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Abstract individual pieces, which is quite important to determine th
pairwise affinities among them. This makes the problem
We deal with an image jigsaw puzzle problem, which is more challenging, since it is more difficult to evaluate pair
defined as reconstructing an image from a set of square andwise affinities among puzzles. This is different from most
non-overlapping image patches. It is known that a general of the previous approaches4, 9, 18, 27], where the shape
instance of this problem is NP-complete, and it is also chal- of the puzzle pieces is utilized. Whil&][also considers pri-
lenging for humans, since in the considered setting the orig ors on the target image layout, we do not assume any prior
inal image is not given. Recently a graphical model has knowledge on the image layout. Thus, only local image
been proposed to solve this and related problems. The tar-content information of the puzzle pieces is available in our
get label probability function is then maximized using lpop framework, e.g., see Fig.
belief propagation. We also formulate the problem as maxi-
mizing a label probability function and use exactly the same
pairwise potentials. Our main contribution is a novel infer
ence approach in the sampling framework of Particle Filter
(PF). Usually in the PF framework it is assumed that the
observations arrive sequentially, e.g., the observatanes
naturally ordered by their time stamps in the tracking sce-
nario. Based on this assumption, the posterior density over
the corresponding hidden states is estimated. In the jigsaw,
puzzle problem all observations (puzzle pieces) are giten a T ]
once without any particular order. Therefore, we relax the VECO1m = (1,...,2m) that maximizes the posterior
assumption of having ordered observations and extend thep(x1:m|Z)' We obs_erye that here the opservat|ons are or-
PF framework to estimate the posterior density by explor- dere_d fo[lpwmg their tme_stamps. In PF inference, this or-
ing different orders of observations and selecting the mostder Is utilized to seqqentlglly infer the vaIusas of states
informative permutations of observations. This signiftban fort = 1’.‘ --»m. Now imagine that the robot's CIOCk. broke
broadens the scope of applications of the PF inference. Ourand the t|m¢ stamps are random. Thus, We are given a set
experimental results demonstrate that the proposed infer-of (_)b_servat_lor_\ez = {21,..., 2m}, they are md_exed bu_t
ence framework significantly outperforms the loopy belief their index is irrelevant. Of course, we can still associate

propagation in solving the image jigsaw puzzle problem. In statexé W'tg obsdervatlonzt, bult thﬁ set of obse(;\_/atlons IS
particular, the extended PF inference triples the accuracy not ordered, and consequently, the corresponding states

of the label assignment compared to that using loopy belief'® n_ot ordered. Thus, we deal W'.th unor_dered observations.
propagation. Thisis exactlyth_e scenario of_the image jigsaw puzzl_e prob-
lem, e.g., see Fidl. We are givenn square puzzle pieces
described by a set oh observationsZ = {z1,...,2,}.
Each observation, describes part of the original image de-
picted on piece and is given by a vector of features, which
As shown in [] the jigsaw puzzle problem is NP- are the color values of the pixels on piecen our exper-
complete if the pairwise affinity among jigsaw pieces is un- imental results. The puzzle pieces are numbered with in-
reliable. Following P], we focus on reconstructing the orig- dext, but their numbering is random like the numbers in
inal image from square and non-overlapping patches. ThisFig. 1(b). The value of the state, of puzzle piecé is a lo-
type of puzzles does not contain the shape information of cation of an empty square in the square grid, e.g., the value

Now we briefly review the PF inference. We begin with
a classical tracking example. A robot is moving around
and taking images at discrete time intervals. The images
form a sequence of observatiods= (z1,..., z,), where
z; is an image taken at time With each observation,
there is associated a hidden state In our example the
value of x; is the robot pose (its 2D position plus orien-
tation). The goal of PF inferences, is to derive the most
likely sequence of the hidden states, i.e., to find a state

1. Introduction and Problem Formulation
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Figure 1. The goal is to build the original image (a) givenjtgsaw puzzle pieces (b). The original image is not knownstlt needs to
be estimated given the observations shown in (b). The engpigrss in (c) form possible locations for the puzzle piengb).
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of x; is the index of an empty square in the square gird order without utilizing this fact.
shown in Fig.1(c). Our goal is to determine the state vector  |n our experimental results, we compare the solutions
1. that maximizes the posterior probabilifz1.m|2). obtained by the proposed inference framework to the so-
Since the original image is not provided, this probability |utions of the loopy believe propagation under identical se
is determined based on pairwise appearance consistency afngs on the dataset fron?] In particular, we use exactly
the local puzzle images, i.e., the posterior distribut®@ai  the same dissimilarity-based compatibility of puzzle piec
function of how well adjacent pieces fit together once they The proposed PF inference significantly outperforms the
are placed on the grid. In other words, a vector of grid |oopy believe propagation in all evaluation measures. The
locationsz1..,, maximizesp(z1.»|Z) if the puzzle pieces  main measure is the accuracy of the label assignment, where
placed at these locations form the most consistent imagethe difference is most significant. The accuracy using loopy
We observe that the posterior distributipfe:.,,,|Z) usu-  pelieve propagation i83.7% while that using the proposed
ally is very complicated and has many local maxima. This pFE inference i$9.2%.
is particular)_/ the case when the IO(.:aI. image information of 14 rest of the paper is organized as follows. After intro-
the puzzle pieces is not very descriptive. ducing the preliminaries i2, our key extensions for per-
Our main contribution is a new PF inference framework muted PF are explained §8 and§4. §5 provides imple-
that works in this scenario. In the proposed framework mentation details§6 shows and evaluates the experimental
we extend PF to handle the situations where we have un-esults not only the dataset fror#i|[ but also an extended
ordered set of observations that are given simultaneouslydataset§7 describes related approaches.
One of our key ideas is the fact that it is possible to extend
the importance sampling from the proposal distributior_1 SO 5 particle Filter Preliminaries
that different particles explore the state space alongdiff

ent dimensions. Then the particle resampling allows us o |n this section we present some preliminary facts about
automatically determine most informative orders of obser- particle Filters (PFs). They will be utilized in the follow-

vations (as permutations of state space dimensions). Coning sections when we introduce the proposed framework.

sequently, we can use a rich set of proposal functions in thegiven is a sequence of observatiofis= (z1, ..., zm), i.€.,

process of estimating the posterior distribution. the observations are ordered. Our goal is to maximize the
The classical PF framework has been developed for se-Posterior distribution(z 1. | Z), i.e., to find the values,

quential state estimation like trackingd, 19 or robot lo-  Of statesz; such that

calization PO, 7]. There, the observations arrive sequen-

tially and are indexed by their time stamps, as our tracking ZT1.m = argmax p(x1., | Z), 1)

example illustrates. It is possible to apply the classidal P LLim

framework as stochastic optimization to solve this problem
by utilizing a fix order of states. However, by doing so, we
would have selected an arbitrary order, and the puzzle con
struction may fail because of the selected order and wouldt =1, -+ -
require extremely large number of particles. Our framework ~ This goal can be achieved by approximating the posterior
on the other hand can work with fewer particles becausedistribution with a finite number of samples in the frame-
each particle explores different order. This gives us a rich work of Bayesian Importance Sampling (BIS). Since it is
set of proposal distributions as opposed to having one fixed.usually difficult to draw samples from the probability den-
Moreover, the observations are given simultaneously at thesity function (pdf)p(z1.,,|Z), samples are drawn from a
same time. Hence, there is no reason to favor any particulaproposal pdf, mglln ~ q(x1.m|Z) fori =1,...,N. Then

wherezy.,, = (x1,...,2,) € X™ is a state space vector
and each state; has a corresponding observationfor
m.
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approximation to the densityis given by p(x1m|Z can be approximated with weighted samples

({9 w(z{? 1IN with any precision ifV is sufficiently
N .
(1| 7) = Zw(i)‘s (@1m) ) large. Thus the convergence(ir) is almost sure:
1:m ~ (i) 1:m ),
i=1 N
(4) ,
whered ey (x1.m) denotes the delta-Dirac mass located at p(x1:m|2) = ngnoo — (xl:m)5z§f3n (1:m).  (7)
xgmand L . . .
In many applications, the weight equatio®) (is
\ o op (@) 1Z) simplified by making a common assumption that
w® = B2 3) (x(i)|x(i) 214) = (a: |a: ), i.e., we take as
( g | qe\ Ty 1:t—1y ~1:t = P 1:t—1 T

the proposal distribution the conditional pdf of the stdte a
are the importance weights of the samples. Typically the time ¢ conditioned on the current state vecidf, ;. This
samplengzn with the largest weightv(” is then taken as ~ assumption simplifies the recursive weight update to
the solution of {). . .

Since it is still computationally intractable to draw sam- w(zy,y) = w(wﬁl_l)p(alw@, 21:-1) 8
ples fromq due to high dimensionality af;.,,, Sequen-
tial Importance Sampling (SIS) is usually utilized. In the &ndimplies thatthe samples are generated from

classical PF approaches, samples are generated recyrsivel ) @)
following the order of dimensions in state vector,, = ry o~ pe(zleyy ). 9)
@1,y Tm); Analogous to 4) p; in (9) indicates the dimension of the
(i) ' 7) — . ' 4 state space from which the samples are generated.
i %(@leri-1,2) = qu(@lere-1, 21) @ Now we summarize the derivsthndar d PF algorithm.
fort = 1,...m, and the particles are built sequentially FOr every time steg = 1,...,m and for every particle
xﬁ _ (xgz% laxt ) fori — 1,...,N. The subscript 1 =1,..., N execute the foIIowrng three steps:

1) Importance sampling / proposal: Sample followers of

particle (¢) according to 9) (a special case o) and set

2l = (2§, ).

2) Importance weighting / evaluation: An importance
weight is assigned to each partiol%)t according to 8) (a
special case ofg).

3) Resampling: Sample with replaceme new particles
form the current set oV particles

in ¢; indicates from which drmen5|on of the state vector the
samples are generated. Sincfactorizes as

4(@1m|Z) = q(@1|2) [ [ ae(@ilore, Z),  (5)

t=2

we obtain thatc1 m ~ q(x1.m|Z). In other words, by sam-
pling recursrvelyxtz) from each dimension according to
(4) we obtain a sample from(x1.,,,|Z) att = m

Since at a given iteration we havepartial state sample

x1 i  for ¢ < m, we also need an evaluation procedure of this according to their weights. We obtain a set of new particles
partial state sample. For this we observe that the werghts z) fori —1,..., N, and renormalize their weights to sum

can be recursively updated accordinga][ to one This procedure is a variant of Sampling Importance

{(20i=1,..., N}

(i) Resampling (SIR)41]. It is an important part of any PF
w(zld) = plaliy, Z‘litfl‘)p(xt i 1) w@®_). algorithm, since resampling prevents weight degeneration
' a (@124 210) ' of particles.
(6) ,
3. Key Extension to Permuted States

The above equation is derived fror8) (using Bayes rule. _ _
Consequently, wheh= m, the Werghtw(xgz) ) of particle As sfrate.d above,_'rhe standard SI_S in B@nd particle
(i) recursively updated according ) s equal tow(® (de- evaluation in Eq8 utilize the sequentral order of the etates
fined in (3)). Hence, at = m, we obtain a set of weighted  *1:m = (%1,-..,Zm). Of course, this is the best choice in
(importance) samples from(z1.,,| Z), which is formally many apphcatlons where the order is determined naturally
stated in the following theorem by the time stamp of the observations. In contrast, the pro-

posed approach is aimed at scenarios where no natural order
Theorem 2.1. Under reasonable assumptions on the of observations is given and the observatignare initially
sampling (4) and weighting functiong6) given in [4], known as in the image jigsaw puzzle problem.
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The key idea of the proposed approach is not to utilize sequently, we sample four followers of parti¢ie in (10),

the fix order of the states, ., = («1,...,,,) inducedby  one for each state = 2,4, 5,6, wherez!" is the sampled
the order of observatiors, but instead explore differentor-  |j.ation of puzzle piece 2,'.511‘) is the sampled location of
ders of the state;, , . . ., x;,,, ) such that the corresponding puzzle piece 4, and so on.

sequences of observatiofs,, ..., 2;, ) IS most informa-

In contrast, in the standard application of rd @t each
iteration¢ particle (i) has one follower. Even when some-
times each particlé) has many followers, all followers are
samples from the same state, since there is only one unique
state at time. For our toy example, this means for parti-
cle (i), only locations of say puzzle piece 2 are sampled and
not those of puzzle piece 4, since a fixed order of the state

tive. In particular, we do not follow the order of indices of
observations irZ. This way we are able to utilize the the
most informative observations first allowing us to use a rich
set of proposal functions. To achieve this we modify the first
step of the PF algorithm so that the importance sampling is
performed for every dimension not yet represented by the
current particle. Intuitively, for example, if the first mle dimensions is followed in the classical setting.
piece has a local image very similar to many other puzzle We do not make any Markov assumption i) i.e., the
pieces and the second puzzle piece has a very distinctive () ; . D
local image that matches only a few other pieces, then our"eW staters .'S dgpendent on all previous state&
approach will first process the second puzzle piece, since it®f ach particlei).

is more informative. . . . .

To formally define the proposed sampling rule, we need 4- Particle Filter with State Permutations
to explicitly represent different orders of states with & pe
mutationo : {1,...,m} — {1,...,m}. We use the short-
hand notatiorw (1 : ¢) to denote(o(1),0(2),...,0(t)) for

1:t—1)

Now we are ready to outline the propodeid with state
per mutations (PFSP) algorithm. In addition to the change

- h ol h diff is in the importance sampling step, the other two steps are
t < m. Each particlg) now can have a different permuta- also modified. For every time steép= 1, ..., m and for ev-

. Z) . . . . . i .

tion o) of thg puzzle piecem additionto ;helr locations. ery particlei = 1, ..., N execute the following three steps:
Thus the particles are now represented%:t). We drop 1) mportance sampling / proposal: Sample followers
the superscripti) of o) in the context of a particle which xg” of particle(i) from each dimension € () (1 : ¢ — 1)

already carries the indeix). For example, Figl(c) shows  according to {0), which we repeat here for completeness,
the configuration of a particle at time= 2, where puzzle

pieces numbered 3 and .1 in Figb) are placed at locations 2 ~ p, (x|xgi(>1:t71))’ (11)
(a) and (b), correspondingly. Heneé” (1 : 2) = (3,1)

G _ . . , .
andxo_(m) = (a,b). Thus, a sequence of states.;_1) and Setrf:{i;)t) _ (xl(;()l:t_l)’xgz)) ando () (t) = s, which

visited before time¢ may be any subsequen@e, . .. ,i;—1)
of ¢t — 1 different numbersid1,...,m}.

We are now ready to formulate the proposed importance
sampling. At each iteration< m, for each particl¢i) and

for eachs € o()(1: ¢ — 1), we sample

means thatr(»*)(1 : t) = (o(1 : t — 1),s). As stated
before, we drop the superscrift s) in xfj(f)t) since it is
already present as the particle index.

2) Importance weighting/evaluation: An individual im-
portance weight is assigned to each follower partiréfg:)t)

2 ~ pS(I|IS()1:t71))’ (10) according to
wheres®(1:t —1) = {1,...,m} \o@(1:t—1),ie, w(a:gz(’f)t)) = w(xg()lzt,l))p(zslxif(’f?t), 2o (1:-1))> (12)

the indices inl : m that are not present in( (1 : t — 1)
for ¢ < m. The subscript at the posterior pdf indicates  3) Resampling: Sample with replacemen¥ new particles
that we sample values for state We generate at least one  form the current set oV x (m — t + 1) particles

sample for each statee (9 (1 : ¢ —1). This means that

the single particl@ifgl:t_l) is multiplied and extended to {a:ff(’f?t)| i=1,...,N,s€o®(1:t—-1)}. (13)

several follower particlesgz()l:til)ys. Consequently, at it-
erationt < m particle(:) hasm — ¢ + 1 followers. Each
follower is a sample from a different dimension of the state
(i.e., represents a location of a different puzzle piece)- G
ing back to our toy puzzle example, we recall that the cur-

re(ir;t state vector of parhpl@) in Fig. 1(c) at timet = 2_IS We observe that the particle weight evaluationlig)(is
T (a,b), wherea) (1 : 2) = (3,1). For sampling

o(1:2) — analogous tog) in that the conditional probability of obser-
attimet = 3, we haver®(1:¢—1) = (2,4,5,6). Con- vation z, is a function of two corresponding sequences of

according to the weights. Thus, we obtain a set of new par-
ticles {x((;()m)}ﬁir We also renormalize their weights to
sum to one. This is a variant of the standard Sampling Im-
portance Resampling (SIR) step] as in the classical PF
framework.
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observations and states plus the state The only differ-

ence is that the sequences are determined by the permutag(i()

tiono®(1:¢—1).

Sampling more than one follower of each particle and
reducing the number of followers by resampling is known
in the PF literature as prior boostin@(, 1]. It is used to

According to the proposed importance samplinil)(
o (1:m) .is a sample fromy(zo(1.m)12). Consequently, by
(16), 219 = ISLU(I:m) is a sample fromy (2" |Z) for
each particldi).
By the weight recursion inl2), and by (L5) and (L6)

capture multi-modal likelihood regions. The resampling in (x(i) 12) (i)

our framework plays an additional and a very crucial role. It w (x(i) ) _P o(lm) |7/ _ p($1_.m|Z)_

selects the the most informative orders of states. Since the o(tim) q(xfj()l:m)|Z) q(ngzn|Z)

weights ofw(xfj(’f?t)) are determined by the corresponding } }

order of observations, ., 1), and the resampling uses  Thus {2 | w(xif()lim))}gil represent weighted samples

the weights to selects new particlecg()lzt), the resampling ~ from p(z1.,,|Z). g

determines the order of state dimensions. Consequergly, th . .

order of state dimensions is heavily determined by their cor 5. | mplementation Details

responding observations, and this order may be different fo

each particlgi). This is in strong contrast to the classical

PF, where observations are considered only in one gfder
The fact that each particle explores a possibly different

order of dimensions () (1 : m) is extremely important for

the proposed PFSP, since it allows for use of rich set of

proposal functions with fewer number of particles. How-

ever,att = m all state dimensions are present in each sam- . . ; ;
o o) P zle we need to assign locations @rto the puzzle pieces in
ple =

o(Lim)” Hence we can reorder the sequence of state p  The opservation associated with each puzzle piece (of
dimensionsy(? (1 : m) to form the original orded : m size K x K) is the color information of the partial image
by applying the inverse permutati((rar(“)_ and obtain  depicted onit, i.e.z; isaK x K x 3 matrix of pixel color
xﬁn = x(ill L.+ -€., the state values are sorted accord- values and the se_t of obs_ervatlonéﬁ& .{21’ ooy Zm}
b o lo(l:m) o : , A sample particle at time < m is given byz, ., =
ing to the original state indicés: m in each samplé:). In h . P and G Thi

logy to Theorerf.1, we state the following (Zo1), - Tor) ), W _erecr(z)_ € 7Nl € . NS
ana ' means the puzzle piecg(i) is placed on the grid square
Theorem 4.1. Under reasonable assumptions on the sam- with indexz, ;). The corresponding observations..)
pling (11) and weighting functiong12) given in [4], (Zo(1)s - - - 20(+)) Tepresents the color information of the

p(z1.m|Z) can be approximated with weighted samples partial images on the puzzle pieces. In this section we drop

{xngH’ w(xfj()l-m)) N with any precision ifN is suffi- :hT particle index:), since all definitions apply to each par-
: icle.

ciently large. Thus, the convergencq i) is almost sure: i . ) i
We now define an affinity matrix4 representing the

compatibility of the local images on the puzzle pieces. #t is
3D matrix of sizem x m x 4 with the third dimension being
an adjacency type, since two puzzle pieces can be adjacent
in four different ways: left/right, right/left, top/botin, and
bottom/top, which we denote with LR, RL, TB, and BT.

In order to be able to compare our experimental results

(17)

In order to utilize the derived PF algorithm to solve the
jigsaw puzzle problem, we need to design the proposal pdf
in (11) and the conditional pdf of a new observation 12,

Both are detailed in this section.

Given are a set of puzzle piece® = {1,...,m}anda
rectangular grid withn empty square& = {g1,...,9m}

e.g., see Figl(b,c). In order to solve the image jigsaw puz-

p(x1.m|Z) = lim

N —oc0

N
ZU} (xgtl()lm)) 5157271 (Ilm) (14)
1

1=

Propf. Due to Th. 2.1, we only need to show that
{20 w(@® )}, represent weighted samples from

o(1l:m)
p(xlhmlf)' b ion is th q babili to the results in] we defineA following the definitions in
. .T de' e_)l;o_ servfanon 'Sdt atan _qb?re proda ||t|esr:)nh [2]. They first define a dissimilarity-based compatibility
joint distribution ofm random variables, and as such the s q yyo puzzle pieceg andi, D measures dissimilarity

order of the random variables is not relevant. This follows between their images;, z; by summing the squaretAB
from the fact that a joint probability is defined as the proba- color differences along their boundary, e.g., the lefbitig
bility of the intersection of the sets representing eveots c (LR) dissimilarity is defined as

responding to the value assignments of the random vari-
ables, and set intersection is independent of the order of
sets. Consequently, we have for every permutation

K 3
D(j,i,LR) = > (z(k,u,c) — z(k,v,¢)*, (18)

k=1c=1
P(Tom)|Z) = p(w1:m] Z) (15) whereu indexes the last column of andv indexes the first
1(To1:m)|Z) = q(21:m|Z) (16) column ofz;. Finally, the affinity of the LR connection is
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given by

D(j,i, LR)

A(.7727LR) = exp(— 252

), (19)
where ¢ is adaptively set as the difference between the
smallest and the second smalld3tvalues between puz-
zle piecel and all other pieces i, see P] for more details.

Proposal and weights. The proposal distribution
ps(z]z,(14-1)) © G — R is a discrete probability dis-
tribution of placing puzzle piece on each grid square.
ps(z|zs(14-1)) = 0if 2 is occupied or is not adjacent to
any square i (1 : t —1). Now sayz is free and is adjacent
and is to the right of grid square, ;) forsomej =1, ..., ¢.
Then
ps(x|xa(l:t—1)) X A(S,O’(_]),RL) (20)

Hence this probability is proportional to the LR similarity
between puzzle piecesando(j). The definition is analo-
gous for the other three adjacency relatidn?, T'B, BT'.
If squarex is adjacent to more than one grid squares in
{zo(yl7 = 1,...,t}, thenp,(z|z,..—1)) is proportional
to the product of the correspondingvalues.

Let z, be a sample fromi(l) at time¢, and as above,
is adjacent and is to the right of grid squarg ;) for some
j=1,...,t. Thedifference is that, is occupied now with
the puzzle pieca. Then

p(zs|xa(l:t)7za(l:t—l)) X A(S,O’(]),RL) (21)

6. Experimental Results

We compare the image jigsaw puzzle solutions obtained
by the proposed PF inference framework to the solutions
of the loopy believe propagation used if] under identi-
cal settings. We used the software released by the authors
of [2] to obtain their results and also to compute the affini-
ties defined in Sectioh used in our approach. The results
are compared on the dataset providedil yvhich we call
MIT Dataset. It is composed of 20 images. In addition, we
also consider an extended dataset composed of 40 images,
i.e., we added 20 images. As we will see below, the results
of both methods on the original and extended datasets are
comparable. Our implementations will be made publicly
available on an accompanying website.

The experimental results i) are conducted in two dif-
ferent settings: with and without any prior on the target im-
age layout. In ] the prior of the image layout is given by
a low resolution version of the original image] jveakens
this assumption to a statistics of the possible image layout
We focus on the results without any prior of the image lay-
out. Consequently, we focus on a harder problem, since we
only use the pairwise relations between the image patches,
given by pair-wise compatibilities of located puzzle piece
as defined in Sectioh.

In the probabilistic framework inZ], a puzzle piece is
assigned to each grid location. In our PF framework, it is
more natural to assign a grid location to each puzzle piece.
The solutions of both methods are equivalent, since a fi-
nal puzzle solution is a set of pairs composed of (puzzle
piece, grid location), where is the number of the puzzle
pieces. We call such pairs the solution pairs.

We use three types of evaluation methods introduced in

The definition is analogous for the other three adjacency[7]. Each method focuses on different aspects of the qual-

relationsLR, T B, BT. If squarex, is adjacent to more
than one grid squares iz, ;)7 = 1,...,t}, then
P(25|Z4(1:), Z0(1:1—1)) 1S Proportional to the product of the
correspondingl values.

To summarize the proposal distribution is a function of
how well puzzle pieces fits to the already placed pieces
and assigns the probability of placirgo all grid squares,
while in the evaluation we already know the grid location
of puzzle pieces as well as its adjacent squares. We then
use this information to compute the evaluation probability
according toA. Hence, both the proposal and evaluation of
a given particle are functions of how well adjacent pieces fit

ity of the obtained puzzle solutions. The most natural and
strictest one iDirect Comparison. It simply computes
the percentage of correctly placed puzzle pieces, i.ea for
puzzle withm pieces, Direct Comparison is the number of
correct solution pairs divided by.. A less stricter measure

is Cluster Comparison. It tolerates an assignment error as
long as the puzzle piece is assigned to a location that be-
longs to a similar puzzle piece. The puzzle pieces are first
clustered into groups of similar pieces. Moreover, due to
lack of prior knowledge of target image, the reconstructed
image may be shifted compared to the ground truth image.
Therefore, a third measure callétkighbor Comparison

together following the order in which the pieces have beenis used to evaluate the label consistency of adjacent puzzle

added.

For a given image jigsaw puzzle withh pieces, the
time complexity of the proposed inference framework is
O(m?N), whereN is the number of particles. It follows
form the fact that at iteration< m particle(:) hasm—t+1
followers. We set the number of particlds= 10 in all our
experiments described in the next section.

pieces independent of their grid location, e.g., the lacati

of two adjacent puzzle pieces is considered correct if two
puzzle pieces are left-right neighbors in the ground truth
image and they are also left-right neighbors in the inferred
image. Neighbor Comparison is the fraction of correct adja-
cent puzzle pieces. This measurement does not penalize the
accuracy as long as the adjacent patches in original image
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[2] Our algorithm and we refer to two excellent books [L5] for an overview.
Direct Comparison | 0.2366 0.6921 PF can be viewed as a powerful inference framework that
Cluster Comparison| 0.4657 0.7810 is utilized in many applications. One of the leading ex-
Neighbor Comparison 0.6628 0.8620 amples is the progress in robot localization and mapping
based on PF1]. Classical examples of PF applications in
Table 1. Experimental results on MIT Dataset. computer vision are contour trackingyq and object detec-

tion [11]. All these approaches utilize PF in the classical
i i tracking/filtering scenario with a pre-defined order ofesat
Direct Comparison | 0.2137 0.7097 and observations. To our best knowledge, the proposed PF

Cluster Comparison| 0.4500 0.8018 framework with state permutations is novel and has not been
Neighbor Comparison 0.6458 0.8770 considered before by other authors.

Table 2. Experimental results on the extended dataset. 8. Conclusions and Future Work

We introduce a novel inference framework for solving
) image jigsaw puzzle problem. Our key contribution is an
The results on the MIT Dataset are shown in Tabéd oy 0nsion of the PF framework to work with unordered ob-

on the extended dataset in TaBleThe proposed PF infer- oo aiions. Weighted particles explore the state spacgalo
ence framework significantly outperforms the loopy believe different dimensions in different orders, and state peamut

propagation in f”‘” three performancg measures. MOreoveryiq,q that yield most descriptive proposal functions are se
the reconstruction accuracy (according to the most naturalgied as new particles. By exploiting the equivalence ef im

measure, Direct Comparison) of the original images by our ;a1 ce sampling under state permutations, we prove that
algorithm is improved three times. _ _ . the obtained importance samples represent samples from
In order to demonstrate that the considered image jig-yhe original target distribution. We evaluate the perfor-
saw puzzle problemiis also very ghallenglng to humans, W€mance of the proposed PF inference on a problem of image
Sh_O\,N Some example results in F'@' There we ;how the jigsaw puzzles. As the experimental results demonstiate, i
or!g!nal 'mages, but we would I|k_e to emphaS|ze that the significantly outperforms the loopy belief propagation-Im
original images are not used during the mf_erence. I-E’ig._ age jigsaw puzzle problem is an instance of labeling (as-
also demonstrates that the reconstructed images Obta'negignment) problem. Therefore, our future work will focus
by the proposed algorithm compare very favorably to the j.'o broader spectrum of labeling problems.
results of P]. In order to demonstrate the dynamic of the
proposed PF inference, we show reconstructed images ofa ck nowledgements
the best particle at different times (iterations) in Fg.
Both methods are initialized with one anchor patch, i.e., __1he work was supported by the NSF under Grants IIS-
with one correct (puzzle piece, grid location) pair. We al- giééégsogi%gggﬂlh?D%é"i\?vzaﬁg??l;gg'gg:?ggR fnrgr:
ways assign a correct image patch to the top left corner of ’

the'i n all . N divid htest i CIBM-MIR fellowship from UW-Madison. The authors
€ 1mage. In all our experiments we divide each estimage,, g |ike to thank Taeg Sang Cho for providing the code

into 108 square patches resultingiin= 108 puzzle pieces. oy his method in CVPR 2010.

[2] Our algorithm

are adjacent in the reconstructed image.
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