,...,m — 1}:

v € Vertices(P?) \ Vertices(P™') iff b7'(v) € Vertices(Q*+%) \ Vertices(Q ).

|
THEOREM 3. For every polygon P and every 0 < d, there exist 0 < Hy < -.d such that for every H < Hy and for

V5
every (H, d)-approzimation (Q of P with the property that for every vertex v of P at least one vertex of () is contained
) ) )

in B(v, &), there exists k such that:
Vi€ {0,1,...,k} Q' is (H,d)— approzimation of P

and

x H
3 bijection b : Vertices(Q¥) — Vertices(P) Vv € Vertices(Q*) Yw € Vertices(P) [v € B(w, 5) & w = b(v)].

Proof: Let P be a polygon with the minimal turn angle v and with p = p(P) (see Figure 4).
Let @ be (H,d)-approximation of P for any H < %d.
We divide vertices of @ into two types: We call every vertex ¢ of @ that does not belong to B(v, %) for any vertex

v of P Type 1 vertex. We call every vertex ¢ of () that is contained in B(v, %) for some vertex v of P Type 2
vertex.

We will show that there exists Hy < %d (Hy depends on v,d) and an evolution stage k of @ such that for every
H < Hj all Type 2 vertices remain and all Type 1 vertices are deleted from QF.

Observe that at most one vertex ¢ of () can be contained in B(v, g), since H < d, where d is the minimal length of
edges of (). Hence, for (H, d)-approximation @) of P exactly one ¢ of ) is contained in B(v, %) for every vertex v of P.

Step 1

We first show in Lemma 4 (below) that if = is a Type 1 vertex, then x and its direct neighbors y, z € Vertices(Q)
are in the same H-strip S of P and z is between y, z with respect to >, i.e., either y >g z >g zor 2z >g = > y.
This implies that x is between y, z with respect to the order >g of points in H-strip S.

Then we show in Lemma 5 (below) that if three points z,y, z are in the same H-strip S of P and z is between
Y,z with respect to >g, then the relevance measure K(z,y, z) of ZZ UZy is bounded by a function m4 of H,d. This
implies that K(x,y,z) < ms(H,d) for every Type 1 vertex x of Q.

LEMMA 1. Let y € Vertices(Q) and i(y) = Stripy(uv), where u,v € Vertices(P) and v >p u (see Figure 5). If
b € B(v, %) N Vertices(Q) and y and b are neighbors in Q, than b >g y.

Proof: Let S =i(y) and v be the side of P contained in S. Let S, be the line segment of length H perpendicular
to wo such that S, is contained in S and v € S, (see Figure 5).
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Since b € B(v, %), d(b,S,) < &. The diagonal of rectangle with side of length H and % is equal to %H Since
H < %d, this diagonal is shorter than d. Therefore, if b is contained in such a rectangle no other vertex of @ can

be contained in it. Since i(y) = Stripg (uv), we obtain b >¢ y. [ |
LEMMA 2. Let x € Vertices(Q) and i(z) = Stripg(uv), where u,v € Vertices(P) and v > u (see Figure 6). If
a € B(v,Z)nVertices(Q) and b € B(u, Z) N Vertices(Q), than b >q z >q a.
Proof: If i(a) # i(x), then i(z) >p i(a) implies z >¢ a.

If i(b) # i(x), then i(b) >p i(z) implies b >¢ =.

It remains to consider the case i(a) = i(z) = i(b). We show that b >¢ z by showing that the inverse order z >¢ b
leads to inconsistency. The proof of  >¢ a is analog.

We assume that x >g b. Then z and b cannot be neighbor vertices of ) by Lemma 1. Thus, there exists
y € Vertices(Q) such that y is neighbor of b and  >¢ y >¢ b (see Figure 6). Yet, if i(z) >p i(y), then b >¢g y. If
i(z) =i(y), then b >¢o y by Lemma 1. [ |

LEMMA 3. Let x be a Type 1 vertex of Q. If y € Vertices(Q) is a neighbor of x (i.e., Ty is an edge of @)), then
i(z) =i(y) ory € B(v,Z) Ci(z) for some vertex v of P (see Figure 7(a)).

—
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Figure 7.

Proof: We assume that i(z) # i(y). Then i(y) >p i(z) or i(z) >p i(y), say i(y) >p i(x), which implies y >¢ .

First we show that the intersection i(x) Ni(y) is not empty, i.e., i(x) and i(y) are neighbor strips. If this were
not the case (see Figure 7(b)), then there exists z such that i(z) # i(z), i(2) # i(y), i(z) Ni(x) # 0, and Ty N i(z)
is nonempty. Since z is a Type 1 vertex of @), there exists u € i(z) Ni(x) (this intersection is equal to B(v, %) for
some v € P). If i(u) = i(2), then y >g u >¢ z. If i(u) = i(x), then y >g u >¢ =, by Lemma 2. Since y >g u >¢g z
contradicts the fact that Ty is an edge of @), we obtain that ¢(z) and i(y) are neighbor strips.



Therefore, there exists v € i(z) Ni(y) a vertex of P and a € B(v, &) = i(z) Ni(y) a vertex of Q (see Figure 7(a)).
By Lemma 2, a > z.

Since H < p, B(v, Z) does not intersect any strip of P other than i(z) and i(y). Hence, i(a) = i(z) or i(a) = i(y).

If i(a) =i(z), then y >¢ a, since i(y) >p i(x).

If i(a) = i(y), then y = a or y >¢ a, by Lemma 2.

If y =a, then y = a € B(v, %)

If y > a, then y > a > x, which is inconstant with the fact that y is a direct neighbor of z. [ ]
LEMMA 4. Let z be a Type 1 vertex of Q. If y,z € Vertices(Q) are different neighbors of x then y,z € i(x) and x
is between y, z with respect to <g.

Proof: Since y, z € Vertices(Q) are different neighbors of z, clearly, = is between y, z with respect to <g.

If i(x) = i(y) = i(2), then y, z € i(x) is trivially true.

If i(z) # i(y), then y € B(v, %) C i(x) for some vertex v of P, by Lemma 3. Consequently y € i(z). Similarly,
z €i(x) if i(z) # i(2)- [ |
LEMMA 5. Let points x,y,z be in the same H-strip S of P and x be between y,z with respect to >g. Then the
relevance measure K (x,y,z) of ZT UTY is bounded by a function my of H,d:

dH (% + arcsin(4))
d+ H

K(:r,y,z) < m4(H,d) =

Proof: Let S, be the maximal line segment contained in S that contains points y and 7 (y). Clearly, the length of
Sy is H (see Figure 8(a)). S. is similarly defined. Since z is between y, z with respect to >g, x lies between S, and
S.. Hence, the situation in Figure 8(b) is not possible.

Let L be the distance between S, and S, and let R C S be the maximal rectangle contained in S with sides S,
and S,. We call L the length of R and H the height of R.

X
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Figure 8.

Let ', 2" be the endpoints of the side of R which has length L and which is further away form z than the other
side of length L (Figure 9(a)). Since |zz'| > |zz|, |xy'| > |zy|, and turn angle y'zz’ is not smaller than turn angle
yxz, we obtain K(z,y',2") > K(z,y,z), where |ab| is the length of the line segment ab. Hence it is sufficient to
compute the relevance measure for y =y’ and z = 2’ (Figure 9(b)).

Let M be the side of length L of R that is different from side 3’2’ and let z' be the metric projection of
on M (Figure 9(b)). Since |2'2'| > |z2'|, |[z'y| > |vy'| and the angle y'z'z" is not smaller than y'zz', we obtain
K(z',y',2") > K(z,y', 2").

If 2’ is moving on side M, then K (z',y’,2') > K(z,y,z) for z,y,z € R. Since K(z',y',2') is only a function of
2, we will denote it by m(z') = K(a2',y',2'). Since 2’ is moving on side M, we can assume that z' € [0, L]. Thus,
we have K(z,y,z) < m(z'), where z,y,z € R and ' € [0, L].

The function m(z) with = € (0, L) is given by the formula (see Figure 10(a))

T T (il i) .
H?+(L-2)?+VH® + 22
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where L and H are constant. It is easy to obtain by analyzing function m that m is symmetric with respect to z = %,

m obtains its minimum at point x = %, and m is monotone decreasing for z € (0, %] and monotone increasing for
L

Let zo be the point = € [0, L] for which the distance to z is equal to d (see Figure 10(b)). Since H < d, zo belongs

to interval (0, L). Since m is symmetric, m is defined for & € [zg, L — x¢]. Therefore, m reaches its maximum for
x = xp, and consequently, K (z,y,z) < m(xg).

A arctan(H/x) “  x
0

& ) arctan(H/(L-x)
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Figure 10.

Since the position of point xg is a function of H and d, we will treat m(xo) as a function of H, L, d, which we will
denote by ms. Consequently, we obtain K(z,y, z) < mq(H, L,d) = m(zg) for z,y,z € [0, L] x [0, H].

It remains to find an upper bound of the function mo(H, L,d) for L € (0,00). To achieve this, we find a more
handy formula for my(H, L,d) = m(zo), i.e., we find m3(H,d,t) = mo(H, L,d), where t € [0,00) and ¢ + H is the
distance from z( to y (see Figure 11). The function ms is given by

d(H+1t) (arcsin(%) + arcsin(HLH))

ms(H,d,t) = . 3
3( ) )) d+H+t ()
Xo
I\\\\\
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Figure 11.

We will show that
dH (% + arcsin(4)) @
d+H ’

mB(H)d>t) < m4(H)d) =
where my(H,d) is equal ms with ¢ = 0.
When we multiply m4(H,d) — mg(H,d,t) > 0 by (d+ H)(d+ H + t) and simplify it, we get

Hrn (d+ H+t)—2dt arcsin(%) —2(d+H) (H+1t) arcsin(HH

) 20 ()



Since §x > arcsinx, we obtain

(5)> Hr(d+ H)+ Hrt — Hnt — Hr(d+ H) =0 (6)

It follows from Lemmas 4 and 5 that K(z,y,z) < m4(H,d) for every Type 1 vertex x of (). Moreover, it holds
limpg_,o mys(H,d) =0 for every d.

Step 2

We show that the relevance measure of a Type 2 vertex is bounded from below. It follows from Lemma 6 that
if x is a Type 2 vertex, then either the direct neighbors y,z € Vertices(Q) of x are in different strips or z is not
between y, z with respect to >¢.

LEMMA 6. Let b be Type 2 wvertez, i.e., b € Vertices(Q) and b € B(v, %) for some vertex v of P. Let y,z €
Vertices(Q) be the direct neighbors of b. Then either i(y) # i(z) or b is not between y, z with respect to >q.

Proof: We assume that i(y) = i(z). Then, by Lemma 1, either both b >¢ y and b > z or both b <g y and b <g z.
Thus, b is not between y, z with respect to >¢. [ |

Let x be Type 2 vertex. Since i(y) C i(y) Ui(z), if y,z € i(y), then y, 2z € i(y) Ui(z). Since minimum on a larger
set can only be smaller, it is sufficient to consider the case in which i(y) # i(y) Ui(z). Therefore, we assume that
i(y) #i(2).

Since we seek an lower bound of K, and K is monotone increasing with respect to the length of line segments zy
and zz, it is sufficient to consider the case in which Ty = d and Tz = d. For every position of z (a Type 2 vertex), the
turn angle yxz is the smallest if y, z lie on the outer boundary of i(y) Ui(z), see Figure 12(a). Since K is monotone
increasing with respect to the turn angle, we assume that y, z lie on the outer boundary of i(y) U i(z).

(b)
Figure 12.

Now we show that the smallest value of K (z,y, z) is obtained if z lies at the inside corner of i(y) Ui(z), see Figure
12(b). Since Ty = d and Tz = d, we have K(z,y,z) = K (), where (3 is the turn angle yzz, see Figure 12(b). Since
K () is a monotone decreasing function of the distance between y and z, it reaches the minimum when this distance
is maximal, see Figure 13, which is the case if z lies in the inside corner of i(y) U i(z).

Figure 13.



For these positions of z,y, z, we have

H. d
K(z,y,z) = (a— 2arcsing)§,

where « is the turn angle of i(y) Ui(z), see Figure 14. Since a > ry, we obtain

H
K(r,9,2) > K(H,7,d) = (y - 2arcsin )3 @

for any Type 2 vertex  and its neighbors y, z. Moreover, it holds limg_,o k(H,v,d) = 7% for every v and d.

Figure 14.

Since limg_,o m4(H,d) = 0, there exists 0 < Hy < %d such that, for every 0 < H < Hy,

dH (T + in(& H d
(2 dfr;zlsm( 7)) =my(H,d) < k(H,v,d) = (y — 2arcsin 3)5 (8)
Therefore, we have proven that
K(mlyylazl) < m4(H,d) < k(Hv’Y)d) < K(m2yy2732)> (9)

for every 0 < H < Hy, every Type 1 vertex z1, and every Type 2 vertex zo. If the process of evolution is continued
until the relevance measure m4(H, d) is obtained, then all Type 1 vertices are deleted and all Type 2 vertices remain,
which proves the theorem. [ |

In the course of the proof of Theorem 3, we have proven the following two inequalities:

COROLLARY 1. For every Type 1 vertex x1 and its neighbors yi,z1 in polygon Q:

dH (% + arcsin(4))

K < d 10
(z1,y1,21) < d+ H (10)
For every Type 2 vertex xo and its neighbors ys, z2 in polygon Q:
H. d
(’y—Qarcsing)i < K(x2,y2, 22)- (11)

PROPOSITION 2. Let v be a turn angle of polygon P for which expression \/ L L is mazximal. If

sin?(T) + 4cos?(3)

6 - 1 . 1
\/sin2(%) * T (D)

and polygon Q is a (0,d)-approximation of P, then Q is a (2n,d)-approximation of P for which additionally holds
that for every vertex v of P at least one vertex of Q is contained in B(v,n).

Proof: Let polygon @ be a (4, d)-approximation of P. We want to find the smallest n such that for every vertex v
of P at least one vertex of @ is contained in B(v,n).



Let v be vertex of P with turn angle v. We find such a n at vertex v.

Let e be the inner corner of the two §-strips S; and Sy that contain v, see Figure 15. Then the line ve divides
the inner angle of S; US> in two halves. Let ab be the line segment perpendicular to line ve such that a and b lie on
the outside boundary of S; U S>. Let n be the length of line segment vb.

Since ) C B(P, g), there must be a vertex of @) in S; U Sy above the line ab. Therefore, there must be a vertex
of @ in B(v,n).

It remains to compute the length of 1. Let point ¢ be the perpendicular projection of point b on the inner side
of Sy in S7 U Ss, see Figure 15.

Let u be neighbor vertex of v in P such that wo C S;. Let point f be the perpendicular projection of point e on
uv.

_ 5
As can be seen in Figure 15, n°> = [ve|? + |eb|?. Since % = sin(3) in the triangle ebc and Z; = sin(90° — 3) =

N
TN g) T e ()

cos(3) in the triangle vef, we obtain

SN

e \ ¢ S
u 180—y 180—y
2 2

Figure 15.
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