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Abstract

We deal with an image jigsaw puzzle problem, which is
de�ned as reconstructing an image from a set of square and
non-overlapping image patches. It is known that a general
instance of this problem is NP-complete, and it is also chal-
lenging for humans, since in the considered setting the orig-
inal image is not given. Recently a graphical model has
been proposed to solve this and related problems. The tar-
get label probability function is then maximized using loopy
belief propagation. We also formulate the problem as maxi-
mizing a label probability function and use exactly the same
pairwise potentials. Our main contribution is a novel infer-
ence approach in the sampling framework of Particle Filter
(PF). Usually in the PF framework it is assumed that the
observations arrive sequentially, e.g., the observationsare
naturally ordered by their time stamps in the tracking sce-
nario. Based on this assumption, the posterior density over
the corresponding hidden states is estimated. In the jigsaw
puzzle problem all observations (puzzle pieces) are given at
once without any particular order. Therefore, we relax the
assumption of having ordered observations and extend the
PF framework to estimate the posterior density by explor-
ing different orders of observations and selecting the most
informative permutations of observations. This signi�cantly
broadens the scope of applications of the PF inference. Our
experimental results demonstrate that the proposed infer-
ence framework signi�cantly outperforms the loopy belief
propagation in solving the image jigsaw puzzle problem. In
particular, the extended PF inference triples the accuracy
of the label assignment compared to that using loopy belief
propagation.

1. Introduction and Problem Formulation

As shown in [5] the jigsaw puzzle problem is NP-
complete if the pairwise af�nity among jigsaw pieces is un-
reliable. Following [2], we focus on reconstructing the orig-
inal image from square and non-overlapping patches. This
type of puzzles does not contain the shape information of

individual pieces, which is quite important to determine the
pairwise af�nities among them. This makes the problem
more challenging, since it is more dif�cult to evaluate pair-
wise af�nities among puzzles. This is different from most
of the previous approaches [14, 9, 18, 22], where the shape
of the puzzle pieces is utilized. While [2] also considers pri-
ors on the target image layout, we do not assume any prior
knowledge on the image layout. Thus, only local image
content information of the puzzle pieces is available in our
framework, e.g., see Fig.1.

Now we brie�y review the PF inference. We begin with
a classical tracking example. A robot is moving around
and taking images at discrete time intervals. The images
form a sequence of observationsZ = ( z1; : : : ; zm ), where
zt is an image taken at timet. With each observationzt

there is associated a hidden statex t . In our example the
value of x t is the robot pose (its 2D position plus orien-
tation). The goal of PF inferences, is to derive the most
likely sequence of the hidden states, i.e., to �nd a state
vectorx1:m = ( x1; : : : ; xm ) that maximizes the posterior
p(x1:m jZ ). We observe that here the observations are or-
dered following their time stamps. In PF inference, this or-
der is utilized to sequentially infer the values of statesx t

for t = 1 ; : : : ; m. Now imagine that the robot's clock broke
and the time stamps are random. Thus, we are given a set
of observationsZ = f z1; : : : ; zm g, they are indexed but
their index is irrelevant. Of course, we can still associate
statex t with observationzt , but the set of observations is
not ordered, and consequently, the corresponding statesx t

are not ordered. Thus, we deal with unordered observations.
This is exactly the scenario of the image jigsaw puzzle prob-
lem, e.g., see Fig.1. We are givenm square puzzle pieces
described by a set ofm observationsZ = f z1; : : : ; zm g.
Each observationzt describes part of the original image de-
picted on piecet and is given by a vector of features, which
are the color values of the pixels on piecet in our exper-
imental results. The puzzle pieces are numbered with in-
dex t, but their numbering is random like the numbers in
Fig. 1(b). The value of the statex t of puzzle piecet is a lo-
cation of an empty square in the square grid, e.g., the value
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(a) (b) (c)
Figure 1. The goal is to build the original image (a) given thejigsaw puzzle pieces (b). The original image is not known, thus, it needs to
be estimated given the observations shown in (b). The empty squares in (c) form possible locations for the puzzle pieces in (b).

of x t is the index of an empty square in the square gird
shown in Fig.1(c). Our goal is to determine the state vector
x1:m that maximizes the posterior probabilityp(x1:m jZ ).
Since the original image is not provided, this probability
is determined based on pairwise appearance consistency of
the local puzzle images, i.e., the posterior distribution is a
function of how well adjacent pieces �t together once they
are placed on the grid. In other words, a vector of grid
locationsx1:m maximizesp(x1:m jZ ) if the puzzle pieces
placed at these locations form the most consistent image.
We observe that the posterior distributionp(x1:m jZ ) usu-
ally is very complicated and has many local maxima. This
is particulary the case when the local image information of
the puzzle pieces is not very descriptive.

Our main contribution is a new PF inference framework
that works in this scenario. In the proposed framework
we extend PF to handle the situations where we have un-
ordered set of observations that are given simultaneously.
One of our key ideas is the fact that it is possible to extend
the importance sampling from the proposal distribution so
that different particles explore the state space along differ-
ent dimensions. Then the particle resampling allows us to
automatically determine most informative orders of obser-
vations (as permutations of state space dimensions). Con-
sequently, we can use a rich set of proposal functions in the
process of estimating the posterior distribution.

The classical PF framework has been developed for se-
quential state estimation like tracking [13, 19] or robot lo-
calization [20, 7]. There, the observations arrive sequen-
tially and are indexed by their time stamps, as our tracking
example illustrates. It is possible to apply the classical PF
framework as stochastic optimization to solve this problem
by utilizing a �x order of states. However, by doing so, we
would have selected an arbitrary order, and the puzzle con-
struction may fail because of the selected order and would
require extremely large number of particles. Our framework
on the other hand can work with fewer particles because
each particle explores different order. This gives us a rich
set of proposal distributions as opposed to having one �xed.
Moreover, the observations are given simultaneously at the
same time. Hence, there is no reason to favor any particular

order without utilizing this fact.
In our experimental results, we compare the solutions

obtained by the proposed inference framework to the so-
lutions of the loopy believe propagation under identical set-
tings on the dataset from [2]. In particular, we use exactly
the same dissimilarity-based compatibility of puzzle pieces.
The proposed PF inference signi�cantly outperforms the
loopy believe propagation in all evaluation measures. The
main measure is the accuracy of the label assignment, where
the difference is most signi�cant. The accuracy using loopy
believe propagation is23:7%while that using the proposed
PF inference is69:2%.

The rest of the paper is organized as follows. After intro-
ducing the preliminaries inx2, our key extensions for per-
muted PF are explained inx3 andx4. x5 provides imple-
mentation details.x6 shows and evaluates the experimental
results not only the dataset from [2], but also an extended
dataset.x7 describes related approaches.

2. Particle Filter Preliminaries

In this section we present some preliminary facts about
Particle Filters (PFs). They will be utilized in the follow-
ing sections when we introduce the proposed framework.
Given is a sequence of observationsZ = ( z1; : : : ; zm ), i.e.,
the observations are ordered. Our goal is to maximize the
posterior distributionp(x1:m j Z ), i.e., to �nd the valuesbx t

of statesx t such that

bx1:m = argmax
x 1: m

p(x1:m j Z ); (1)

wherex1:m = ( x1; : : : ; xm ) 2 X m is a state space vector
and each statex t has a corresponding observationzt for
t = 1 ; : : : ; m.

This goal can be achieved by approximating the posterior
distribution with a �nite number of samples in the frame-
work of Bayesian Importance Sampling (BIS). Since it is
usually dif�cult to draw samples from the probability den-
sity function (pdf)p(x1:m jZ ), samples are drawn from a
proposal pdfq, x( i )

1:m � q(x1:m jZ ) for i = 1 ; : : : ; N . Then
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approximation to the densityp is given by

p(x1:m jZ ) �
NX

i =1

w( i ) � x ( i )
1: m

(x1:m ); (2)

where� x ( i )
1: m

(x1:m ) denotes the delta-Dirac mass located at

x( i )
1:m and

w( i ) =
p(x( i )

1:m jZ )

q(x( i )
1:m jZ )

(3)

are the importance weights of the samples. Typically the
samplex( i )

1:m with the largest weightw( i ) is then taken as
the solution of (1).

Since it is still computationally intractable to draw sam-
ples fromq due to high dimensionality ofx1:m , Sequen-
tial Importance Sampling (SIS) is usually utilized. In the
classical PF approaches, samples are generated recursively
following the order of dimensions in state vectorx1:m =
(x1; : : : ; xm ):

x( i )
t � qt (xjx1:t � 1; Z ) = qt (xjx1:t � 1; z1:t ) (4)

for t = 1 ; : : : m, and the particles are built sequentially
x( i )

1:t = ( x( i )
1:t � 1; x( i )

t ) for i = 1 ; : : : ; N . The subscriptt
in qt indicates from which dimension of the state vector the
samples are generated. Sinceq factorizes as

q(x1:m jZ ) = q1(x1 jZ )
mY

t =2

qt (x t jx1:t � 1; Z ); (5)

we obtain thatx( i )
1:m � q(x1:m jZ ). In other words, by sam-

pling recursivelyx( i )
t from each dimensiont according to

(4) we obtain a sample fromq(x1:m jZ ) at t = m.
Since at a given iteration we have apartial state sample

x( i )
1:t for t < m , we also need an evaluation procedure of this

partial state sample. For this we observe that the weights
can be recursively updated according to [21]:

w(x( i )
1:t ) =

p(zt jx
( i )
1:t ; z1:t � 1)p(x( i )

t jx( i )
1:t � 1)

qt (x
( i )
t jx( i )

1:t � 1; z1:t )
w(x( i )

1:t � 1):

(6)

The above equation is derived from (3) using Bayes rule.
Consequently, whent = m, the weightw(x( i )

1:m ) of particle
(i ) recursively updated according to (6) is equal tow( i ) (de-
�ned in (3)). Hence, att = m, we obtain a set of weighted
(importance) samples fromp(x1:m jZ ), which is formally
stated in the following theorem [4]:

Theorem 2.1. Under reasonable assumptions on the
sampling (4) and weighting functions(6) given in [4],

p(x1:m jZ ) can be approximated with weighted samples
f x( i )

1:m ; w(x( i )
1:m )gN

i =1 with any precision ifN is suf�ciently
large. Thus, the convergence in(7) is almost sure:

p(x1:m jZ ) = lim
N !1

NX

i =1

w(x( i )
1:m )� x ( i )

1: m
(x1:m ): (7)

In many applications, the weight equation (6) is
simpli�ed by making a common assumption that
qt (x

( i )
t jx( i )

1:t � 1; z1:t ) = p(x( i )
t jx( i )

1:t � 1), i.e., we take as
the proposal distribution the conditional pdf of the state at
time t conditioned on the current state vectorx( i )

1:t � 1. This
assumption simpli�es the recursive weight update to

w(x( i )
1:t ) = w(x( i )

1:t � 1)p(zt jx
( i )
1:t ; z1:t � 1); (8)

and implies that the samples are generated from

x( i )
t � pt (xjx( i )

1:t � 1): (9)

Analogous to (4) pt in (9) indicates the dimension of the
state space from which the samples are generated.

Now we summarize the derivedstandard PF algorithm.
For every time stept = 1 ; : : : ; m and for every particle
i = 1 ; : : : ; N execute the following three steps:
1) Importance sampling / proposal: Sample followers of
particle(i ) according to (9) (a special case of (4)) and set
x( i )

1:t = ( x( i )
1:t � 1; x( i )

t ).
2) Importance weighting / evaluation: An importance
weight is assigned to each particlex( i )

1:t according to (8) (a
special case of (6)).
3) Resampling: Sample with replacementN new particles
form the current set ofN particles

f x( i )
1:t ji = 1 ; : : : ; N g

according to their weights. We obtain a set of new particles
x( i )

1:t for i = 1 ; : : : ; N , and renormalize their weights to sum
to one. This procedure is a variant of Sampling Importance
Resampling (SIR) [21]. It is an important part of any PF
algorithm, since resampling prevents weight degeneration
of particles.

3. Key Extension to Permuted States

As stated above, the standard SIS in Eq.9 and particle
evaluation in Eq.8 utilize the sequential order of the states
x1:m = ( x1; : : : ; xm ). Of course, this is the best choice in
many applications where the order is determined naturally
by the time stamp of the observations. In contrast, the pro-
posed approach is aimed at scenarios where no natural order
of observations is given and the observationsZ are initially
known as in the image jigsaw puzzle problem.
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The key idea of the proposed approach is not to utilize
the �x order of the statesx1:m = ( x1; : : : ; xm ) induced by
the order of observationsZ , but instead explore different or-
ders of the states(x i 1 ; : : : ; x i m ) such that the corresponding
sequences of observations(zi 1 ; : : : ; zi m ) is most informa-
tive. In particular, we do not follow the order of indices of
observations inZ . This way we are able to utilize the the
most informative observations �rst allowing us to use a rich
set of proposal functions. To achieve this we modify the �rst
step of the PF algorithm so that the importance sampling is
performed for every dimension not yet represented by the
current particle. Intuitively, for example, if the �rst puzzle
piece has a local image very similar to many other puzzle
pieces and the second puzzle piece has a very distinctive
local image that matches only a few other pieces, then our
approach will �rst process the second puzzle piece, since it
is more informative.

To formally de�ne the proposed sampling rule, we need
to explicitly represent different orders of states with a per-
mutation� : f 1; : : : ; mg ! f 1; : : : ; mg. We use the short-
hand notation� (1 : t) to denote(� (1); � (2); : : : ; � (t)) for
t � m. Each particle(i ) now can have a different permuta-
tion � ( i ) of the puzzle piecesin additionto their locations.
Thus the particles are now represented asx( i )

� (1: t ) . We drop

the superscript(i ) of � ( i ) in the context of a particle which
already carries the index(i ). For example, Fig.1(c) shows
the con�guration of a particle at timet = 2 , where puzzle
pieces numbered 3 and 1 in Fig.1(b) are placed at locations
(a) and (b), correspondingly. Hence� ( i ) (1 : 2) = (3 ; 1)
andx( i )

� (1:2) = ( a; b). Thus, a sequence of statesx � (1: t � 1)

visited before timet may be any subsequence(i 1; : : : ; i t � 1)
of t � 1 different numbers inf 1; : : : ; mg.

We are now ready to formulate the proposed importance
sampling. At each iterationt � m, for each particle(i ) and
for eachs 2 � ( i ) (1 : t � 1), we sample

x( i )
s � ps(xjx( i )

� (1: t � 1) ); (10)

where� ( i ) (1 : t � 1) = f 1; : : : ; mg n � ( i ) (1 : t � 1), i.e.,
the indices in1 : m that are not present in� ( i ) (1 : t � 1)
for t � m. The subscripts at the posterior pdfps indicates
that we sample values for states. We generate at least one
sample for each states 2 � ( i ) (1 : t � 1). This means that
the single particlex( i )

� (1: t � 1) is multiplied and extended to

several follower particlesx( i )
� (1: t � 1) ;s . Consequently, at it-

erationt < m particle(i ) hasm � t + 1 followers. Each
follower is a sample from a different dimension of the state
(i.e., represents a location of a different puzzle piece). Go-
ing back to our toy puzzle example, we recall that the cur-
rent state vector of particle(i ) in Fig. 1(c) at timet = 2 is
x( i )

� (1:2) = ( a; b), where� ( i ) (1 : 2) = (3 ; 1). For sampling

at timet = 3 , we have� ( i ) (1 : t � 1) = (2 ; 4; 5; 6). Con-

sequently, we sample four followers of particle(i ) in (10),
one for each states = 2 ; 4; 5; 6, wherex( i )

2 is the sampled
location of puzzle piece 2,x( i )

4 is the sampled location of
puzzle piece 4, and so on.

In contrast, in the standard application of rule (9), at each
iterationt particle(i ) has one follower. Even when some-
times each particle(i ) has many followers, all followers are
samples from the same state, since there is only one unique
state at timet. For our toy example, this means for parti-
cle (i), only locations of say puzzle piece 2 are sampled and
not those of puzzle piece 4, since a �xed order of the state
dimensions is followed in the classical setting.

We do not make any Markov assumption in (10), i.e., the
new statex( i )

s is dependent on all previous statesx( i )
� (1: t � 1)

for each particle(i ).

4. Particle Filter with State Permutations

Now we are ready to outline the proposedPF with state
permutations (PFSP)algorithm. In addition to the change
is in the importance sampling step, the other two steps are
also modi�ed. For every time stept = 1 ; : : : ; m and for ev-
ery particlei = 1 ; : : : ; N execute the following three steps:
1) Importance sampling / proposal: Sample followers
x( i )

s of particle(i ) from each dimensions 2 � ( i ) (1 : t � 1)
according to (10), which we repeat here for completeness,

x( i )
s � ps(xjx( i )

� (1: t � 1) ); (11)

and setx( i;s )
� (1: t ) = ( x( i )

� (1: t � 1) ; x( i )
s ) and� ( i;s ) (t) = s, which

means that� ( i;s ) (1 : t) = ( � (1 : t � 1); s). As stated
before, we drop the superscript(i; s) in x( i;s )

� (1: t ) , since it is
already present as the particle index.
2) Importance weighting/evaluation: An individual im-
portance weight is assigned to each follower particlex( i;s )

� (1: t )
according to

w(x( i;s )
� (1: t ) ) = w(x( i )

� (1: t � 1) )p(zs jx( i;s )
� (1: t ) ; z� ( i ) (1: t � 1) ); (12)

3) Resampling: Sample with replacementN new particles
form the current set ofN � (m � t + 1) particles

f x( i;s )
� (1: t ) j i = 1 ; : : : ; N; s 2 � ( i ) (1 : t � 1)g: (13)

according to the weights. Thus, we obtain a set of new par-
ticles f x( i )

� (1: t ) g
N
i =1 . We also renormalize their weights to

sum to one. This is a variant of the standard Sampling Im-
portance Resampling (SIR) step [21] as in the classical PF
framework.

We observe that the particle weight evaluation in (12) is
analogous to (8) in that the conditional probability of obser-
vation zs is a function of two corresponding sequences of
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observations and states plus the statexs . The only differ-
ence is that the sequences are determined by the permuta-
tion � ( i ) (1 : t � 1).

Sampling more than one follower of each particle and
reducing the number of followers by resampling is known
in the PF literature as prior boosting [10, 1]. It is used to
capture multi-modal likelihood regions. The resampling in
our framework plays an additional and a very crucial role. It
selects the the most informative orders of states. Since the
weights ofw(x( i;s )

� (1: t ) ) are determined by the corresponding
order of observationsz� ( i ) (1: t � 1) , and the resampling uses

the weights to selects new particlesx( i )
� (1: t ) , the resampling

determines the order of state dimensions. Consequently, the
order of state dimensions is heavily determined by their cor-
responding observations, and this order may be different for
each particle(i ). This is in strong contrast to the classical
PF, where observations are considered only in one orderZ .

The fact that each particle explores a possibly different
order of dimensions� ( i ) (1 : m) is extremely important for
the proposed PFSP, since it allows for use of rich set of
proposal functions with fewer number of particles. How-
ever,att = m all state dimensions are present in each sam-
ple x( i )

� (1: m ) . Hence we can reorder the sequence of state

dimensions� ( i ) (1 : m) to form the original order1 : m

by applying the inverse permutation
�
� ( i )

� � 1
and obtain

x( i )
1:m = x( i )

� � 1 � (1: m ) , i.e., the state values are sorted accord-
ing to the original state indices1 : m in each sample(i ). In
analogy to Theorem2.1, we state the following

Theorem 4.1. Under reasonable assumptions on the sam-
pling (11) and weighting functions(12) given in [4],
p(x1:m jZ ) can be approximated with weighted samples
f x( i )

1:m ; w(x( i )
� (1: m ) )g

N
i =1 with any precision ifN is suf�-

ciently large. Thus, the convergence in(14) is almost sure:

p(x1:m jZ ) = lim
N !1

NX

i =1

w
�

x( i )
� (1: m )

�
� x ( i )

1: m
(x1:m ): (14)

Proof. Due to Th. 2.1, we only need to show that
f x( i )

1:m ; w(x( i )
� (1: m ) )g

N
i =1 represent weighted samples from

p(x1:m jZ ).
The key observation is thatp andq are probabilities on

joint distribution of m random variables, and as such the
order of the random variables is not relevant. This follows
from the fact that a joint probability is de�ned as the proba-
bility of the intersection of the sets representing events cor-
responding to the value assignments of the random vari-
ables, and set intersection is independent of the order of
sets. Consequently, we have for every permutation�

p(x � (1: m ) jZ ) = p(x1:m jZ ) (15)

q(x � (1: m ) jZ ) = q(x1:m jZ ) (16)

According to the proposed importance sampling (11),
x( i )

� (1: m ) is a sample fromq(x � (1: m ) jZ ). Consequently, by

(16), x( i )
1:m = x( i )

� � 1 � (1: m ) is a sample fromq(x( i )
1:m jZ ) for

each particle(i ).
By the weight recursion in (12), and by (15) and (16)

w
�

x( i )
� (1: m )

�
=

p(x( i )
� (1: m ) jZ )

q(x( i )
� (1: m ) jZ )

=
p(x( i )

1:m jZ )

q(x( i )
1:m jZ )

: (17)

Thus f x( i )
1:m ; w(x( i )

� (1: m ) )g
N
i =1 represent weighted samples

from p(x1:m jZ ).

5. Implementation Details

In order to utilize the derived PF algorithm to solve the
jigsaw puzzle problem, we need to design the proposal pdf
in (11) and the conditional pdf of a new observation in (12).
Both are detailed in this section.

Given are a set ofm puzzle piecesP = f 1; : : : ; mgand a
rectangular grid withm empty squaresG = f g1; : : : ; gm g,
e.g., see Fig.1(b,c). In order to solve the image jigsaw puz-
zle we need to assign locations onG to the puzzle pieces in
P. The observation associated with each puzzle piece (of
sizeK � K ) is the color information of the partial image
depicted on it, i.e.,zi is aK � K � 3 matrix of pixel color
values and the set of observations isZ = f z1; : : : ; zm g.

A sample particle at timet � m is given byx � (1: t ) =
(x � (1) ; : : : ; x � ( t ) ), where� (i ) 2 P andx � ( i ) 2 G. This
means the puzzle piece� (i ) is placed on the grid square
with indexx � ( i ) . The corresponding observationsz� (1: t ) =
(z� (1) ; : : : ; z� ( t ) ) represents the color information of the
partial images on the puzzle pieces. In this section we drop
the particle index(i ), since all de�nitions apply to each par-
ticle.

We now de�ne an af�nity matrix A representing the
compatibility of the local images on the puzzle pieces. It isa
3D matrix of sizem � m � 4 with the third dimension being
an adjacency type, since two puzzle pieces can be adjacent
in four different ways: left/right, right/left, top/bottom, and
bottom/top, which we denote with LR, RL, TB, and BT.

In order to be able to compare our experimental results
to the results in [2] we de�ne A following the de�nitions in
[2]. They �rst de�ne a dissimilarity-based compatibilityD .
Given two puzzle piecesj andi , D measures dissimilarity
between their imageszj , zi by summing the squaredLAB
color differences along their boundary, e.g., the left/right
(LR) dissimilarity is de�ned as

D(j; i; LR ) =
KX

k=1

3X

c=1

(zj (k; u; c) � zi (k; v; c))2; (18)

whereu indexes the last column ofzj andv indexes the �rst
column ofzi . Finally, the af�nity of the LR connection is
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given by

A(j; i; LR ) = exp( �
D (j; i; LR )

2� 2 ); (19)

where � is adaptively set as the difference between the
smallest and the second smallestD values between puz-
zle piecei and all other pieces inP, see [2] for more details.

Proposal and weights. The proposal distribution
ps(xjx � (1: t � 1) ) : G ! R is a discrete probability dis-
tribution of placing puzzle pieces on each grid squarex.
ps(xjx � (1: t � 1) ) = 0 if x is occupied or is not adjacent to
any square in� (1 : t � 1). Now sayx is free and is adjacent
and is to the right of grid squarex � ( j ) for somej = 1 ; : : : ; t.
Then

ps(xjx � (1: t � 1) ) / A(s; � (j ); RL ): (20)

Hence this probability is proportional to the LR similarity
between puzzle piecess and� (j ). The de�nition is analo-
gous for the other three adjacency relationsLR; T B; BT .
If squarex is adjacent to more than one grid squares in
f x � ( j ) jj = 1 ; : : : ; tg, thenps(xjx � (1: t � 1) ) is proportional
to the product of the correspondingA values.

Let xs be a sample from (11) at timet, and as abovexs

is adjacent and is to the right of grid squarex � ( j ) for some
j = 1 ; : : : ; t. The difference is thatxs is occupied now with
the puzzle pieces. Then

p(zs jx � (1: t ) ; z� (1: t � 1) ) / A(s; � (j ); RL ): (21)

The de�nition is analogous for the other three adjacency
relationsLR; T B; BT . If squarexs is adjacent to more
than one grid squares inf x � ( j ) jj = 1 ; : : : ; tg, then
p(zs jx � (1: t ) ; z� (1: t � 1) ) is proportional to the product of the
correspondingA values.

To summarize the proposal distribution is a function of
how well puzzle pieces �ts to the already placed pieces
and assigns the probability of placings to all grid squares,
while in the evaluation we already know the grid location
of puzzle pieces as well as its adjacent squares. We then
use this information to compute the evaluation probability
according toA. Hence, both the proposal and evaluation of
a given particle are functions of how well adjacent pieces �t
together following the order in which the pieces have been
added.

For a given image jigsaw puzzle withm pieces, the
time complexity of the proposed inference framework is
O(m2N ), whereN is the number of particles. It follows
form the fact that at iterationt < m particle(i ) hasm� t+1
followers. We set the number of particlesN = 10 in all our
experiments described in the next section.

6. Experimental Results

We compare the image jigsaw puzzle solutions obtained
by the proposed PF inference framework to the solutions
of the loopy believe propagation used in [2] under identi-
cal settings. We used the software released by the authors
of [2] to obtain their results and also to compute the af�ni-
ties de�ned in Section5 used in our approach. The results
are compared on the dataset provided in [2], which we call
MIT Dataset. It is composed of 20 images. In addition, we
also consider an extended dataset composed of 40 images,
i.e., we added 20 images. As we will see below, the results
of both methods on the original and extended datasets are
comparable. Our implementations will be made publicly
available on an accompanying website.

The experimental results in [2] are conducted in two dif-
ferent settings: with and without any prior on the target im-
age layout. In [3] the prior of the image layout is given by
a low resolution version of the original image. [2] weakens
this assumption to a statistics of the possible image layout.
We focus on the results without any prior of the image lay-
out. Consequently, we focus on a harder problem, since we
only use the pairwise relations between the image patches,
given by pair-wise compatibilities of located puzzle pieces
as de�ned in Section5.

In the probabilistic framework in [2], a puzzle piece is
assigned to each grid location. In our PF framework, it is
more natural to assign a grid location to each puzzle piece.
The solutions of both methods are equivalent, since a �-
nal puzzle solution is a set ofm pairs composed of (puzzle
piece, grid location), wherem is the number of the puzzle
pieces. We call such pairs the solution pairs.

We use three types of evaluation methods introduced in
[2]. Each method focuses on different aspects of the qual-
ity of the obtained puzzle solutions. The most natural and
strictest one isDirect Comparison. It simply computes
the percentage of correctly placed puzzle pieces, i.e., fora
puzzle withm pieces, Direct Comparison is the number of
correct solution pairs divided bym. A less stricter measure
is Cluster Comparison. It tolerates an assignment error as
long as the puzzle piece is assigned to a location that be-
longs to a similar puzzle piece. The puzzle pieces are �rst
clustered into groups of similar pieces. Moreover, due to
lack of prior knowledge of target image, the reconstructed
image may be shifted compared to the ground truth image.
Therefore, a third measure calledNeighbor Comparison
is used to evaluate the label consistency of adjacent puzzle
pieces independent of their grid location, e.g., the location
of two adjacent puzzle pieces is considered correct if two
puzzle pieces are left-right neighbors in the ground truth
image and they are also left-right neighbors in the inferred
image. Neighbor Comparison is the fraction of correct adja-
cent puzzle pieces. This measurement does not penalize the
accuracy as long as the adjacent patches in original image
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[2] Our algorithm
Direct Comparison 0.2366 0.6921
Cluster Comparison 0.4657 0.7810

Neighbor Comparison 0.6628 0.8620

Table 1. Experimental results on MIT Dataset.

[2] Our algorithm
Direct Comparison 0.2137 0.7097
Cluster Comparison 0.4500 0.8018

Neighbor Comparison 0.6458 0.8770

Table 2. Experimental results on the extended dataset.

are adjacent in the reconstructed image.
The results on the MIT Dataset are shown in Table1 and

on the extended dataset in Table2. The proposed PF infer-
ence framework signi�cantly outperforms the loopy believe
propagation in all three performance measures. Moreover,
the reconstruction accuracy (according to the most natural
measure, Direct Comparison) of the original images by our
algorithm is improved three times.

In order to demonstrate that the considered image jig-
saw puzzle problem is also very challenging to humans, we
show some example results in Fig.2. There we show the
original images, but we would like to emphasize that the
original images are not used during the inference. Fig.2
also demonstrates that the reconstructed images obtained
by the proposed algorithm compare very favorably to the
results of [2]. In order to demonstrate the dynamic of the
proposed PF inference, we show reconstructed images of
the best particle at different times (iterations) in Fig.3.

Both methods are initialized with one anchor patch, i.e.,
with one correct (puzzle piece, grid location) pair. We al-
ways assign a correct image patch to the top left corner of
the image. In all our experiments we divide each test image
into 108 square patches resulting inm = 108 puzzle pieces.

7. Related Work

The �rst work on Jigsaw Puzzle Problem was reported in
[8]. Since shape is an important clue for accurate pairwise
relation, many methods [14, 9, 18, 22] focussed on match-
ing distinct shapes among jigsaw pieces to solve the prob-
lem. The pairwise relations among jigsaw pieces are mea-
sured by the �tness of shapes. There also exist approaches
that consider both the shape and image content [16, 17, 23].
Most methods solve the problem with a greedy algorithm
and report results on just one or few images. Our prob-
lem formulation only considers the image content following
Cho et. al [2].

Particle �lters (PF) are also known as sequential Monte
Carlo methods (SMC) for model estimation based on sim-
ulation. There is large number of articles published on PF

and we refer to two excellent books [6, 15] for an overview.
PF can be viewed as a powerful inference framework that
is utilized in many applications. One of the leading ex-
amples is the progress in robot localization and mapping
based on PF [21]. Classical examples of PF applications in
computer vision are contour tracking [12] and object detec-
tion [11]. All these approaches utilize PF in the classical
tracking/�ltering scenario with a pre-de�ned order of states
and observations. To our best knowledge, the proposed PF
framework with state permutations is novel and has not been
considered before by other authors.

8. Conclusions and Future Work

We introduce a novel inference framework for solving
image jigsaw puzzle problem. Our key contribution is an
extension of the PF framework to work with unordered ob-
servations. Weighted particles explore the state space along
different dimensions in different orders, and state permuta-
tions that yield most descriptive proposal functions are se-
lected as new particles. By exploiting the equivalence of im-
portance sampling under state permutations, we prove that
the obtained importance samples represent samples from
the original target distribution. We evaluate the perfor-
mance of the proposed PF inference on a problem of image
jigsaw puzzles. As the experimental results demonstrate, it
signi�cantly outperforms the loopy belief propagation. Im-
age jigsaw puzzle problem is an instance of labeling (as-
signment) problem. Therefore, our future work will focus
on a broader spectrum of labeling problems.
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