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Abstract—1t is challenging to characterize the intrinsic geom-
etry of high-degree algebraic curves with lower-degree algebraic
curves. The reduction in the curve’s degree implies lower com-
putation costs, which is crucial for various practical computer
vision systems. In this paper, we develop a characteristic mapping
(CM) to recursively degenerate 3n points on a planar curve of
nth order to 3(n — 1) points on a curve of (n — 1)th order. The
proposed characteristic mapping enables curve grouping on a
line, a curve of the lowest order, that preserves the intrinsic
geometric properties of a higher-order curve (ellipse). We prove
a necessary condition and derive an efficient arc grouping
module that finds valid elliptical arc segments by determining
whether the mapped three points are colinear, invoking minimal
computation. We embed the module into two latest arc-based
ellipse detection methods, which reduces their running time by
25% and 50% on average over five widely used data sets. This
yields faster detection than the state-of-the-art algorithms while
keeping their precision comparable or even higher. Two CM
embedded methods also significantly surpass a deep learning
method on all evaluation metrics.

Index Terms— Fast ellipse detection, order reduction, arc
segment pruning.

I. INTRODUCTION

OTH natural and man-made curves contain intrinsic
geometry. It is crucial to keep the geometric relations
when mapping complex high-degree curves to lower-degree
curves. The mapping implies simplified representation and
lower computation costs, which is widely used in cartoon
design, text spotting [1], and efficient object detection [2] in
computer vision.
The representation of curves and surfaces by parameterized
polynomials is one of the most commonly known curve degree
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reduction methods. A given space curve or Bézier curve can
be subdivided and approximated by a number of lower degree
curves [3], [4]. The parameterized representation is used to
simplify expression and calculation in computer-aided geo-
metric design (CAGD) and computer-aided design (CAD) [5],
[6]. However, in computer vision, natural images lack explicit
parameters of curves as priors. Hence, we need to detect and
preserve the geometric nature while mapping them to lower-
degree curves.

In computer vision, the geometric nature of an object
can highly promote the accuracy and efficiency of detecting
the object. Fan et al. detect accurate facial landmarks by
developing the geometric relation of facial landmarks by a
projective invariance [7]. Sun et al. detect 3D objects via
the guidance of object shape prior [8]. Ellipse detection is
such a fundamental task in computer vision that it finds wide
applications in various practical scenarios including camera
calibration [9], unmanned aerial vehicle (UAV) landing [10],
and robotic manipulation [11]. These applications demand
not only detecting rough locations of elliptical objects, but
also accurately measuring the five parameters of every ellipse
(center coordinates, semi-major and semi-minor axes, and
rotation angle) in a natural scene. Moreover, fast detection
running on limited resources is crucial for practical systems
as they have to spare resources for other real-time actions such
as disparity calculation, landing control, and object grasping.
Therefore, accurate and efficient ellipse detection still remains
challenging even when the community has been witnessing
the great success of deep neural networks in generic object
detection [12]. Among all the methods, arc-based detectors
output the fastest detection for real-world natural images [2].
They link edge points into arc segments and then fit these
arcs to ellipse parameters. Their performance highly depends
on the quality of grouping arc segments belonging to one
common ellipse. Incorporating geometric properties of ellipses
can facilitate this grouping process so as to obtain high-quality
detection results. However, there is still room to improve,
because the arc-grouping step is generally a bottleneck that
cannot achieve real-time detection.

This study investigates the intrinsic geometry of planar
curves that plays a critical role in both Hough transformation
(HT) and arc-based methods to achieve accurate and fast
detection. Inspired by the order reduction of Béizer curves
in the field of CAGD and CAD [5], [6], we develop a
characteristic mapping (CM) to perform arc grouping on a line,
a curve of the lowest order, that preserves intrinsic geometric
properties of a higher order curve (ellipse). Thus, this key
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Fig. 1.

The upper image sketches the key idea of Characteristic Mapping
(CM), which degenerates six points on an ellipse (curve of the second degree)
to three points on a line. The figure below demonstrates a pair of ellipse
detection instances without (left) and with (right) CM constraints, rendering
less execution time and fewer false positive detections.

step for arc-based algorithms invokes minimum calculations
to validate arc segments for fitting, resulting in extremely
efficient detection. Additionally, we are able to substitute
the arc grouping module of other methods boosting their
performance. Figure 1 sketches the key idea of mapping six
points on an ellipse to three collinear points and its application
to ellipse detection, which removes false positive detection and
reduces execution time. Our main contributions are as follows:

« We develop a characteristic mapping (CM) upon the
characteristic number [13] that recursively degenerate 3n
points on a planar curve of nth order to 3(n — 1) points
on a curve of (n — 1)th order, and prove the theorem that
the 3(n — 1) points lying on the lower order curve are
necessary for the 3n points on the higher order curve. This
mapping along with the theorem paves the possibility to
detect curves with lower computation costs.

« We apply the characteristic mapping to the simplest case
of a conic curve (second order) mapped to a line segment,
and develop an efficient arc grouping module that finds
valid elliptical arc segments by determining whether the
mapped three points lie on one line.

« We embed this module into two latest arc-based ellipse
detection methods and accelerate them to produce state-
of-the-art performance. Experiments on five real-world
data sets demonstrate that our computation module
derived from solid geometry reduces the running time
by 25% and 50% on average of two latest algorithms [2]
and [14] with comparable or higher accuracy.

II. RELATED WORK
This paper brings the theory that connects a mapping of a
higher-order curve to a lower-order one and applies the theory
to practical ellipse fitting and detection. Hence, this section
reviews previous works related to three aspects.

A. Curve Order Reduction
The order/degree reduction problem has a very important
application in CAGD and CAD to approximate complex
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curves and surfaces [6] with simpler ones. The representation
of curves and surfaces by parameterized polynomials is one of
the most commonly known methods. Rababah et al. demon-
strated an approximation of space curves by a piecewise poly-
nomial [3]. Wozny et al. proposed an approach to multi-degree
reduction of Bézier curves by using the dual-constrained
Bernstein basis polynomials associated with the Jacobi scalar
product [15]. Chen et al. proposed a tangent method for
achieving a higher approximation order, which derived from
a linear equation system on the unknown control points
of the resultant approximation Bézier curve [4]. We follow
the philosophy of curve order reduction that simplifies the
representation of complex curves by low-order ones and hence
reduces computation costs. Specially, we focus on the mapping
of points from ellipses to lines, motivated by the acceleration
request of real-time ellipse detection.

B. Ellipse Fitting

Existing ellipse fitting methods can be generally classified
into least-square (LS) principle-based methods and voting/
sampling (VS) based methods.

Least-square based methods estimate ellipses by minimizing
the sum of the squared orthogonal distances from the observed
points to the ellipse. Kanatani et al. [16] systematically intro-
duced the application of the LS method in ellipse fitting.
However, the fitting results of LS are strongly influenced by
the outliers in the data.

Hough transform (HT) was widely used to estimate five
parameters using a voting scheme [17]. Most HT-based meth-
ods are devoted to overcoming the problems of huge execution
time and high memory usage. Xie and Ji [18] proposed a
fast method where only one parameter (short-axis) was voted
and the other four were estimated by geometric symmetry.
Basca et al. sped up Xie’s method by clustering the detection
results [19]. Suyog et al. improved Xie’s method with the
major-axis-based voting, more suitable for detecting ellipses
with high aspect ratios [20]. Mulleti et al. leveraged the finite
rate of innovation sampling principle to fit noisy or partial
ellipses [21]. However, HT-based methods are still not efficient
enough, and also vulnerable to image noise and model hyper-
parameters, e.g., peak threshold and bin size.

Apart from the above representative methods, the general-
ized Gaussian mixture models (GMM) [22] were introduced
for ellipse parameter estimation [23]. Zhao et al. [24] proposed
hierarchical Gaussian mixture models for ellipse fitting in
noisy, outliers-contained, and occluded settings. Unfortunately,
ellipse fitting methods heavily rely on the detected point set,
which is vulnerable in realistic scenarios.

C. Ellipse Detection

Recent studies introduce deep neural networks that have
gained great success in object detection into ellipse detection.
Shi et al. formulated the ellipse fitting task as a non-smooth
constrained optimization problem and designed an approach
based on two analog neural network models [25]. Li et al.
detected lesion bounding ellipses with Gaussian Proposal
Networks (GP) [26]. Dong et al. designed a convolutional
neural network (CNN) as a region detector to infer oval
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objects [27], performing well on occluded ellipses. Deep
neural networks largely rely on numerous training examples
and demand tremendous computational resources. Therefore,
these approaches may be inapplicable to lightweight practi-
cal scenarios such as calibration, UAV landing, and robotic
manipulation.

Arc-based methods have become mainstream in the past
decade owing to their superior detection performance in
terms of accuracy and efficiency. ELSDc proposed by
Patraucean et al. links small line segments detected by a line
detector to form arcs [28]. Kim et al. employed the arc fitting
algorithm to merge short lines so as to reduce the number
of candidate arcs [29]. Libuda [30] and Prasad [31] further
reduced the computational requirements of Kim’s method by
applying geometric constraints on ellipses. Fornaciari et al.
used the convexity and geometric position of arcs to divide
them into four quadrant combinations to avoid fitting ellipse
within the same combination [32]. Chen et al. [33] and
Claudia et al. [23] combined the advantages of HT-based
and arc-based methods to detect ellipses in industrial images.
Lu et al. proposed an edge connecting strategy named sup-
ports arcs and achieved high-quality detection results [14].
Jia et al. selected arcs upon the conic nature of ellipses [2].
Jin et al. [10] cascaded Jia’s [2] method with a CNN.
Shen et al. [34] proposed a novel method based on the fast
computation of convex hulls and directed graphs. It achieved
promising results in both accuracy and efficiency. Meng et al.
[35] proposed an arc adjacency matrix-based ellipse detection
(AAMED) method, rendering fast detection.

The aforementioned methods start the grouping and esti-
mation from points or arcs with positional and/or gradient
constraints. Their core acceleration step lies in grouping the
arcs belonging to the same ellipse. In this paper, we introduce
characteristic mapping to convert the grouping on a conic
curve to the calculation on a line segment. Our method is a
general accelerator that can be embedded in various arc-based
methods.

ITII. CHARACTERISTIC MAPPING

In this section, we first derive the theorem of characteristic
mapping from the property of Characteristic Number [13]
for curve degree reduction on the plane. We also prove the
necessity of the theorem in 2-dimensional conditions, which
provides a theoretical guarantee for the following application
of ellipse detection. Then we demonstrate an instance from a
conic to a line.

A. Characteristic Mapping Theorem

We give the definition of Characteristic Mapping (CM)
in Definition 1, which provides the relationship between
collinear points. Then Theorem 1 illustrates how to map
points on curves of distinct degrees in a projective space [13].
We provide the proof of Theorem 1 in Appendix A in the
Supplementary Material.

Definition 1: Let Py, P>, O, R be collinear points in ]P’z(K )
(K: the field of complex numbers), where

[Q=A1Pl AP 0

R=uiPr+ 2P
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Q Py P, R

Fig. 2. Illustration of CM definition. R is the mapping point of Q. They are
symmetrical with respect to the mid-point of P; and P, in euclidean space.

if
Mom
A2 2

then the mapping x(p,,p,) : Q — R is called the characteristic
mapping (CM) of Q with respect to P; and P, denoted as
R = x(p,,p,)(0Q).

Definition 1 gives the proportion relation of Q and R
with respect to P; and P, which is applicable to points on
high dimensional curves. The points Q, P; and P, are three
collinear points, and Q can be linear represented by P; and
P> according to Eq. (1). In the Euclidean space, Eq. (2) reveals
R and Q are symmetrical with respect to the mid-point of
P and P,, as demonstrated in Fig. 2. The third value of
the homogeneous coordinate of points should be 1, deriving
another two constraints in the Euclidean space: A1+X, = 1 and
u1 + no = 1. The symmetrical property in the Euclidean
space invokes less computation cost than that in the projective
space. Consequently, it is unnecessary to solve Eq. (1) as
we can easily obtain the mid-point of P; and P> and obtain
the mapping point R according to Q. We provide the proof
of the symmetrical property of CM in Appendix B in the
Supplementary Material.

Then, we give the characteristic mapping theorem for
2-dimensional (plane) curves of higher degree, which is
derived from the higher-dimensional property of Character-
istic Number [13]. The theorem embeds the mapping in
Definition 1. If Q is constructed by points on a curve of nth
order, the mapping point R lies on a curve of (n — 1)th order.

Theorem 1: Py, P>, Pz are 3 linear independent points in
P2(K) (K: the field of complex numbers). Suppose there are

=1, )

n points Q;l), sz), cee Qf.") different from P, P>, P3 on
each line P;Piyy i =1,2,3, n € Zy, n > 2, and
Py := Pp), where multiple points on the same line have

distinct superscripts. For each j (j = 1, 2,3), the line H;
through {ij )},’75 ;j intersects the lines PjPj,1 in Rj, and the
characteristic mapping points of R; is S; = x(p;,p; 1) (R)).
Then the 3n points {QEj )}{::11”; 3" lie on a curve of degree

n not through any P; if and only if the 3(n — 1) points

(S5 Ve 53" G
lie on a curve of degree n — 1 not through any P;. There is
a special case of n = 2. The degree of the curve is (n —
1) = 1, and the curve degenerates into a line. Also, we set
0 := 0% and {QE”}{::{ji:?”*” := . Thus, in this case, R;
(j = 1,2, 3) are three collinear points. The necessity proof for
Theorem 1 is illustrated in the Appendix in the Supplementary
Material, providing a theoretical guarantee for the application
to ellipse detection.

B. Instances of Characteristic Mapping

In order to demonstrate how to map points from a
high-degree curve to a low-degree one, we demonstrate an
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Fig. 3. An example of CM with n = 2. Six points {0\ }/=]"7

ellipse are mapped to three collinear red points {R,-}?:].

on the

example of n = 2, which is the foundation of the following
ellipse detection acceleration.

Figure 3 illustrates a black ellipse (n = 2) and three
non-collinear points P;, P, and P; (black points) lying out-
side the curve. They can form three lines P;P,, P, P3 and
P; P5 labeled as green, blue, and yellow, respectively. Three
lines intersect the curve at n x 3 = 6 points {Q?J )}{:11,’22’ 3
where i is the label of lines and j is the label of intersection
points on line i. Then, we take 6 points to form three lines
Hj,j = 1,2,3 labeled as black dotted lines, where H;

through {ij )},75 j- That is, the line H; through points Qél) and
le) intersects Pj P, at point R;. The line H; through points

QEZ) and ng) intersects line P, P3 at point R;. According to
the instruction below Eq. (3), Q;S) = Q(ll) and Q?) = ng).
Line Hz through points Q(ll) and Q;z) intersects line P3P at
point R3. Based on the characteristic mapping definition,
the mapping points of {R,-}l?’:1 are {S,-}?Zl, which should be
collinear. It is worth noting that it is unnecessary to map points
R; to points S; in this special case. The reason is that if
{R,~}?:1 are collinear, the mapping points {S,'}?:1 are collinear,
as R; and §; are symmetrical with respect to the mid-point of
P; and P41

For 3n points on a curve of degree n, the sufficient and
necessary condition is their corresponding 3(rn — 1) mapping
points lie on curves of degree n—1. As it is a recursive relation,
we can get the mapping points on a lower-degree curve, until
three collinear points. Thus, based on the necessary condition
of Theorem 1, we can determine whether the 3n points lie on
the curve of degree n by judging whether their corresponding
mapping points lie on a curve of degree n —1,n—2,...,0r a
line. More specifically, we can determine the collinearity of
three mapping points to verify the corresponding six points
are lying on a conic.

The CM facilitates using fewer points on curves of a
low degree to resolve problems on curves of a high degree,
which implies a lower computational cost. In order to convert
collinearity to numerical representation, we employ the area
of the triangle formed by three mapping points, as it is easily
calculated by determinant instead of calculating six points on
a conic. Moreover, the calculation on a lower degree curve
introduces less error than that on a higher degree one.
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IV. ACCELERATING ELLIPSE DETECTION WITH CM

Ellipse detectors should balance precision and efficiency to
meet the requirements of real-time applications. In this section,
we first illustrate the standard procedure of arc-based ellipse
detection methods and analyze the bottleneck that affects the
precision and efficiency of existing methods. Finally, we take
advantage of the low computation cost of CM, and design two
ways to embed it in ellipse detection algorithms. We make it
possible to convert the time-consuming arc grouping problem
into a collinear problem, which speeds up the ellipse detection.
The proposed CM is generally applicable to most arc-based
ellipse detectors.

A. Arc-Based Ellipse Detection

As shown in Fig. 4, an arc-based ellipse detection method
can be roughly divided into four steps: pre-processing, arc
grouping, ellipse fitting, and ellipse clustering and validation.

In the step of pre-processing, edge points are first extracted.
Canny detector is commonly used to calculate the edge points
and the gradient information of the image [36]. Then, an eight-
neighbor algorithm is used to connect points into arc segments.
The arc growth algorithm can be further used to obtain long
and high-quality arc segments [2]. Figure 4(a) is the original
image, and Fig. 4(b) shows the extracted arcs labeled in
different colors.

Arc grouping is crucial to reduce the detection time and
false positive detection results. As the following ellipse fitting
step spends plenty of time to calculate the parameters of
ellipses, fewer arc groups for fitting can save much running
time. Most methods take any two arcs as a group for fitting.
If there are [ detected arcs, there are C12 arc groups at most
for fitting [2]. Figure 4(c) demonstrates the fitting ellipses
to all possible arc groups, while most of them are invalid
combinations, such as arcz and arcy in Fig. 4(d). Thus, non-
elliptical arcs should be removed, and valid arc groups should
include arcs that belong to the same ellipse.

In the arc grouping step, geometric and algebraic constraints
are widely used to obtain valid candidate arc combinations,
such as curvature, convexity, the direction of arcs, position,
conic constraint, and so on [2], [14]. The proposed CM can
combine other basic constraints to remove invalid arc groups.
As shown in Fig. 4(d), the blue arcs arcj, and arc, belong to
the same ellipse, which can be validated by the fact that three
mapping, blue points on the blue dotted line are collinear.
On the contrary, the mapping points for arcs and arcy are
three red non-collinear points, indicating the corresponding
arcs belong to different ellipses.

The ellipse fitting step leverages the candidate arc groups
produced by the grouping step to calculate the parameters of
possible ellipses. Figure 4(e) demonstrates the fitting results
after grouping, rendering less fitting loads than Fig. 4(c).
In Fig. 4(e), a small number of invalid, proposal ellipses
exist, resulting from invalid arc groups that were not pruned
by CM, since we work with real and hence imperfect data.
In particular, errors introduced by arc detection, low resolution,
and noises cause the six points on arcs to deviate from their
real locations. (More on this when we discuss threshold Thgp
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(a) (b)
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Fig. 4. Ellipse detection flowchart with CM constraints. (a) Original image (b) Extracted arc-support line segments are labeled with different colors. (c) Ellipse
candidates without CM constraints on arcs grouping. (d) Two arc group instances are labeled in blue and red, respectively. Three collinear blue points indicate
the corresponding blue arcs belong to the same ellipse, while non-collinear red points indicate the red arcs form an invalid group. (e) After filtering by CM
module, the number of invalid candidate ellipses is largely reduced. (f) The final detected ellipse.

Fig. 5. CM grouping strategy on two or three arcs of each ellipse. (a) The
original image. (b) Arc grouping on two arcs, and three points on each arc.
(c) Arc grouping on three arcs, and two points on each arc.

in the text below.) However, most of the invalid ellipses will
be removed by the ratio of the total arc length of the arc
combination to the circumference [32]. Finally, the ellipse
clustering and validation steps combine some of the output
ellipses into single ellipses, as they may be fitted by different
arcs of the same ellipse. Figure 4(f) shows the final detection
result.

B. Ellipse Detection Based on CM

In arc-based ellipse detection methods, fitting arc groups
is the most time-consuming step, while the arc grouping step
determines how many arc groups are fitted. Wrong arc groups
can also induce wrong fitting results. Thus, arc grouping is cru-
cial to the precision and speed of an ellipse detection method.
A good arc grouping method should preserve valid arcs and
prune as many as possible invalid arc groups. Meanwhile, the
grouping method itself should be efficient. Thus, it should
balance time and performance.

In this paper, we propose a new arc grouping method based
on characteristic mapping (CM). We group the arcs by points
on arcs. If the points on the arcs belong to the same ellipse,
so do the arcs. According to Theorem 1 and Fig. 3, each side
of triangle APy P, P3 intersects the ellipse at two points, and
there are six points {Q?J )}{:llﬁ , in total. We can estimate
whether the six points are on the same ellipse by calculating
whether their mapping points {R; }?:1 are collinear. Thus, if the
six points lie on different arcs, we can judge whether the arcs
belong to the same ellipse.

In order to meet the requirements of Theorem 1, we need
six points on the ellipse, and three lines through each two of
them can form a triangle. We propose two alternative methods
to construct characteristic mapping with n = 2, which are
demonstrated in Fig. 5(b) and Fig. 5(c) respectively. As shown
in Fig. 5(b), we can validate two arcs each time by taking three

points on each arc, two points on the ends of the arc and the
third in the middle of the arc. Figure 5(c) demonstrates the
way that validates three arcs each time by taking two points
on the ends of each arc. Both situations satisfy the theorem,
including the green triangle AP;P>P3 and six intersections
{Q;J )}{:1122 5 with arcs. In both methods, we take at least two
points on each arc, as one point cannot determine the position
of an arc, and it is more sensitive to noise. Two methods
are different in accuracy and efficiency. Three points on each
arc are more accurate than two points on each arc, as more
points can reflect the condition of the arc better. However,
the situation with two points on each arc estimates three arcs
each time, which is more efficient than the strategy on two
arcs. In our paper, we take the strategy of validating two arcs,
as most existing methods also apply their constraints on two
arcs. We further map six points to three points by characteristic
mapping. Finally, we can judge whether arcs with six points
belong to the same ellipse by validating the collinearity of the
three mapped points.

The proposed CM can be embedded in any arc-based
method, and it can be used separately or combined with other
existing constraints. CM is a strict constraint, which requires
arcs belong to the same ellipse. It can be used after some
loose constraints, such as position and quadrant constraints.
For example, the quadrants constraint requires that arcs in a
group are from different quadrants. However, arcs in different
quadrants are likely from different ellipses. As shown in
Fig. 5(b), we can easily prune the combination of arc; and
arcs in the fourth quadrant by quadrant constraint, but CM
can further prune arc; and arcs. Algorithm 1 details the arc
combination picking process with CM on two arcs.

The threshold Thgp (line 6 of algorithm 1) is used to evalu-
ate the collinearity of three mapped points. The determinant of
3 points indicates the area of the triangle formed by them [13].
When it is too small, some correct arc combinations are
removed; when it is too large, some wrong arc combinations
are included. We set Thgp = 2 to get the best performance
in our experiments. We also test the distance of the third
point from the line defined by the other two. However, the
determinant computation takes less time to execute.

Remarks: (1) The difference between CM and Pascal’s
theorem. As one of the classical theorems in projective
geometry, Pascal’s theorem asserts that if a hexagon is made
out of six points on a conic, the intersections of opposite
sides of this hexagon must be collinear [37]. It also implies
a mapping from 6 points on conic to 3 collinear points.
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Algorithm 1 Arc Grouping Algorithm With CM on Two Arcs

Input: Arc set Sety,., Collinear determination threshold
Thep
Output: Arc combination set Setcombpination
1: for arc; € Set,,. do
2. for arc; € Setyre and j # i do
3: if (arc;,arc;) do not meet position or quadrants
constraints then
Continue;
end if
if CM-VALIDATION(arc;, arc;) > Thgp then
Continue;
end if
Add {arc;,arc;} to
Setcmnbination-
10:  end for
11: end for
12: return Setcombination;
13: function CM-VALIDATION (arc;, arc;)
14: {ng}gjﬁg < Take two ends and the midpoint of
{arc;, arc;};
15: {S,}2_, < Obtain mapping points by characteristic
mapping;
16: Valueyeq < Calculate the collinearity of {S,};
17: return Value,qq;
18: end function

R A A

arc combination  set

However, the collinear estimation may fail in arc grouping,
as the opposite sides of the hexagon have a high chance to be
parallel for adjacent arcs in Algorithm 1. As demonstrated in
Fig. 6(a), side A3Bj3 is almost parallel to side AjBj, and the
corresponding intersection point is close to point at infinity,
yielding a significant error in estimating the collinearity with
M; and M,. Our characteristic mapping (CM) facilitates arc
grouping in more extensive practical scenarios.

(2) The difference between CM and characteristic number
(CN) [2]. They are different in basic theory, computational
efficiency, and accuracy. The definition and theorem of CM
fundamentally differ from CN. CM characterizes the intrinsic
connections between algebraic curves of different degrees and
does not rely on the parametric forms of curves, while CN
reflects the intrinsic geometry of an underlying planar curve
of points. The proposed method groups curve segments by
solving the problem on a curve of a lower degree, which
implies a lower computation cost. CN only employs the
properties of conics itself, giving the value of +1 on any six
points on an ellipse.

Further, CM has higher computational efficiency than CN.
As the quadratic curve is a special case in CM, the symmet-
rical property of CM enables to measure the collinearity of
{R,~}?:1 instead of their mapping points {S,-}?zl. Consequently,
it is unnecessary to solve Eq. (1), and the collinearity of three
points is easily calculated by the determinant. In contrast,
calculating CN values of the six points on an ellipse involves
solving a set of six linear equations, which makes CN unable
to maintain linear computational complexity.
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(d)

Fig. 6. Comparison of the mapping strategies of (a) the classic Pascal’s
theorem and (b) CM.

CM has higher accuracy than CN. CM leverages the
collinearity of three mapping points to group arcs. The error
induced by noise and arc detection can be easily estimated.
In contrast, CN relies on the product of a series of coefficient
ratios, and the error in any multiplier is heavily magnified in
the product.

V. EXPERIMENTAL ANALYSIS AND RESULTS

This section includes experimental settings, a comparison
with the state-of-the-art, and an analysis of methods with and
without the proposed CM accelerator.

A. Experimental Setting

In this section, we introduce the datasets, the employed
methods for comparison, and general evaluation metrics.

1) Datasets: To evaluate the performance of the proposed
CM accelerator, we use five public, challenging real-world
datasets. Traffic data set [38] consists of 273 images of
various traffic signs from frames of several videos captured
by smartphones [32]. Bicycle data set contains 356 images
of bicycles with different backgrounds and shooting angles.
These images are also selected from the frames of the video
mentioned above. Prasad data set [39] is a classic data set
consisting of 198 complex real-world images, where objects
of oval shapes like human faces are regarded as ellipses.
The original Prasad Dataset has 400 images in total. How-
ever, there are only 198 images available online. Shen et al.
[34] collected the remaining images of the original Prasad
dataset and named it Prasad+, which includes 193 images.
The varying image size with a cluttered background is the
major challenge. Dataset#1 [32] selects 400 images from the
MIRFlickr and LabelMe repositories, and randomly collects
high-quality images that contain a single ellipse or noisy
images that contain multiple objects.
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Fig. 7. Four pairs of detection instances produced by Jia’s method without (left) and with CM (right) on each data set. The left picture in each pair (produced
by the original Jia’s method) includes more false positives and redundant detections.

2) Compared Methods: We select six traditional and a
deep learning based methods for quantitative and qualitative
comparisons, including Fornaciari method [32], ELSDc [28],
AAMED [35], Shen [34], Jia [2], Lu’s method [14], and Gaus-
sian Proposal Networks (GPN) [26]. For a fair comparison,
we adopt the source codes provided by their authors. Further,
we evaluate the proposed CM accelerator by embedding it in
two representative ellipse detectors: Jia’s method [2] and Lu’s
method [14]. Jia et al. employ a projective invariant, named
characteristic number to pick valid arc segments, which is
the fastest one for real-world natural images reported in the
latest work. Lu et al. construct support arcs upon the gradient
information that removes outliers, yielding robust and accurate
detection [14].

3) Evaluation Metrics: All experiments are executed on
a laptop with Intel Core i7-6700HQ CPU 2.60GHz, Nvidia
GeForce GTX 1060 6GB, 16GB RAM, and Windows 10 64bit
operating system. The software versions are MATLAB 2018a,
Visual Studio 2017, and OpenCV-3.4.7_vcl5. The memory
utilization during execution is 23% ~ 35%.

We follow the same protocol as comparable methods. The
performance of ellipse detectors is evaluated in terms of
running time, Precision (Pre), Recall (Rec), and F-measure
(F-m). F-measure is defined as F-measure = 2 / (Precision™! +
Recall™!), where Precision = TP / (TP 4+ FP) = TP/ €2, and
Recall = TP / (TP + FN) = TP / ®. The symbol 2 denotes
the number of detected ellipses, and ® indicates the number
of ground-truth ellipses. The overlapping ratio of a detected
ellipse E4 to the ground truth E, is defined as:

area(Eg) Narea(Eg)

area(Eg) Uarea(Eg)’
where area(E) is the number of pixels inside the ellipse E.
The detected ellipse E; is considered as TP (true positive) if

M(Eq, Eg) is larger than a threshold T hcorrecr. The threshold
T heorrect 1s set to 0.8 throughout our experiments. FP and FN

M(Eq, Eg) = )

are false positive and false negative, respectively. We accumu-
late TP, FP and FN of each picture to obtain F-m value and
execution time of the entire dataset.

B. Performance Analysis of Arc Selection

We use the collinear constraint of three mapping points
derived from six points on arcs to pick up arc segments
belonging to one ellipse. Theoretically, the area of a triangle
formed by three mapping points equals O, but various imaging
conditions (e.g., thermal noise and lens distortions) in practical
applications and errors introduced by the arc detection step
may cause the value to deviate from 0. As discussed in
Section IV-B, we relax this hard constraint to a range in
the vicinity of O determined by Thgp. Herein, we perform
an experimental analysis of the relationship between point
coordinates on arcs and the area of a triangle formed by three
mapping points. This analysis does not only give rise to an
appropriate threshold but also validates the effectiveness of
the arc selection based on CM.

We analyze the relationship between the accuracy of the
proposed method and the distribution of the mapping points.
Assuming an ellipse centered at the coordinate origin, we fix
five distinct points on the ellipse, and vary the sixth point
around the ellipse to show the distribution of the collinearity
of mapping points in Fig. 8. We use the area of the triangle
formed by mapping points to measure the collinearity, which
can be easily calculated by the determinant of the three points.
Different colors indicate various area values given by the color
bar in Fig. 8. All the area values higher than 2 are colored in
red-brown, while all those lower than —2 are in blue. Fig. 8
illustrates that most areas formed by mapping points with
the sixth point close to the ellipse fall within the range from
—0.5 to 0.5. In contrast, CN is sensitive to other conic curves,
such as hyperbola and parabola. The sixth point lying inside
or outside of the ellipse can also generate the desired value
of +1 [2].
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TABLE 1
COMPARISONS OF ORIGINAL AND ACCELERATED METHODS ON FIVE DATA SETS
Dataset | Fornaciari [32] | ELSDc [28] | AAMED [35] | Shen [34] | Jia [2] Jia’s with CM | Lu [14] Lu’s with CM
Pre 0.55 0.05 0.84 0.70 0.53 0.62 0.92 0.92
Traffic Rec 0.70 0.76 0.67 0.84 0.73 0.73 0.88 0.87
F-m 0.62 0.09 0.75 0.76 0.61 0.67 0.90 0.90
Time(ms) 531.7 1149.7 291.4 962.8 200.5 180.5 346.0 181.0
Pre 0.72 0.09 0.77 0.62 0.70 0.75 0.76 0.77
Prasad Rec 0.19 0.34 0.32 0.33 0.25 0.24 0.35 0.35
) F-m 0.30 0.14 0.45 0.43 0.37 0.37 0.48 0.48
Time(ms) 184.3 347.1 67.3 326.8 71.0 60.1 105.4 67.7
Pre 0.65 - 0.74 0.56 0.67 0.74 0.78 0.78
Prasads Rec 0.41 - 0.44 0.52 0.47 0.45 0.57 0.55
asa F-m 0.51 - 0.55 0.54 0.55 0.56 0.66 0.65
Time(ms) 1011.0 - 126.3 619.8 202.2 123.1 368.5 164.2
Pre 0.64 - 0.71 0.54 0.62 0.67 0.69 0.69
Dataset#1 Rec 0.40 - 0.38 0.47 0.43 0.42 0.48 0.46
atase F-m 0.49 - 0.49 0.50 0.51 0.51 0.56 0.55
Time(ms) 766.2 - 186.7 745.8 188.1 145.2 462.3 199.5
Pre 0.50 - 0.61 0.40 0.50 0.56 0.75 0.76
Bicvcle Rec 0.47 - 0.23 0.56 0.44 0.41 0.59 0.54
y F-m 0.49 - 0.33 0.46 0.47 0.47 0.66 0.63
Time(ms) 1671.0 - 4374 1288.6 335.1 243.7 1028.8 476.2
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Fig. 9. Effects of the threshold Thg p ranging from 0.1 to 4.0.

Fig. 8. Relationship between point coordinates and collinearity of mapping
points. Different colors indicate the area of the triangle formed by mapping
points given by the color bar. Five distinct points on the ellipse are fixed,
and the position of the sixth point is varied around the ellipse to show the
distribution of the collinearity of mapping points.

To obtain an appropriate value for threshold Thgp, we test
Jia’s method with CM on Dataset#1, as it is the largest dataset
including various situations in practical scenarios. We vary
the threshold Thgp between 0.1 and 4.0, giving 40 Thgp
values in total. Figure. 9 demonstrates the values of running
time, precision, recall, and F-m upon various thresholds. The
hard constraint Thgp = 0.1 (the arcs have to rigorously form
an ellipse) only keeps a small number of arc segments for
parameter fitting, demanding the least computation. Unfor-
tunately, significant false negatives exist since this choice
excludes many arc segments slightly deviating from an ellipse.
Accordingly, the value of precision is high, while those of
recall and F-m are notably low. The increase of Thgp includes
more arcs for fitting, resulting in a higher computational

cost. In these cases, the selection step has little impact on
lowering false positives. Hence, the values of precision, recall,
and F-m remain stable. We fix the threshold as Thgp =
2.0. It generates the best performance for the rest of the
experiments. Actually, the hyper-parameter Thgp indicates
the tolerance to deviations of a group of arc candidates from a
right ellipse on which any six points map to the three collinear
points giving a zero determinant. As a byproduct, the choice
of Thgp affects the number of candidate arcs that directly
determines the time saved for subsequent arc grouping stages.
However, the original number of candidate arcs determines
how much CM can accelerate.

C. Comparisons With the State-of-the-Art Methods

1) Comparisons With Traditional Methods: We embed the
proposed CM accelerator into two representative methods,
Jia’s method [2] and Lu’s method [14]. Both of them have their
own arc grouping strategy. We replace or add our accelerator
to the original methods directly, and keep the other parts
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Fig. 10. The acceleration ratio of two representative ellipse detection methods
Jia [2] and Lu [14] when the proposed CM is used. The horizontal axis shows
the name of two methods, and performances on different datasets are divided
by dotted lines. The value of each bar is labeled by the vertical axis. The
orange bar shows the execution time of the corresponding method with CM,
while the blue part shows how much time CM saves. The speed-up ratio is
shown on the top of each bar.

unchanged. Then, we compare the accelerated methods with
the original Jia’s [2], and Lu’s method [14], and the other four
traditional methods of Fornaciari [32], ELSDc [28], AAMED
[35], and Shen [34].

As shown in Tab. I, we compare the Precision, Recall,
F-measure, and execution time of all the methods over five
datasets. Generally speaking, almost all the best performances
are produced by the methods with CM accelerator. Lu’s
method with and without CM accelerator researches the high-
est F-m over five datasets, which is as high as 0.9 on Traffic
dataset. Jia’s method with CM accelerator has the smallest
execution time over five datasets. The smallest execution
time of 60.1 ms per image is obtained on Prasad dataset.
CM slightly improves F-m value for Jia’s method, while
speeding up the execution time of the original method 25% on
average over five datasets. The speed-up ratio for Lu’s method
is more significant than for Jia’s method. Lu’s method with
CM only uses about half of the original execution time with
almost the same F-m.

In general, CM improves Jia’s method on all the indexes.
CM also obtains comparative or even higher F-measure with
about 50% of Lu’s original running time on three datasets.
There is only about 0.02 decrease on average in recall of Lu’s
method, as CM may remove a few true positive arc groups
due to error and noise of sample points on arcs. There are
only 0.01 and 0.03 decreases on F-measure on dataset #1 and
dataset Bicycle. However, it is worth noting that we only use
about 44% running time of the original method on these two
datasets.

In order to illustrate the acceleration performance of CM
module, we use a bar plot to represent the execution time with
and without CM in Fig. 10. Two methods combined with our
accelerator are sped-up to different degrees over five datasets.
We can see two methods are sped-up from 10% to 57%.
The speed-up ratio of Jia’s method on the Prasad+ dataset
is 39.1% but down to 27.3% on the Bicycle dataset, given the
same value of Thgp. The root of this discrepancy attributes
to different counts of candidate arcs in these two datasets.
We obtain the highest speed-up ratio of 57% on Dataset#1,
as noise in this data set produces a vast amount of arc segments
for grouping.

2) Comparison With a Deep Learning Based Method: We
compare the proposed method with Gaussian Proposal

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

TABLE I

COMPARISON OF ACCELERATED METHODS AND THE DEEP LEARNING
BASED METHOD GPN [26] ON TRAFFIC DATASET

Methods ‘ Jia’s with CM Lu’s with CM GPN [26]
Pre 0.62 0.92 0.68
Rec 0.73 0.87 0.53
F-m 0.67 0.90 0.59
Time(ms) 180.5 181.0 1520
Networks (GPN) [26]. GPN is designed to detect

lesion-bounding ellipses in the medical image processing area,
in which accuracy is highly demanded. We train the model
on the Traffic dataset, as only one or two elliptic objects exist
in most of the pictures, and almost all the objects have clear
boundaries, which is similar to the lesion detection scenario.
We obtain 1076 augmented images by flipping and rotation.
All the 1076 augmented images are used as the training set,
while the testing set is the original 296 images to keep the
same protocol as our method. Table. II demonstrates that the
proposed method outperforms GPN in almost all aspects.
The performance of Lu’s method with CM outperforms GPN
on all indexes. The F-measure of Lu’s method with CM is
over 1.5 times GPN’s F-measure, while the running time
of Lu’s method with CM is only 11.8% of GPN’s running
time. Similarly, Jia’s method with CM also surpasses GPN in
F-measure and running time.

D. Effectiveness Analysis of CM Accelerator

We illustrate how we embed our accelerator into two
methods, and analyze why the methods combined with CM
accelerators can reach the best performance.

Jia’s method is the fastest one for real-world natural images
reported in the latest work [35]. Our accelerator can further
reduce the running time by 25% on average with higher
accuracy. Jia’s method employs a projective invariant, named
characteristic number (CN), to pick valid arc combinations [2].
Six points on two elliptical arcs are used to determine whether
the arcs belong to the same ellipse. As this grouping strategy
is also a conic constraint, we replace it with our accelerator
with other parts unchanged. Although both grouping strategies
are conic constraints, our CM accelerator only works on three
points, and the collinearity of three points is easily calculated
by the determinant. In contrast, Jia’s method demands more
computations due to the calculation of the product of the
characteristic number of six points. Meanwhile, the product
value is sensitive to errors. Thus, we can improve the value of
F-m while reducing the execution time with the accelerator.
Some detection instances of Jia’s method without and with
CM on five datasets are shown in Fig. 7. Our accelerator
evaluates the arc combinations more precisely, yielding fewer
false positive or redundant detections.

Lu’s method reaches the highest F-m among the test meth-
ods by a complicated arc detection strategy, that’s why it
spends more running time than Jia’s method. As most invalid
arcs are removed after arc extraction, the number of arcs is
limited. They only employ simple geometric constraints to
obtain candidate arc combinations. We add our accelerator
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Fig. 11. Running time comparison between methods with/without CM on
each image. The X-axis is the running time of methods with CM, while Y-axis
is that without CM. The images in different data sets are labeled in different
colors.

after the geometric constraints to prune more invalid combina-
tions. Thus, our accelerator can keep the F-m while speeding
up the execution time significantly.

We further plot the execution time of each image with and
without CM accelerator to illustrate the effectiveness of the
proposed module. As shown in Fig. 11, almost all the points
are above the diagonal, which indicates the accelerator can
speed up ellipse detection on the vast majority of images. The
most obvious acceleration occurs on Dataset#1 and Prasad+
data set, as there are more arc group candidates for grouping.
Thus, our accelerator can reduce execution time significantly
on multiple candidate arcs.

E. Stepwise Execution Time Analysis and
Robustness to Noise

In order to validate the proposed CM accelerator can reduce
the execution time while keeping the performance of the
original methods, we illustrate the execution time of each step
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TABLE III
EXECUTION TIME (MS) FOR EACH STEP WITH AND
WITHOUT CM MODULE
method ‘ Arc grouping Cand@ate ~elhpse Validation
selection estimation
Lu 17.81 3.28 79.75
Lu with CM 18.26 2.20 42.67
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Fig. 12. Robustness of Jia’s method w or w/o CM to noise. The horizontal
axis indicates the ratios of noise to an image, the left vertical axis indicates
the execution time, and the right vertical axis shows the value of F-m. The
execution time of Jia’s method w or w/o CM is shown by dark grey and grey
bars, respectively. F-m values w or w/o CM are illustrated by green Solid and
dotted lines, respectively.

with or without CM, and demonstrate the robustness of CM
to noise.

In order to demonstrate how the embedded CM accelerates
arc-based methods, we compare the execution time of Lu’s
method with or without CM on Prasad dataset by dividing
Lu’s method into three steps: arc grouping, candidate ellipse
estimation, and validation. In the arc grouping step, the input
image is pre-processed, arcs are formed and candidate arc pairs
are selected. As shown in Tab. III, the original Lu’s method
use 17.81 ms on average to obtain valid arc pairs, while Lu’s
method with CM cost 18.26 ms. Removing invalid arc groups
save more time than it takes, as lots of invalid arc groups are
removed. We only use 0.45 ms more to embed CM in the
arc pairs selection step, but we save 1.08 ms in the candidate
ellipse estimation and save 37.08 ms in the validation step.

Our accelerating module has no impact on the stability of
the original ellipse detection method. We add salt-and-pepper
noise to images of Prasad data set with the ratios of noise
to image set as 0%, 3%, 6%, 9%, 12%, and 15%. As shown
in Fig. 12, the F-measure for Jia’s method with or without
CM is almost the same with the noise increasing, indicating
the decrease of F-m is introduced by the original method other
than CM. Thus, CM speeds up the execution time while having
no impact on the performance.

VI. CONCLUSION

In this paper, we develop a characteristic mapping and
prove a necessary condition for its application. An efficient
arc grouping module is proposed to find valid elliptical arc
segments by determining whether the mapped three points lie
on one line. The developed module can be embedded into
existing arc-based ellipse detection methods to reduce their run
time. Experiments with the two latest methods show that their
running time can be reduced by 25% and 50%, respectively.
It is worth noticing that the computation on three points is
more precise than that on six elliptical points of the original
methods, as it is less sensitive to errors in point locations.
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This yields faster than the state-of-the-art algorithms while
keeping their precision comparable or even higher. Moreover,
CM can be applied to curves of higher dimensions and any
higher degrees. We will consider this application in man-made
CAD graphics in our feature work.

[1]

[2

—

[3]
[4]

[5]

[6]
[7]

[8]

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

Y. Liu, H. Chen, C. Shen, T. He, L. Jin, and L. Wang, “ABCNet: Real-
time scene text spotting with adaptive Bezier-curve network,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 9809-9818.

Q. Jia, X. Fan, Z. Luo, L. Song, and T. Qiu, “A fast ellipse detector
using projective invariant pruning,” IEEE Trans. Image Process., vol. 26,
no. 8, pp. 3665-3679, Aug. 2017.

A. Rababah, “High accuracy Hermite approximation for space curves in
rd,” J. Math. Anal. Appl., vol. 325, no. 2, pp. 920-931, Jan. 2007.
X.-D. Chen, W. Ma, and Y. Ye, “Multi-degree reduction of Bézier curves
with higher approximation order,” in Proc. Int. Conf. Computer-Aided
Design Comput. Graph., 2013, pp. 427-428.

P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, Model Reduction
and Approximation: Theory and Algorithms, vol. 15. Philadelphia, PA,
USA: SIAM, 2017.

M. Eck, “Degree reduction of Bézier curves,” CAGD, vol. 10, nos. 3-4,
pp. 237-251, 1993.

X. Fan, R. Liu, Z. Luo, Y. Li, and Y. Feng, “Explicit shape regression
with characteristic number for facial landmark localization,” IEEE Trans.
Multimedia, vol. 20, no. 3, pp. 567-579, Mar. 2018.

J. Sun et al., “Disp R-CNN: Stereo 3D object detection via shape prior
guided instance disparity estimation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 10545-10554.

L. Hajder, T. T6th, and Z. Pusztai, “Automatic estimation of sphere
centers from images of calibrated cameras,” in Proc. 15th Int. Joint Conf.
Comput. Vis., Imag. Comput. Graph. Theory Appl., 2020, pp. 1-13.

R. Jin, H. M. Owais, D. Lin, T. Song, and Y. Yuan, “Ellipse proposal
and convolutional neural network discriminant for autonomous landing
marker detection,” J. Field Robot., vol. 36, no. 1, pp. 6-16, Jan. 2019.
H. Dong, E. Asadi, G. Sun, D. K. Prasad, and I.-M. Chen, “Real-time
robotic manipulation of cylindrical objects in dynamic scenarios through
elliptic shape primitives,” IEEE Trans. Robot., vol. 35, no. 1, pp. 95-113,
Feb. 2018.

Z. Cai and N. Vasconcelos, “Cascade R-CNN: Delving into high quality
object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 6154-6162.

Z. Luo, X. Zhou, and D. X. Gu, “From a projective invariant to some
new properties of algebraic hypersurfaces,” Sci. China Math., vol. 57,
no. 11, pp. 2273-2284, Nov. 2014.

C. Lu, S. Xia, M. Shao, and Y. Fu, “Arc-support line segments revisited:
An efficient high-quality ellipse detection,” IEEE Trans. Image Process.,
vol. 29, pp. 768-781, 2019.

P. Wozny and S. Lewanowicz, “Multi-degree reduction of Bézier curves
with constraints, using dual Bernstein basis polynomials,” Comput.
Aided Geometric Design, vol. 26, no. 5, pp. 566-579, Jun. 2009.

K. Kanatani, Y. Sugaya, and Y. Kanazawa, “Ellipse fitting for computer
vision: Implementation and applications,” Synth. Lectures Comput. Vis.,
vol. 6, no. 1, pp. 1-141, Apr. 2016.

P. V. Hough, “Method and means for recognizing complex patterns,”
Dec. 18, 1962, U.S. Patent 3069 654.

Y. Xie and Q. Ji, “A new efficient ellipse detection method,” in Proc.
ICPR, 2002, pp. 957-960.

C. A. Basca, M. Talos, and R. Brad, “Randomized Hough transform
for ellipse detection with result clustering,” in Proc. Int. Conf. Comput.
Tool, vol. 2, 2005, pp. 1397-1400.

S. Sawala, S. Ragothaman, S. Narasimhan, and M. G. Basavaraj,
“A versatile major axis voted method for efficient ellipse detection,”
Pattern Recognit. Lett., vol. 104, pp. 45-52, Mar. 2018.

S. Mulleti and C. S. Seelamantula, “Ellipse fitting using the finite rate
of innovation sampling principle,” IEEE Trans. Image Process., vol. 25,
no. 3, pp. 1451-1464, Mar. 2016.

B. Jian and B. C. Vemuri, “Robust point set registration using Gaussian
mixture models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8,
pp. 1633-1645, Aug. 2011.

C. Arellano and R. Dahyot, “Robust ellipse detection with Gaussian
mixture models,” Pattern Recognit., vol. 58, pp. 12-26, Oct. 2016.

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]
[37]

(38]

[39]

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

M. Zhao, X. Jia, L. Fan, Y. Liang, and D.-M. Yan, “Robust ellipse
fitting using hierarchical Gaussian mixture models,” IEEE Trans. Image
Process., vol. 30, pp. 3828-3843, 2021.

Z. Shi et al., “Robust ellipse fitting based on Lagrange programming
neural network and locally competitive algorithm,” Neurocomputing,
vol. 399, pp. 399-413, Jul. 2020.

Y. Li, “Detecting lesion bounding ellipses with Gaussian proposal
networks,” in Proc. MLMI. Cham, Switzerland: Springer, 2019,
pp. 337-344.

W. Dong, P. Roy, C. Peng, and V. Isler, “Ellipse R-CNN: Learning to
infer elliptical object from clustering and occlusion,” IEEE Trans. Image
Process., vol. 30, pp. 2193-2206, 2021.

V. Pitrducean, P. Gurdjos, and R. G. Von Gioi, “Joint a contrario ellipse
and line detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 4, pp. 788-802, Apr. 2017.

E. Kim, M. Haseyama, and H. Kitajima, “Fast and robust ellipse
extraction from complicated images,” in Proc. IEEE Inf. Technol. Appl.,
Nov. 2002, pp. 138-145.

L. Libuda, I. Grothues, and K.-F. Kraiss, “Ellipse detection in dig-
ital image data using geometric features,” in Proc. Adv. Comput.
Graph. Comput. Vis., Int. Conf. Cham, Switzerland: Springer, 2007,
pp. 229-239.

D. K. Prasad, M. K. H. Leung, and C. Quek, “ElliFit: An unconstrained,
non-iterative, least squares based geometric ellipse fitting method,”
Pattern Recognit., vol. 46, no. 5, pp. 1449-1465, May 2013.

M. Fornaciari, A. Prati, and R. Cucchiara, “A fast and effective ellipse
detector for embedded vision applications,” Pattern Recognit., vol. 47,
no. 11, pp. 3693-3708, Nov. 2014.

S. Chen, R. Xia, Y. Chen, M. Hu, and J. Zhao, “A hybrid method
for ellipse detection in industrial images,” Pattern Recognit., vol. 68,
pp.- 82-98, Aug. 2017.

Z. Shen, M. Zhao, X. Jia, Y. Liang, L. Fan, and D.-M. Yan, “Combining
convex hull and directed graph for fast and accurate ellipse detection,”
Graph. Models, vol. 116, Jul. 2021, Art. no. 101110.

C. Meng, Z. Li, X. Bai, and F. Zhou, “Arc adjacency matrix-based fast
ellipse detection,” IEEE Trans. Image Process., vol. 29, pp. 4406-4420,
2020.

J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-§, no. 6, pp. 679-698, Nov. 1986.
J. G. Semple and G. T. Kneebone, Algebraic Projective Geometry.
New York, NY, USA: Oxford Oxford Univ. Press, 1998.

C. Lu, S. Xia, W. Huang, M. Shao, and Y. Fu, “Circle detection by arc-
support line segments,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2017, pp. 76-80.

D. K. Prasad, M. K. Leung, and S.-Y. Cho, “Edge curvature and
convexity based ellipse detection method,” Pattern Recognit., vol. 45,
no. 9, pp. 3204-3221, Sep. 2012.

Qi Jia received the B.E. and Ph.D. degrees in com-
puter science and technology from the Dalian Uni-
versity of Technology, Dalian, China, in 2005 and
2014, respectively. She joined the Dalian University
of Technology in 2008, where she is currently an
Associate Professor. Her current research interests
include computational geometry, image processing,
and computer vision. She serves as an Associate
Editor for the Pattern Recognition journal and the
Area Chair of OpenCV.

Xin Fan (Senior Member, IEEE) was born in
1977. He received the B.E. and Ph.D. degrees in
information and communication engineering from
Xi’an Jiaotong University, Xi’an, China, in 1998 and
2004, respectively. He was with Oklahoma State
University, Stillwater, from 2006 to 2007, as a Post-
doctoral Research Fellow. In 2008, he was with
the Southwestern Medical Center, The University of
Texas at Dallas, Dallas, for the second postdoctoral
training. He joined the School of Software, Dalian
University of China, Dalian, China, in 2009, where

he is currently a Professor and the Dean of the School of International
Information and Software. His current research interests include computational
geometry and machine learning and their applications to target tracking, image
processing, and DTI-MR image analysis.

Authorized licensed use limited to: Temple University. Downloaded on August 08,2023 at 23:27:17 UTC from IEEE Xplore. Restrictions apply.



JIA et al.: CHARACTERISTIC MAPPING FOR ELLIPSE DETECTION ACCELERATION

Yang Yang received the B.E. degree in digital
media technology from the Dalian University of
Technology, Dalian, China, in 2020, where he is
currently pursuing the M.E. degree with the Lab-
oratory of Geometric Computing and Digital Media
Technology. His current research interests include
computational geometry and computer vision.

Xuxu Liu received the B.E. degree in software
engineering from Zhengzhou University in 2019 and
the M.E. degree in software engineering from the
Dalian University of Technology in 2021. His main
research directions are computer vision, shape anal-
ysis, ellipse detection, and acceleration processing.

Zhongxuan Luo received the B.S. and M.S. degrees
in computational mathematics from Jilin University,
China, in 1985 and 1988, respectively, and the
Ph.D. degree in computational mathematics from the
Dalian University of Technology, China, in 1991.
He has been a Full Professor with the School of
Mathematical Sciences, Dalian University of Tech-
nology, since 1997, where he is currently the Vice
President. His research interests include computa-
tional geometry and computer vision.

2579

Qian Wang was born in 1982. She received the
B.S. and Ph.D. degrees in computational mathe-
matics from the Dalian University of Technology,
China, in 2005 and 2014, respectively. She joined
the School of Mathematics, Liaoning Normal Uni-
versity, in September 2014. Her research interests
include computational geometry and computer-aided
geometric design.

Xinchen Zhou received the B.S. and Ph.D. degrees
in mathematics from the Dalian University of
Technology, Dalian, China, in 2011 and 2017,
respectively. He is currently working with the
School of Mathematical Sciences, Jiangsu Univer-
sity, Zhenjiang, China. His research interests include
computational geometry and numerical methods
for PDEs.

Longin Jan Latecki (Senior Member, IEEE) is
currently a Professor with Temple University. He has
published over 300 research papers and books. His
main research interests include computer vision and
machine learning. He received the Annual Pattern
Recognition Society Award together with Azriel
Rosenfeld for the best article published in the journal
Pattern Recognition in 1998. He was a recipient of
the 2018 Amazon Research Awards. He is also the
Associate Editor-in-Chief of Pattern Recognition,
an Editorial Board Member of Computer Vision and

Image Understanding, and on the Advisory Board of Journal of Imaging.

Authorized licensed use limited to: Temple University. Downloaded on August 08,2023 at 23:27:17 UTC from IEEE Xplore. Restrictions apply.



