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Abstract individual pieces, which is quite important to determine th
pairwise af nities among them. This makes the problem
We deal with an image jigsaw puzzle problem, which is more challenging, since it is more dif cult to evaluate pair
de ned as reconstructing an image from a set of square and wise af nities among puzzles. This is different from most
non-overlapping image patches. It is known that a general of the previous approaches4, 9, 18, 27], where the shape
instance of this problem is NP-complete, and it is also chal- of the puzzle pieces is utilized. Whil&][also considers pri-
lenging for humans, since in the considered setting the orig ors on the target image layout, we do not assume any prior
inal image is not given. Recently a graphical model has knowledge on the image layout. Thus, only local image
been proposed to solve this and related problems. The tar-content information of the puzzle pieces is available in our
get label probability function is then maximized using lpop framework, e.g., see Fig.
belief propagation. We also formulate the problem as maxi-
mizing a label probability function and use exactly the same
pairwise potentials. Our main contribution is a novel infer
ence approach in the sampling framework of Particle Filter
(PF). Usually in the PF framework it is assumed that the
observations arrive sequentially, e.g., the observatanes
naturally ordered by their time stamps in the tracking sce-
nario. Based on this assumption, the posterior density over
the corresponding hidden states is estimated. In the jigsaw,
puzzle problem all observations (puzzle pieces) are given a
once without any particular order. Therefore, we relax the _ .
assumption of having ordered observations and extend thep(xlimjz)' We Obs_eer that here the ob_servat|0ns are or-
PF framework to estimate the posterior density by explor- dere_d fo[lpwmg their tlme.stan?ps. In PF inference, this or-
ing different orders of observations and selecting the mostder is utilized to sequentially infer the values of states
informative permutations of observations. This signi tgn
broadens the scope of applications of the PF inference. Our
experimental results demonstrate that the proposed infer-" =~ o . .
ence framework signi cantly outperforms the loopy belief their index is irrelevant. Of course, we can still associate

propagation in solving the image jigsaw puzzle problem. In statexé W'tg obsdervatlonzt, bult thﬁ set of obse(;\_/atlons IS
particular, the extended PF inference triples the accuracy not or er((aj ’ a(;' T%onsequgnt Iy t r? corrgspog It?g Statgs
of the label assignment compared to that using loopy belief € notordered. Thus, we deal with unordered observations.

propagation This is exactly the scenario of the image jigsaw puzzle prob-
' lem, e.g., see Fidl. We are giverm square puzzle pieces

Now we brie y review the PF inference. We begin with
a classical tracking example. A robot is moving around
and taking images at discrete time intervals. The images

z; is an image taken at time With each observation;
there is associated a hidden state In our example the
value ofx; is the robot pose (its 2D position plus orien-
tation). The goal of PF inferences, is to derive the most
likely sequence of the hidden states, i.e., to nd a state

and the time stamps are random. Thus, we are given a set

Each observatior, describes part of the original image de-

picted on piecé and is given by a vector of features, which
As shown in [] the jigsaw puzzle problem is NP- are the color values of the pixels on pigce our exper-

complete if the pairwise af nity among jigsaw pieces is un- imental results. The puzzle pieces are numbered with in-

reliable. Following P], we focus on reconstructing the orig- dext, but their numbering is random like the numbers in

inal image from square and non-overlapping patches. ThisFig. 1(b). The value of the state of puzzle piece is a lo-

type of puzzles does not contain the shape information of cation of an empty square in the square grid, e.g., the value

1. Introduction and Problem Formulation
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Figure 1. The goal is to build the original image (a) given jigsaw puzzle pieces (b). The original image is not knownstlt needs to
be estimated given the observations shown in (b). The engpiyrss in (c) form possible locations for the puzzle piengb).
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of x; is the index of an empty square in the square gird order without utilizing this fact.
shown in Fig.1(c). Our goal is to determine the state vector  |n our experimental results, we compare the solutions
X1:m that maximizes the posterior probabilifx1:mjZ).  obtained by the proposed inference framework to the so-
Since the original image is not provided, this probability |utions of the loopy believe propagation under identical se
is determined based on pairwise appearance consistency afngs on the dataset fronf]} In particular, we use exactly
the local puzzle images, i.e., the posterior distribut®@ai  the same dissimilarity-based compatibility of puzzle piec
function of how well adjacent pieces t together once they The proposed PF inference signi cantly outperforms the
are placed on the grid. In other words, a vector of grid |oopy believe propagation in all evaluation measures. The
locationsxy.m maximizesp(x1.mjZ) if the puzzle pieces  main measure is the accuracy of the label assignment, where
placed at these locations form the most consistent image he difference is most signi cant. The accuracy using loopy
We observe that the posterior distributipfx1:mjZ) usu-  pelieve propagation i83:7% while that using the proposed
ally is very complicated and has many local maxima. This PE inference i€9:2%.
is particular)_/ the case when the IO(.:aI. image information of 14 rest of the paper is organized as follows. After intro-
the puzzle pieces is not very descriptive. ducing the preliminaries in2, our key extensions for per-
Our main contribution is a new PF inference framework muted PF are explained 8 andx4. x5 provides imple-
that works in this scenario. In the proposed framework mentation detailsx6 shows and evaluates the experimental
we extend PF to handle the situations where we have un-esults not only the dataset fror#i|[ but also an extended
ordered set of observations that are given simultaneouslydatasetx7 describes related approaches.
One of our key ideas is the fact that it is possible to extend
the importance sampling from the proposal distribution so 2. Particle Filter Preliminaries
that different particles explore the state space alongdiff

ent dimensions. Then the particle resampling allows us t0 |n this section we present some preliminary facts about
automatically determine most informative orders of obser- particle Filters (PFs). They will be utilized in the follow-

vations (as permutations of state space dimensions). Coning sections when we introduce the proposed framework.

sequently, we can use a rich set of proposal functions in theGijven is a sequence of observatidhs (z;:::;zm), i.e.,

process of estimating the posterior distribution. the observations are ordered. Our goal is to maximize the
The classical PF framework has been developed for se-Posterior distributiorp(xy.m j Z), i.e., to nd the valued,

quential state estimation like trackingd, 19 or robot lo-  Of states«; such that

calization PO, 7]. There, the observations arrive sequen-

tially and are indexed by their time stamps, as our tracking R1:m = argmax p(Xim j Z); 1)

example illustrates. It is possible to apply the classidal P Xaim

framework as stochastic optimization to solve this problem
by utilizing a x order of states. However, by doing so, we
would have selected an arbitrary order, and the puzzle con
struction may fail because of the selected order and wouldt =153

require extremely large number of particles. Our framework ~ This goal can be achieved by approximating the posterior
on the other hand can work with fewer particles becausedistribution with a nite number of samples in the frame-
each particle explores different order. This gives us a rich work of Bayesian Importance Sampling (BIS). Since it is
set of proposal distributions as opposed to having one xed. usually dif cult to draw samples from the probability den-
Moreover, the observations are given simultaneously at thesity function (pdf)p(x1:mjZ), samples are drawn from a
same time. Hence, there is no reason to favor any particulaproposal pdf, X(1';)m Ad(x1:mjZ) fori =1;:::;N. Then

and each statg; has a corresponding observationfor
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approximation to the densityis given by

P(X1:mjZ) ) w (Xum); (2)

i=1
where

(1)

X3im and

_ p(xihiz)

3
e iz) ©

« (X1:m) denotes the delta-Dirac mass located at
1m

p(x1:mjZ) can be approximated with weighted samples

fx$ - w(x{) )gl, with any precision iiN is suf ciently

large. Thus, the convergence(in) is almost sure:

W(x(')

i=1

PxumjZ) = lim i (am): (7)

In many applications, the weight equatio®) (is
simplied by making a common assumption that
a( Xty 15zi) = poUixtl o), e, we take as
the proposal distribution the condrtlonal pdf of the state a

are the importance weights of the samples. Typically the timet conditioned on the current state vectst&t{ 1- This

samplex!!) with the largest weightv() is then taken as

the solution of ().

Since it is still computationally intractable to draw sam-
ples fromq due to high dimensionality ofi.,, Sequen-
tial Importance Sampling (SIS) is usually utilized. In the

classical PF approaches, samples are generated recyrsivel

following the order of dimensions in state vector,, =

(Xl; e Xm)

Xsi) G (XjX1:t 1;Z) = G(XjX1t 1;Z1:t) (4)
fort = 1;:::m, and the particles are built sequentially '
X(lli (X(lli 11th)) fori = 1;:::;N. The subscript

in g indicates from which dimen5|on of the state vector the
samples are generated. Sicfactorizes as

m
dXimjZ) = q(X1jZ)  q(Xejxet 152);  (5)

t=2

we obtain that((') d(X1:mjZ). In other words, by sam-

pling recursrvelyxt " from each dimension according to
(4) we obtain a sample from(x1.mjZ) att = m
Since at a given iteration we havepartial state sample

x(l'i fort <m , we also need an evaluation procedure of this

partial state sample For this we observe that the WEIghtSX(I) fori=1:

can be recursively updated accordinga]f

D(thX(ll;i y Z1:t 1)p(X§I)JX(1I1 1

Q(Xgl)lxlt 1 Z1:t)

i)y =

W(X1} w(x{)

1t 1)
(6)

The above equation is derived fror8) (using Bayes rule.
Consequently, when= m, the welghtvv(x(') ) of particle
(i) recursively updated according 1) §s equal tow(") (de-
ned in (3)). Hence, at = m, we obtain a set of weighted
(importance) samples from(x1:mjZ), which is formally
stated in the following theorem:

Theorem 2.1. Under reasonable assumptions on the
sampling (4) and weighting functiong6) given in [4],

assumption simpli es the recursive weight update to

(1) (1)

W(Xl:t = W(Xl:t 1)p(ZtJ'X(1i;1:21:t 1); (8)
and implies that the samples are generated from
X' pxix(d p): ©)

Analogous to 4) p; in (9) indicates the dimension of the

state space from which the samples are generated.
Now we summarize the derivetiindard PF algorithm.

For every time step = ;m and for every particle

;N execute the foIIowrng three steps:

1) Importance sampling / proposal: Sample followers of

particle (i) according to @) (a special case oflf) and set

xih = (x3] 1ix()).

2) Importance weighting / evaluation: An importance

weight is assigned to each partiod%{ according to ) (a

special case ofd).

3) Resampling: Sample with replacemeit new particles

form the current set dfl particles

fx{ji = 1;

according to their weights. We obtain a set of new particles
; N, and renormalize their weights to sum
to one. This procedure is a variant of Sampling Importance
Resampling (SIR)41]. It is an important part of any PF
algorithm, since resampling prevents weight degeneration
of particles.

3. Key Extension to Permuted States

As stated above, the standard SIS in E@nd particle
evaluation in Eq8 utilize the sequential order of the states
;Xm ). Of course, this is the best choice in
many apphcatlons where the order is determined naturally
by the time stamp of the observations. In contrast, the pro-
posed approach is aimed at scenarios where no natural order
of observations is given and the observati@nare initially
known as in the image jigsaw puzzle problem.
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The key idea of the proposed approach is not to utilize sequently, we sample four followers of parti¢l¢ in (10),
the x order of the stateS1:m = (X1;:::;Xm) induced by  one for each state = 2;4;5; 6, wherex})’ is the sampled

location of puzzle piece 2(2') is the sampled location of
puzzle piece 4, and so on.

In contrast, in the standard application of rudg @t each
iterationt particle(i) has one follower. Even when some-
times each particlé) has many followers, all followers are
samples from the same state, since there is only one unique
state at timet. For our toy example, this means for parti-
cle (i), only locations of say puzzle piece 2 are sampled and
not those of puzzle piece 4, since a xed order of the state
dimensions is followed in the classical setting.

tive. In particular, we do not follow the order of indices of
observations irZ. This way we are able to utilize the the
most informative observations rst allowing us to use a rich
set of proposal functions. To achieve this we modify the rst
step of the PF algorithm so that the importance sampling is
performed for every dimension not yet represented by the
current particle. Intuitively, for example, if the rst pale
p?ece has a local image very similar to many other_ p_uzz_le We do not make any Markov assumption i), i.e., the
pieces and the second puzzle piece has a very distinctive 0 is g dent I . tapel
local image that matches only a few other pieces, then our"eW statexs .'S .epen enton afl previous sta %rt 1
approach will rst process the second puzzle piece, since it fOr €ach particldi).
is more informative. . . . .

To formally de ne the proposed sampling rule, we need 4- Particle Filter with State Permutations

to explicitly represent different orders of states with & pe Now we are ready to outline the propogel with state

mutation ; fL:oimglf 1;:::mg. We use the short- permutations (PFSP)algorithm. In addition to the change
hand notation (1 ; t).to denote( (1); (2),; 2o (1) for is in the importance sampling step, the other two steps are
t . Each particldi) now can have a different permuta- 55, o dj ed. For every time step= 1;:::;m and for ev-

tion ) of thg puzzle piecem additionto their locations. ery particlel = 1;:::; N execute the following three steps:
Thus the particles are now represented%&t). We drop 1) |mportance sampling / proposal: Sample followers
the superscripti) of () in the context of a particle which  x{ of particle(i) from each dimensios 2 O (1:t 1)

already carries the index). For example, Figl(c) shows  according to {0), which we repeat here for completeness,
the con guration of a particle at time = 2, where puzzle

pieces numbered 3 and 1 in Figb) are placed at locations x{) ps(xjx(i)l_t 0); (11)
(a) and (b), correspondingly. Hencé)(1 : 2) = (3:1) e

i~ (4 } _ _ '
apt;ix '(1:2) = (_a, b). Thus, a sequence of _stabes(l_;t 1) and selx("(i:)t) — (X(I()lzt 1);x§')) and (3)(t) = s, which
visited be_foretlme maybe_anysubsequer(o@, 1) means that (5)(1 : t) = ( (1 : t 1)s). As stated
oft 1differentnumbersiril;:::;mg. (is)

before, we drop the superscrifits) in x since it is
already present as the particle index.

2) Importance weighting/evaluation: An individual im-
portance weight is assigned to each follower parb'(éig:)t)

x( pS(XjX(i()ljt ) (10)  according to

We are now ready to formulate the proposed importance (L)

sampling. At each iteration m, for each particl€i) and
foreachs2 M(1:t 1), we sample

where (1:t 1) = fl;:::;mgn (')(_1 to1)ie, w(x(';(slz)t)) = w(x('()l:t l))p(zij(';(slz)t);z wat 1) (12)
the indices inl : m that are not presentint (1 : t 1)
fort ~m. The subscrips at the posterior pdfs indicates  3) Resampling: Sample with replacemet new particles
that we sample values for state \We generate at least one form the currentsetdfl  (m t +1) particles
sample for each stae2 (()(1:t 1). This means that

(i:s)

the single particle((i()Lt 1 is multiplied and extended to fx (“)j i=1;::;N;s2 M@t 1 (13)

several follower particles;('()Lt 1):s- Consequently, at it-
erationt < m particle(i) hasm t + 1 followers. Each
follower is a sample from a different dimension of the state
(i.e., represents a location of a different puzzle piece): G
ing back to our toy puzzle example, we recall that the cur-

re(ir)lt state vector of partlgI@) In Fig. 1(c) at timet = 2 _IS We observe that the particle weight evaluationlg)(is
X = (a;b), where ()(1:2) = (3;1). For sampling

(1:2) analogous tog) in that the conditional probability of obser-
attimet = 3, we have O(1:t 1) =(2;4,5;6). Con- vation zs is a function of two corresponding sequences of

according to the weights. Thus, we obtain a set of new par-
ticlesfx('()l:t)gi’\‘:l . We also renormalize their weights to
sum to one. This is a variant of the standard Sampling Im-
portance Resampling (SIR) stepl] as in the classical PF

framework.

2876



observations and states plus the staie The only differ- According to the proposed importance samplingl)(
ence is that the sequences are determined by the permuta is a sample frong(x (1:m)jZ). Consequently, by
tion W(@:t 1)

Sampling more than one follower of each particle and
reducing the number of followers by resampling is known
in the PF literature as prior boostin@(, 1]. It is used to
capture multi-modal likelihood regions. The resampling in (X(i) iZ) (i)
our framework plays an additional and a very crucial role. It w x® _P _(11'“)] = p(Xl_:mJZ): (17)
selects the the most informative orders of states. Since the (Lm) q(x('()l.m)jZ) q(x(l':)ij)
weights ofw(x("(sl:)t)) are determined by the corresponding ‘ ‘ '
order of observations «);.; 1y, and the resampling uses Thus fx{" 'w(x(') YoiL, represent weighted samples

) lm> (1:m)

the weights to selects new particbe(é()lzt), the resampling ~ fromp(x1:mjZ). O
determines the order of state dimensions. Consequergly, th ) .
order of state dimensions is heavily determined by their cor 5. Implementation Details
responding observations, and this order may be different fo
each particldi). This is in strong contrast to the classical
PF, where observations are considered only in one atder

The fact that each particle explores a possibly different
order of dimensions ) (1 : m) is extremely important for
the proposed PFSP, since it allows for use of rich set of

proposal functions W'th fewe_r number of part!cles. How- e.g., see Figl(b,c). In order to solve the image jigsaw puz-
ever,at = m all state dimensions are present in each sam-

() zle we need to assign locations Grto the puzzle pieces in
ple X" ;. ,,)- Hence we can reorder the sequence of statep  The ghservation associated with each puzzle piece (of

)
(1:m)' )
16), xD = x®, (wm) IS @ sample fromy(x{) jz) for
each particléi).

By the weight recursion inl2), and by (L5) and (L6)

In order to utilize the derived PF algorithm to solve the
jigsaw puzzle problem, we need to design the proposal pdf
in (11) and the conditional pdf of a new observation 1r2);

Both are detailed in this section.

dimensions ()(1 : m) to form the original orded. : m sizeK  K) is the color information of the partial image
by applying the inverse permutation () 1 and obtain depicted on it, i.e.zj is aK K_ 3_matrix of pixel color
Xghl:?'n = X )+ -8, the state values are sorted accord- values and the set of observation&is fz;;:::;zn 0.

. b o . . A I ticle at ti is gi b 4 =
ing to the original state indicels: m in each sampléi). In sample particle at timé. _-m Is given byx .

analogy to Theorerd. 1, we state the following means the puzzle piecqi) is placed on the grid square

Theorem 4.1. Under reasonable assumptions on the sam- with indexx (;y. The corresponding observations; () =

pling (11) and weighting functiong12) given in ], (z :::::2 (1) represents the color information of the
p(xll;ij) can be approximated with weighted samples partial images on_the_puzzle pieces. In this section we drop
fx(l':)m;w(x('()l:m))gi’\':l with any precision ifN is suf - :if::el:epartlclelndem), since all de nitions apply to each par-

ciently large. Thus, the convergencq i) is almost sure: ) i i
We now de ne an af nity matrix A representing the

. compatibility of the local images on the puzzle pieces. & is

P(xumjZ) = lim w X('()l;m) « (xtm): (14) 3D matrix of sizem m  4with the third dimension being
Coi= ' an adjacency type, since two puzzle pieces can be adjacent

in four different ways: left/right, right/left, top/botin, and
bottom/top, which we denote with LR, RL, TB, and BT.
. In order to be able to compare our experimental results
P(X1miZ). L _ to the results in4] we de ne A following the de nitions in
. _The_ ke_y opservatlon IS thaptand_q are probabilities on [2]. They rst de ne a dissimilarity-based compatibility .
joint distribution of m random variables, and as such the Given two puzzle pieceis andi, D measures dissimilarity

order of the random variables is not relevant. This follows between their images , z; by summing the squarddAB
.. - n 1 &l

from the fact that a joint probability is de ned as the proba- color differences along their boundary, e.g., the lefbitig

bility of the intersection of the sets representing eveots c (LR) dissimilarity is de ned as

responding to the value assignments of the random vari-
ables, and set intersection is independent of the order of .
sets. Consequently, we have for every permutation D(;i;LR ) = (z(ku;e)  zi(kvic)?  (18)

k=1 c=1
p(x (1"")1,2) - p(xl;mJ.Z) (15) vhereu indexes the last column af andv indexes the rst
ax @miZ) = alxumjZ) (16) column ofz;. Finally, the af nity of the LR connection is

Proof. Due to Th. 2.1, we only need to show that

fx(li;)m;W(x(i()l:m))gi’\':1 represent weighted samples from
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given by
AGiELR ) =exp( DUIERDy )
where is adaptively set as the difference between the

smallest and the second small&tvalues between puz-
zle piecd and all other pieces iR, see P] for more details.

Proposal and weights. The proposal distribution
Ps(XjXx (1:t 1)) © G ! R is a discrete probability dis-
tribution of placing puzzle piece on each grid square.

Ps(XjX (1:x 1)) = O if x is occupied or is not adjacent to
anysquarein(1:t 1). Now sayx is free and is adjacent

Then

Ps(Xjx @t 1)/ A(s; (j);RL): (20)
Hence this probability is proportional to the LR similarity
between puzzle piecesand (j). The de nition is analo-
gous for the other three adjacency relatidfis TB; BT .

If squarex is adjacent to more than one grid squares in

to the product of the correspondifgvalues.
Let xs be a sample froml(l) at timet, and as aboves
is adjacent and is to the right of grid square; for some

the puzzle piecs. Then

P(zsiX @w:1);Z @t 1)/ A(s; ();RL): (21)
The de nition is analogous for the other three adjacency
relationsLR; TB;BT . If squarexs is adjacent to more
than one grid squares ifix (j)jj
P(ZsjX (1:t);Z @t 1)) is proportional to the product of the
corresponding\ values.

To summarize the proposal distribution is a function of
how well puzzle pieces ts to the already placed pieces
and assigns the probability of placisgo all grid squares,
while in the evaluation we already know the grid location
of puzzle pieces as well as its adjacent squares. We then
use this information to compute the evaluation probability
according toA. Hence, both the proposal and evaluation of
a given particle are functions of how well adjacent pieces t

6. Experimental Results

We compare the image jigsaw puzzle solutions obtained
by the proposed PF inference framework to the solutions
of the loopy believe propagation used i#f] under identi-
cal settings. We used the software released by the authors
of [2] to obtain their results and also to compute the af ni-
ties de ned in Sectiorb used in our approach. The results
are compared on the dataset providedil yvhich we call
MIT Dataset. It is composed of 20 images. In addition, we
also consider an extended dataset composed of 40 images,
i.e., we added 20 images. As we will see below, the results
of both methods on the original and extended datasets are
comparable. Our implementations will be made publicly
available on an accompanying website.

The experimental results i@][are conducted in two dif-
ferent settings: with and without any prior on the target im-
age layout. In §] the prior of the image layout is given by
a low resolution version of the original image] jveakens
this assumption to a statistics of the possible image layout
We focus on the results without any prior of the image lay-
out. Consequently, we focus on a harder problem, since we
only use the pairwise relations between the image patches,
given by pair-wise compatibilities of located puzzle piece
as de ned in Sectio.

In the probabilistic framework inZ], a puzzle piece is
assigned to each grid location. In our PF framework, it is
more natural to assign a grid location to each puzzle piece.
The solutions of both methods are equivalent, since a -
nal puzzle solution is a set ofi pairs composed of (puzzle
piece, grid location), wherm is the number of the puzzle
pieces. We call such pairs the solution pairs.

We use three types of evaluation methods introduced in
[2]. Each method focuses on different aspects of the qual-
ity of the obtained puzzle solutions. The most natural and
strictest one iDirect Comparison. It simply computes
the percentage of correctly placed puzzle pieces, i.eafor
puzzle withm pieces, Direct Comparison is the number of
correct solution pairs divided by. A less stricter measure
is Cluster Comparison. It tolerates an assignment error as
long as the puzzle piece is assigned to a location that be-
longs to a similar puzzle piece. The puzzle pieces are rst
clustered into groups of similar pieces. Moreover, due to
lack of prior knowledge of target image, the reconstructed
image may be shifted compared to the ground truth image.
Therefore, a third measure call&eighbor Comparison

together following the order in which the pieces have been s used to evaluate the label consistency of adjacent puzzle

added.

For a given image jigsaw puzzle witn pieces, the
time complexity of the proposed inference framework is
O(m?N), whereN is the number of particles. It follows
form the fact that at iteration< m particle(i) hasm t+1
followers. We set the number of particlds= 10 in all our
experiments described in the next section.

pieces independent of their grid location, e.g., the lacati

of two adjacent puzzle pieces is considered correct if two
puzzle pieces are left-right neighbors in the ground truth
image and they are also left-right neighbors in the inferred
image. Neighbor Comparison is the fraction of correct adja-
cent puzzle pieces. This measurement does not penalize the
accuracy as long as the adjacent patches in original image
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[2] Our algorithm and we refer to two excellent books [L5] for an overview.
Direct Comparison | 0.2366 0.6921 PF can be viewed as a powerful inference framework that
Cluster Comparison| 0.4657 0.7810 is utilized in many applications. One of the leading ex-
Neighbor Comparison 0.6628 0.8620 amples is the progress in robot localization and mapping
based on PF11]. Classical examples of PF applications in
Table 1. Experimental results on MIT Dataset. computer vision are contour trackingq and object detec-

tion [11]. All these approaches utilize PF in the classical
i i tracking/ ltering scenario with a pre-de ned order of stat
Direct Comparison | 0.2137 0.7097 and observations. To our best knowledge, the proposed PF

Cluster Comparison| 0.4500 0.8018 framework with state permutations is novel and has not been
Neighbor Comparison 0.6458 0.8770 considered before by other authors.

Table 2. Experimental results on the extended dataset. 8. Conclusions and Future Work

We introduce a novel inference framework for solving
) image jigsaw puzzle problem. Our key contribution is an
The results on the MIT Dataset are shown in Tabéd oy 0nsion of the PF framework to work with unordered ob-

on the extended dataset in TaBleThe proposed PF infer- g0 aiions. Weighted particles explore the state spacgalo
ence framework signi cantly outperforms the loopy believe e rent dimensions in different orders, and state peamut

propagation in ?” three performancg measures. MOreoveryiq,q that yield most descriptive proposal functions are se
the reconstruction accuracy (according to the most naturalgied as new particles. By exploiting the equivalence efim

measure, Direct Comparison) of the original images by our ,,ance sampling under state permutations, we prove that
algorithm is improved three times. ) i . the obtained importance samples represent samples from
In order to demonstrate that the considered image jig-yhe qriginal target distribution. We evaluate the perfor-
saw puzzle problemis also very ghallengmg to humans, Wemance of the proposed PF inference on a problem of image
Sh_O\,N some example results in F'@' There we ,ShOW the jigsaw puzzles. As the experimental results demonstiate, i
or!g!nal 'mages, but we would I|k_e to err_1pha3|ze that the signi cantly outperforms the loopy belief propagation.1m
original images are not used during the mf_erence. Eig._ age jigsaw puzzle problem is an instance of labeling (as-
also demonstrates that the reconstructed images Obta'negignment) problem. Therefore, our future work will focus
by the proposed algorithm compare very favorably to the j'o broader spectrum of labeling problems.
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into 108 square patches resultingin= 108 puzzle pieces. gy his method in CVPR 2010.
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