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a b s t r a c t 

Blind or No reference quality evaluation is a challenging issue since it is done without access to the 

original content. In this work, we propose a method based on deep learning for the mesh visual quality 

assessment without reference. For a given 3D model, we first compute its mesh saliency. Then, we ex- 

tract views from the 3D mesh and the corresponding mesh saliency. After that, the views are split into 

small patches that are filtered using a saliency threshold. Only the salient patches are selected and used 

as input data. After that, three pre-trained deep convolutional neural networks are employed for fea- 

ture learning: VGG, AlexNet, and ResNet. Each network is fine-tuned and produces a feature vector. The 

Compact Multi-linear Pooling (CMP) is used afterward to fuse the retrieved vectors into a global feature 

representation. Finally, fully connected layers followed by a regression module are used to estimate the 

quality score. Extensive experiments are executed on four mesh quality datasets and comparisons with 

existing methods demonstrate the effectiveness of our method in terms of correlation with subjective 

scores. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The digital representation of 3D shapes is widely depicted by

D triangular meshes, and recently have been used in a broad

ange of computer vision applications [1] . Usually, 3D triangular

eshes describing a 3D shape go through some lossy operations

n order to make the transmission more sophisticated [2,3] , store

nd render 3D meshes, or to protect the models by a copyright

4,5] . However, the perceived quality of the mesh is influenced be-

ause of the distortions introduced by these operations. To quantify

he degree of distortion, subjective evaluations can be conducted

y directly asking human subjects to give their estimation of the

erceived visual quality. Obviously, this evaluation is unpractical in

ost real-world applications as it is generally costly in terms of

ime and human resources. Thus, it is crucial to adopt objective
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uality metrics that try to mimic an ideal human observer and ac-

urately predict the subjective assessment scores [6] . 

As for 2D images and videos, we can classify the objective

ethods depending on the accessible data about the reference: a

etric is called no reference (NR) or blind when the evaluation is

one without having the reference data. a metric is called reduced-

eference (RR) or full reference (FR) respectively when the evalua-

ion is done using the reference data, partially or totally. 

The classical methods Root Mean Squared error (RMS) [7] and

he Hausdorff distance [8] use simple geometric distances to com-

are a distorted mesh and its reference with the same connectivity.

hese methods neglect the perceptual information describing the

uman Visual System (HVS) since they compute a pure geomet-

ic distance. Thus, the prediction is not always reliable as proven

y the moderate correlation with human perception [9,10] . In or-

er to include the perceptual information, many researchers have

ecently developed perceptually driven quality methods for Mesh

isual Quality (MVQ) assessment. 

Although tremendous advance has been achieved in the last

ecade in objective image visual quality (IVQ) assessment, the
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researches on objective MVQ assessment are still in the early stage,

with very few metrics proposed, especially blind metrics. 

In this paper, we present a novel method for blind MVQ as-

sessment. The proposed method is based on the combination of

three automatic learned feature vectors provided by three Convo-

lutional Neural Networks (CNN) models. The combination step is

based on the Compact Bi-linear Pooling (CBP) that has been ex-

tended to Compact Multi-linear Pooling (CMP) in order to consider

more than two feature vectors with a multiplicative interaction be-

tween all the extracted features [11] . The organization of the paper

is as follows: we present in Section 2 the most relevant objective

metrics for MVQ assessment and the motivation behind our con-

tribution. A detailed description of the proposed method is illus-

trated in Section 3 . Then, we provide experiments, results and dis-

cussions in Section 4 . Finally, Section 5 is dedicated to some con-

cluding points and perspectives. 

2. Related work 

In the literature, several methods have been proposed for the

MVQ prediction. In 20 0 0, Karni and Gotsman [12] developed an

MVQ metric for the evaluation of a mesh compression algorithm.

The evaluation is performed by computing a distance between the

model and its distorted version. The distance is obtained by com-

puting the weighted sum of the vertex root mean squared error

and the vertex Laplacian coordinate error. An improved version

has been proposed by Sorkine et al. [13] . This method gives more

weight to the Laplacian values. The strain energy field (SEF) is in-

troduced by a specific mesh deformation in the method of Bian

et al. [14] . The visual deformation is considered as a level of energy

and the perceptual distance is computed as the level of strain en-

ergy of the normalized triangular faces. Based on the well-known

structural 2D quality metric, so-called SSIM (Structural SIMilar-

ity) [15] , Lavoué et al. [16] proposed a metric named Mesh Struc-

tural Distortion Measure (MSDM). The latter extended the princi-

ple of SSIM for images to 3D meshes. It uses the mesh mean cur-

vature as an alternative for the pixel intensities in the SSIM in-

dex. This method supposes that the compared meshes have the

same connectivity, which is considered a limitation in MVQ assess-

ment since it is not always the case. An improved version so-called

MSDM2 has been proposed in order to overcome the connectiv-

ity issue [17] . For that, the authors introduced a vertex correspon-

dence processing step. Multi-scale analysis has also considered to

evaluate the visual difference which leads to a considerable ame-

lioration in predicting the perceived visual quality. Torkhani et al.

[18] proposed a quality method called Tensor-based Perceptual Dis-

tance Measure (TPDM). This method computes a distance between

curvature tensors of the compared meshes. The curvature ampli-

tudes and the principal curvature directions, which are obtained

from the tensor eigenvalues and eigenvectors respectively, are used

to compute a perceptually-oriented tensor distance. Recently, Yildiz

et al. [19] proposed a full-reference perceptual quality metric for

animated meshes to predict the visibility of local distortions on the

mesh surface. Feng et al. [20] proposed a method called TPDMPW

based on percentile weighting strategy. Chetouani [21] proposed

a quality measure based on the fusion of selected features and

the support vector regression (SVR). The mesh roughness is used

by Corsini et al. [22] and Gelasca et al. [23] . In their methods,

they consider the relationship between the perceived visual qual-

ity and the roughness on the surface. The former used dihedral

angles computed as the angle between normals of two adjacent

faces, while the latter compute the difference between the origi-

nal model and the smoothed version. Dihedral angles also used in

the work of Vasa and Rus [24] . They proposed an MVQ assessment

metric that computes the difference between the original model

and its deformation based on oriented angles. 
FR and RR methods are mostly employed for guiding mesh

ompression and watermarking. These approaches successfully es-

imate the quality scores as proven by the high correlations. How-

ver, in practice, the reference is not always available. 

NR or blind quality assessment is an alternative solution to

vercome this issue. In this context, machine learning becomes

rending in score predictions and it is successfully used for image

uality assessment (IQA) [25–30] . 

In the same vein, several NR metrics have been developed for

VQ assessment. Abouelaziz et al. [31] proposed a blind method

hat relies on the mean curvature features and the General Re-

ression Neural Network (GRNN) for the feature learning and the

uality prediction. Visual saliency and Support Vector Regression

SVR) are used in the method of Nouri et al. [32] . The authors pro-

osed a NR method called 3D Blind Mesh Quality Assessment In-

ex (BMQI). SVR is also used in [33,34] . In [35] , the CNN is fed

y perceptual hand-crafted features (i.e dihedral angles and mesh

hape) extracted from the 3D mesh and presented into 2D patches

f a fixed size. In [36] , the CNN is fed by rendered images from

he 3D object, the view is changed by rotating the 3D mesh by

n angle of 60 degrees according to the X and Y axes. In our pri-

ary work [37] , we introduced a patch-selection strategy based on

esh saliency in order to give more importance to the attractive

egions. 

Motivated by the promising result of the above methods, we

ropose a deep-based method for the quality assessment of 3D

odels without reference. More precisely, we extract feature vec-

ors from three different CNN models and we extend the Compact

i-linear Pooling concept to Compact Multi-linear Pooling in order

o combine the extracted features. In addition, we apply a saliency-

ased selection strategy that aims to focus more on the perceptual

elevant regions. 

The novelties of our method consist of using fine-tuned deep

NNs for quality assessment and the Compact Multi-linear Pooling

or the feature combination. In addition we conduct extensive ex-

eriments on four databases: the effect of mesh saliency in MVQ

ssessment and comparison of many combination strategies (con-

atenation, element-wise multiplication and CMP). 

Details about the proposed method are provided in the next

ection. 

. Proposed method 

.1. Flowchart 

The proposed method consists of two major parts as depicted

n Fig. 1 : learning data preparation and feature learning for the

uality score estimation. The data preparation module aims to fo-

us only on the more attractive regions using the saliency informa-

ion, while the feature learning and quality score estimation mod-

le aim to assess the quality by combining three automatic learned

eatures given by three different CNN models. 

.2. Learning data preparation 

In order to focus on regions that impact more the subjective

uality, we apply a saliency-based patch selection strategy. For

hat, we first compute the mesh saliency of the 3D model. Then,

D views are rendered from the 3D model and its mesh saliency.

he rendered views are split into small patches and the saliency of

ach of them is analyzed to select only the more relevant ones. Af-

er a local normalization, the selected patches feed the CNN model

or the training. In this section, we provide more details for each

tep. 



I. Abouelaziz, A. Chetouani and M. El Hassouni et al. / Pattern Recognition 100 (2020) 107174 3 

Fig. 1. Flowchart of the proposed blind mesh visual quality assessment method. 
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.2.1. Mesh visual saliency 

Saliency is a perceptual concept that describes the attention of

ur HVS to some regions due to its specificities (curvature, orienta-

ion and so on). In this work, mesh visual saliency is employed to

elect patches that are perceptually relevant using the method pro-

osed in [38] . It is based on the mechanism adopted by the well-

nown method proposed by Itti et al. [39] for 2D images. The first

tep to obtain the mesh saliency is to compute the mean curvature

t mesh vertices. After that, fine and coarse Gaussians are used to

lter the mean curvatures and the saliency is obtained by com-

uting the difference between the filtered mean curvatures within

ifferent scales. Finally, a non-linear normalization sum of all the

ulti-scale saliency maps is applied in order to compute the final

aliency map. It is noteworthy that our contribution is not to im-

lement a saliency method, but rather to use an existing one to

emonstrate the usefulness of mesh visual saliency in quality as-

essment. The relevance of this step is discussed in Section 4.2 . 

.2.2. 2D Projections rendering and patch selection 

Once the 3D visual saliency is computed, the next step consists

f rendering 2D projections from the 3D mesh and its correspond-

ng mesh saliency for a multiple views representation. To this end,

e surround the 3D mesh by several virtual cameras at different

ngles according to the axes X and Y . The centroid of the 3D object

s placed at the origin of the coordinate system. The coordinates

 x i , y i ) of the virtual cameras are obtained by varying the angles

 ∈ [0, 2 π ] and y ∈ [0, 2 π ] by π
6 (30 ◦). In total, 144 projections are

btained from each 3D mesh. We note that we use only the axes X

nd Y since using also the Z axis duplicates the views and provides

edundant and useless information. In our projection strategy, the

btained projections describe the 3D object from all important

iews. Moreover, in view-based 3D shape retrieval also only X- and

-rotations are used to generate 2D views of 3D objects [40,41] .

he obtained views are then split into small patches. After that, a

ocal level of Saliency ( LoS ) is computed for each patch and used

o select the important patches with a saliency threshold S t sets

xperimentally (more details can be found in Section 4.2 ). 

The selection is performed by keeping patches with LoS ≥ S t 
hat are considered salient patches. It is noteworthy that the LoS is

omputed using only the pixels that contain the saliency informa-

ion, the background pixels at object boundary are not considered
nd informative patches (with high saliency) at object boundary

re not ignored. 

.2.3. Patch normalization 

The next step is to apply a simple local contrast normalization

n the selected patches. The normalized value ˆ I (i, j) of a pixel I ( i,

 ) at location ( i, j ) is computed as follows: 

ˆ 
 (i, j) = 

I(i, j) − μ(i, j) 

σ ( i, j) + c 
(1) 

(i, j) = 

1 

(2 M + 1) × (2 N + 1) 

m = M ∑ 

m = −M 

n = N ∑ 

n = −N 

I( i + m, j + n ) (2)

(i, j) = 

√ 

m = M ∑ 

m = −M 

n = N ∑ 

n = −N 

(I(i + m, j + n ) − μ(m, n )) 2 (3) 

here c is a constant that prevents instabilities from dividing by

ero. M and N are the normalization window sizes. The used nor-

alization is crucial to make the trained networks robust to illu-

ination and contrast variation by decreasing the effect of the sat-

ration problem [27] . 

.3. Feature learning and quality score estimation 

In this work, we propose to fuse automatically learned features

xtracted from CNN models. To this end, we fine-tune three well-

nown pre-trained CNN models (AlexNet, VGG, and ResNet). A fea-

ure vector is then extracted for each network and a defined com-

ination is applied to obtain a global feature vector to be used for

he quality prediction. In the next, we give more details about the

sed networks and the combination strategies. 

.3.1. Deep convolutional neural networks 

The CNN models used in this work are briefly described as fol-

ows: 

• AlexNet [42] : This CNN model, proposed by Alex Krizhevsky, is

the winner of the Image Large Scale Visual Recognition Chal-

lenge (ILSVRC) in 2012. It consists of five convolutional lay-

ers, max-pooling layers, and three fully connected layers. The

dropout regularization method is used in the fully connected
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Fig. 2. Combination strategies. 
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layers to prevent overfitting. In addition, the authors highlight

the use of the ReLU function and the overlap in the max-

pooling layers. 
• VGG [43] : VGG network is a deep CNN proposed by the Oxford

Visual Geometry Group. The network achieved successful per-

formance in ILSVRC 2014. Several versions of VGG have been

developed with different convolutional layers: VGG11, VGG13,

VGG16, and VGG19. In our method, we use VGG16. This net-

work consists of 13 convolutional layers with max-pooling and

three fully connected layers. 
• ResNet [44] : The residual Neural Network (ResNet) has been

proposed by Kaimimg He et al. in 2015. The network is devel-

oped to make the training of deep networks easier by accel-

erating the speed of the training. Different versions of ResNet

have been proposed: ResNet 18, ResNet 34, ResNet 52, and oth-

ers. The used network consists of 16 convolutional layers with

max-pooling and two fully connected layers. 

It is worth noting that the last layer is a regression since the

quality scores are seen as ”continuous values”. In addition, the in-

put of the pre-trained network is adjusted to be fed by patches of

a fixed size (patch-size = 32 × 32). 

3.3.2. Compact multi-linear pooling (CMP) 

Once the feature vectors are extracted from the above-

described models, we combine them using the concept of Com-

pact Bi-linear Pooling (CBP) [45] that computes the outer prod-

uct of two feature vectors u and v . The authors demonstrate that

this outer product can be seen as a convolution ( ◦ledast ) when

the Count Sketch projection function is applied. This latter aims to

project the feature vectors into a lower dimensional feature space.

Moreover, as the convolution of two vectors is equivalent to the

element-wise product in the frequency domain, the outer prod-

uct u ◦ledastv can be finally rewritten as F F T −1 (F F T (u ) � F F T (v )) ,
where � refers to the element-wise product and FFT designs the

Fast Fourier Transform. This combination is very important because

it permits the interaction of all elements of the vectors in a multi-

plicative way without a high computational cost. 

In order to combine more than two vectors, the process is ex-

tended to Compact Multi-linear Pooling (CMP) [46] as depicted in
ig. 2 a. The CMP combination consists firstly of projecting the fea-

ure vectors to a lower dimensional feature space through a Count

ketch projection function. After computing the FFT of each con-

idered feature vector, we multiply the obtained spectra and apply

he Inverse Fast Fourier Transform (IFFT) to obtain a single feature

ector. 

In Section 4.3 ), the performance of CMP strategy is compared

o some common combination, described as follows: 

• Concatenation (see Fig. 2 b): The simplest way to combine vec-

tors is to concatenate them. It allows all the elements to in-

teract in the learning, however, the result vector contains more

elements and can slow down the prediction time. 
• Element-wise multiplication (see Fig. 2 c): The feature vectors

can be combined by multiplying their elements, the result vec-

tor is of a smaller size than the concatenated one, however, not

all the elements interact together in the learning process and

some information can be lost. 
• 1 × 1 convolution: another type of combination is to use 1 × 1

convolution filter. It creates a linear projection of the features

and is used to reduce the data size. 

CMP is interesting because it allows the interaction of all el-

ments of the vectors in a multiplicative way, which is not the

ase in the element-wise multiplication. Besides, unlike the bi-

inear pooling, the CMP projects the outer product to a lower-

imensional space that leads to a lower computation time. After

he CMP strategy is applied, a global feature vector is obtained, and

t is fed to fully connected layers followed by a regression layer for

he quality score estimation. 

.3.3. Training settings 

The final step of our method consists of predicting the per-

eived quality score. In this section, we describe the followed train-

ng settings. For the training process, we use the objective function

dopted in [27] defined as follows: 

 = 

1 

N 

N ∑ 

n =1 

|| S(p n ;ω) − MOS n || l1 (4)
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ˆ ω = min ω L where MOS n denotes the subjective MOS related to

 specific input patch p n and S ( p n ; ω) is the estimated objective

core of p n with network weights ω. The Stochastic Gradient De-

cent (SGD) and back propagation are used to learn the parame-

ers of the CNN by minimizing the objective function ( Eq. (4) ). The

atch size and the learning rate are fixed respectively to 32 and

.01. The maximum number of epochs has been fixed to 40. 

We applied the leave-one-out cross-validation to train and test

ur method. A training model is built using all the distorted

eshes in the repository except one mesh and its distorted ver-

ions. We then use the constructed model on the excluded meshes

o estimate the quality. Each patch is labeled by a quality score, the

ame as the ground truth score of the whole mesh as commonly

sed in image quality assessment in [47] . 

. Experiments 

In order to verify its performance, the proposed method has

een extensively tested and compared with existing MVQ metrics.

e begin by describing the used databases and the criteria used

o evaluate our method. Then, we investigate the importance of in-

luding the visual saliency-based patch selection technique in our

ethod and how the performances of the networks are affected.

e also compared the performance obtained by different combi-

ation strategies. Finally, we present the experimental results and

omparative analysis on mesh visual quality assessment state of

he art. 

.1. Datasets 

The experiments and tests are conducted on four subjectively-

ated mesh visual quality databases: 

• LIRIS/EPFL general-purpose database [23] : It is the largest

available dataset in MVQ. It has four reference meshes, each

one with 21 distortion versions. These latter are obtained by

applying smoothing and noise addition in different regions (lo-

cal and global distortions). Subjective scores were provided by

12 experts. 
• LIRIS masking database [48] : This database is designed to

study the influence of visual masking in MVQ metrics. It has

four references with 6 distorted versions obtained by adding a

local noise. Subjective scores were provided by 11 experts. 
• IEETA simplification database [24] : This database contains five

references with 30 distorted versions obtained by applying

three simplification algorithms. Two different vertex reduction

ratios were used to simplify the original meshes. 65 observers

participated in the subjective study. 
• UWB compression database [49] : This database contains five

references with 64 distorted models. 13 types of compression

are applied for each original model by different algorithms. 69

observers participated in the subjective study. 

The coherence between the subjective scores (ground truth

cores) and the objective scores (predicted scores by MVQ meth-

ds) is computed by correlation measures. In our experiments we

dopt two coefficients: the first one called Pearson Linear Corre-

ation Coefficient (denoted r p ), it measures the accuracy of the

core estimation. The second coefficient called Spearman Rank-

rder Correlation Coefficient (denoted r s ) measuring the mono-

onicity of the estimations [50] . The compared scores are generally

on-linear, thus, it is highly recommended to apply a psychometric

tting function. Similarly to Torkhani et al. [18] , Wang et al. [51] , a

umulative Gaussian psychometric function [52] is used: 

p(m, n, X ) = 

1 √ 

2 π

∫ ∝ 

m + nX 

exp −
(

t 2 

2 

)
dt (5)
here X denotes the estimated scores by our method, m and n

resents two fitting parameters computed for each MVQ dataset

sing the predicted scores and their corresponding subjective

cores. 

.2. Effect of the saliency-based patch selection 

As mentioned earlier, the patch selection strategy is based on

he mesh saliency obtained from the distorted meshes. The patches

re selected by fixing a saliency threshold. To demonstrate the im-

ortance of the patch selection strategy used in our method, we

onduct an experiment by testing the ability of the fine-tuned

etworks to predict the perceived visual quality with different

aliency threshold on the General-purpose database. In addition,

e compare the performance of the networks with and with-

ut using the selection strategy ( S t = 0 ) on the four databases.

ig. 3 presents the correlation coefficients obtained by the trained

etworks with different saliency thresholds on the General pur-

ose database. We note that the tests are conducted only on this

atabase since it contains the greater number of meshes. After

hat, the saliency threshold is generalized for the other databases. 

When S t = 0 . 4 , the correlation scores obtain their best value for

ll the networks. However, when S t > 0.4, the number of selected

atches decreases clearly, especially when S t = 0 . 9 (only patches

ith a saliency superior to 0.9 are selected). Thus, the perfor-

ance, in this case, is the worst. When S t < 0.4, the correlation

cores decrease since the selection is less important in this case

nd this refers to the influence of the patch selection strategy in

ur method. Comparing to S t = 0 (without selection), it is remark-

ble that the patch selection strategy significantly improves the

erformance as proven by the difference between the score re-

arding S t = 0 and S t = 0 . 4 (best saliency threshold). The saliency

hreshold is thus fixed to 0.4 

The importance of the saliency selection is confirmed in Table 1

hat presents the averaged scores obtained by the fine-tuned net-

orks with and without the selection over all databases. 

The correlation scores increase remarkably when using the

aliency selection. For all networks and databases, the improve-

ent is between 2.3% (AlexNet r p on the simplification database)

nd 7.2% (AlexNet r s on the general database). 

From these results, we conclude that the used patch selection

trategy based on visual saliency is very effective, especially on the

IRIS masking and the General-purpose databases. 

.3. Performances with different combination strategies 

After the saliency threshold is fixed, we examine in this section

he performance of our method according to the different combi-

ation strategies (concatenation, element-wise multiplication and 

MP discussed in Section 3.3.2 ). We tried all the possible combi-

ations using the three above described models that lead to four

xperiments by a combination type. In addition, we compute the

ean correlation scores for all the databases. Table 2 presents the

orrelation coefficients r s (%) and r p (%) of the fine-tuned networks

n described databases with the different combinations. 

In general, the three combination types provide excellent per-

ormances on all the databases as proven by the high correlation

cores. 

• The multiplication combination provides the lowest scores, es-

pecially when combining the three networks. Multiplying three

vectors amplifies their values and leads to considerable modi-

fications on the extracted features. Thus, the estimation is less

reliable comparing to the other combinations. 
• The concatenation allows obtaining an extended feature vec-

tor. This combination provides high scores and outperforms
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Fig. 3. Correlation coefficients r s (%) (a) and r p (%) (b) of the fine-tuned networks using different saliency threshold with patch size 32 × 32 on the LIRIS/EPFL general- 

purpose database. 

Table 1 

Correlation coefficients r s (%) and r p (%) of the proposed method with and without the patch selection 

strategy on the four tested databases. 

Masking General-Purpose Compression Simplification 

r s r p r s r p r s r p r s r p 

Without patch VGG 92.2 91.0 91.1 88.7 85.3 84.2 84.1 83.8 

selection AlexNet 89.6 88.6 85.7 86.1 89.1 88.4 90.1 89.1 

ResNet 88.9 89.7 86.9 86.5 86.1 86.6 88.2 87.3 

With patch VGG 96.2 94.2 94.5 92.8 89.5 86.7 89.8 88.3 

selection AlexNet 95.4 93.3 92.9 91.6 92.2 91.4 92.5 91.4 

ResNet 93.4 92.2 93.3 92.8 90.4 89.9 91.6 90.4 

Table 2 

Correlation coefficients r s (%) and r p (%) of the fine-tuned networks on LIRIS masking database, LIRIS/EPFL general-purpose database, the 

UWB compression database and the IEETA simplification database using different combination strategies. 

Combination type Networks Masking General-Purpose Compression Simplification Mean scores 

r s r p r s r p r s r p r s r p r s r p 

No combination VGG 96.2 94.2 94.5 92.8 89.5 86.7 89.8 88.3 92.5 90.5 

AlexNet 95.4 93.3 92.9 91.6 92.2 91.4 92.5 91.4 93.2 92.0 

ResNet 93.4 92.2 93.6 92.8 90.4 89.9 91.6 90.4 93.1 91.5 

Concatenation VGG + AlexNet 95.9 95.3 93.0 91.2 89.9 88.6 87.6 85.4 91.6 90.1 

VGG + ResNet 94.2 93.9 92.6 91.6 88.5 88.1 86.5 86.1 90.4 89.9 

AlexNet + ResNet 93.2 91.6 91.9 90.8 90.1 88.9 88.1 88.3 90.8 89.9 

All networks 96.3 95.1 93.6 91.9 90.5 89.3 90.0 90.2 92.6 91.6 

Multiplication VGG + AlexNet 90.1 88.9 88.1 86.9 85.2 84.2 86.3 85.6 87.4 86.4 

VGG + ResNet 91.5 90.0 87.6 88.3 84.3 84.8 89.2 88.6 88.1 87.9 

AlexNet + ResNet 89.6 90.6 88.6 87.3 86.1 84.0 84.5 83.0 87.2 86.2 

All networks 88.6 86.9 86.0 85.2 84.9 82.6 83.5 81.9 85.7 84.1 

1 × 1 Convolution All networks 90.3 90.1 91.0 89.6 85.4 86.5 86.2 85.8 88.2 88.0 

VGG + ResNet 93.7 94.3 88.9 87.8 86.7 88.8 89.7 89.0 89.8 90.0 

AlexNet + ResNet 90.6 90.4 91.0 92.6 85.8 86.3 87.5 88.9 88.7 89.5 

All networks 91.2 92.8 89.8 91.2 86.3 89.0 85.9 88.3 88.3 90.3 

Compact multi-linear VGG + AlexNet 94.8 95.0 92.6 93.2 91.3 92.6 90.7 89.1 92.3 92.5 

pooling VGG + ResNet 94.5 93.1 91.9 92.6 90.8 90.3 90.1 89.6 91.8 91.4 

AlexNet + ResNet 94.5 93.9 93.6 93.5 93.2 92.2 91.0 90.8 93.0 92.6 

All networks 95.8 95.9 94.4 94.8 92.7 93.8 91.0 91.1 93.3 93.8 
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the multiplication with a considerable correlation scores im-

provement reaches 8.3% (All networks r p on the simplification

database). 
• 1 × 1 convolution performs better than the multiplication with

an improvement up to 6.2% (All networks r p on the mean score)

but not as good as the concatenation. 
• The CMP combination provides the highest scores in most

situations: the highest performance on the General-purpose

database, the highest r p score and the second r s score with a

slight difference on the other databases. 

From the above observations, we conclude that the best combi-

nation strategy is the CMP as proven also by the high scores when
veraging over all the databases. In the following, we adopt the

MP using the three networks for the comparison with the state-

f-the-art. 

.4. Evaluation and comparison with the state-of-the-art 

In this section, we conduct a comparative study of the proposed

ethod with the state of the art including FR (HD [8] , RMS [7] ,

SDM2 [17] , TPDM [18] , Yildiz et al. [19] , TPDMPW [20] , Chetouani

21] ), RR (3DWPM1 [23] , 3DWPM2 [23] , FMPD [51] , DAME [24] )

nd NR (NR-SVR [33] , NR-GRNN [31] , NR-CNN1 [35] , NR-CNN2

36] , BMQI [32] ). The correlation coefficients values r s and r p on
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Table 3 

Correlation coefficients r s (%) and r p (%) of different objective metrics on the LIRIS/EPFL general-purpose database. 

Type Metric Armadillo Dyno Venus Rocker All models 

r s r p r s r p r s r p r s r p r s r p 

Full Reference HD [8] 69.5 30.2 30.9 22.6 1.6 0.8 18.1 5.5 13.8 1.3 

RMS [7] 62.7 32.2 0.3 0.0 90.1 77.3 7.3 3.0 26.8 7.9 

MSDM2 [17] 81.6 72.8 85.9 73.5 89.3 76.5 89.6 76.1 80.4 66.2 

TPDM [18] 84.5 78.8 92.2 89.0 90.6 91.0 92.2 91.4 89.6 86.2 

Yildiz et al. [19] - 86.0 - 79.0 - 89.0 - 88.0 - - 

TPDMPW [20] - - - - - - - - 87.2 87.7 

Chetouani [21] 75.7 86.1 90.6 90.0 94.9 95.5 91.4 92.1 88.1 90.9 

Reduced Reference 3DWPM1 [23] 65.8 35.7 62.7 35.7 71.6 46.6 87.5 53.2 69.3 38.4 

3DWPM2 [23] 74.1 43.1 52.4 19.9 34.8 16.4 37.8 29.9 49.0 24.6 

FMPD [51] 75.4 83.3 89.6 88.9 87.5 83.9 88.8 84.7 81.9 83.5 

DAME [24] 60.3 76.3 92.8 88.9 91.0 83.9 85.0 80.1 76.6 75.2 

No-Reference NR-SVR [33] 76.8 91.5 78.6 84.1 85.7 88.6 86.2 86.6 81.5 87.8 

NR-GRNN [31] 87.1 97.3 91.2 94.1 86.3 85.0 78.6 74.8 86.2 88.7 

NR-CNN1 [35] 87.2 84.3 86.4 86.2 92.2 85.6 91.3 85.2 83.6 82.7 

NR-CNN2 [36] 93.4 95.6 86.2 84.3 94.1 90.3 80.4 82.2 81.8 82.5 

BMQI [32] 20.1 - 83.5 - 88.9 - 92.7 - 78.1 - 

Our method 95.8 95.6 93.6 92.9 93.4 91.3 94.5 95.2 94.4 94.8 

Table 4 

Correlation coefficients r s (%) and r p (%) of different objective metrics on the LIRIS masking database. 

Type Metric Armadillo Lion Bimba Dyno All models 

r s r p r s r p r s r p r s r p r s r p 

Full Reference HD [8] 48.6 37.7 71.4 25.1 25.7 7.5 48.6 31.1 26.6 4.1 

RMS [7] 65.7 44.6 71.4 23.8 71.4 21.8 71.4 50.3 48.8 17.0 

MSDM2 [17] 88.6 65.8 94.3 87.5 100 93.7 100 91.7 89.6 76.2 

TPDM [18] 88.6 91.4 82.9 88.4 100 97.2 100 97.1 90.0 88.6 

PDMPW [20] - - - - - - - - 94.2 91.7 

Chetouani [21] 99.0 99.0 83.0 94.0 99.0 99.0 93.0 98.0 93.9 97.8 

Reduced Reference 3DWPM1 [23] 58.0 41.8 20.0 9.7 20.0 8.4 66.7 45.3 29.4 10.2 

3DWPM2 [23] 48.6 37.9 38.3 22.0 37.1 14.4 71.4 50.1 37.4 18.2 

FMPD [51] 94.2 88.6 93.5 94.3 98.9 100 96.9 94.3 80.8 80.2 

DAME [24] 94.3 96.0 100 99.5 97.7 88.0 82.9 89.4 68.1 58.6 

No-Reference NR-SVR [33] 89.5 84.7 100 96.3 94.2 93.6 94.4 89.7 90.4 91.2 

NR-GRNN [31] 82.3 80.5 94.1 97.0 90.2 94.3 78.2 82.3 90.2 82.4 

NR-CNN1 [35] 95.2 97.6 89.4 91.6 93.4 98.7 96.3 89.9 88.2 85.4 

BMQI [32] 94.3 - 94.3 - 100 - 83.0 - 78.1 - 

Our method 96.2 95.5 93.1 92.4 92.5 92.8 94.2 94.0 95.8 95.5 

Table 5 

Correlation coefficients r s (%) and r p (%) of different objective metrics on the UWB compression database. 

Type Metric Bunny James Jessy Nissan Helix All models 

r s r p r s r p r s r p r s r p r s r p r s r p 

Full Reference HD [8] 34.1 52.2 -16.8 6.8 -23.6 12.5 14.4 23.6 45.1 46.4 10.6 28.3 

RMS [7] 34.2 20.9 14.0 10.8 0.0 14.8 17.8 29.7 46.9 44.6 22.0 24.1 

MSDM2 [17] 97.4 90.1 82.6 69.2 84.3 63.1 84.4 73.1 98.1 94.7 89.3 78.0 

TPDM [18] 95.1 96.5 90.8 73.6 85.8 75.8 82.7 73.4 98.7 95.0 91.5 82.9 

TPDMPW [20] - - - - - - - - - - 91.3 96.4 

Reduced Reference 3DWPM1 [23] 94.7 93.4 77.3 72.3 87.2 89.5 63.6 59.3 98.0 95.2 84.1 81.9 

3DWPM2 [23] 96.0 91.2 76.9 65.3 86.9 85.9 56.3 67.6 95.5 94.3 82.3 80.9 

FMPD [51] 94.2 89.6 95.3 91.2 63.3 60.0 92.4 77.5 98.4 90.8 88.8 81.8 

DAME [24] 96.8 93.4 95.7 93.4 84.4 70.5 93.9 75.3 96.6 95.2 93.5 85.6 

No-Reference Our method 95.6 94.8 92.5 90.6 92.5 87.1 88.7 89.0 90.7 90.4 92.7 93.8 
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he LIRIS masking, LIRIS/EPFL General-purpose, UWB compression

nd the IEETA simplification databases are listed respectively in

ables 3–6 . The values of the state-of-the-art metrics are obtained

rom Lavoué [17] for Tables 3–5 and from Torkhani et al. [18] for

able 6 . 

As shown in Tables 3–6 , the geometric measures HD, and RMS

erforms the worst. One reason is that these methods do not in-

lude the main operations of the HVS and the visual quality is

omputed by a simple geometric distance. For the other FR mea-

ures, MSDM2 and TPDM incorporate the perceptual information,

epresented in the mesh curvature. As such, the perceptual infor-

ation is included and better prediction is achieved compared to
he geometric measures as proven by the obtained correlation co-

fficients. The RR method FMPD also provides good correlations

ompared to MSDM2 and TPDM. This method (FMPD) includes a

oughness measure which is an important feature in mesh process-

ng. The proposed method shows excellent performance on all the

vailable subjectively-rated MVQ databases, as proven by its high

cores on the individual models as well as on the whole reposito-

ies. 

• The General-purpose database (see Table 3 ) is the largest

MVQ database so far, it comprises the highest number of dis-

torted meshes among all the other databases (i.e 84 distorted
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Table 6 

Correlation coefficients r s (%) and r p (%) of different objective metrics on the IEETA simplification database. 

Type Metric Bones Bunny Head Lung Strange All models 

r s r p r s r p r s r p r s r p r s r p r s r p 

Full Reference HD [8] 94.3 84.8 39.5 14.3 88.6 53.0 88.6 64.9 37.1 27.4 49.4 25.5 

RMS [7] 94.3 71.1 77.1 79.2 42.9 23.1 94.3 71.3 94.3 92.4 64.3 34.4 

MSDM2 [17] 77.1 96.7 94.3 96.3 88.6 79.0 65.7 85.3 100 98.1 86.7 79.6 

TPDM [18] 99.0 94.3 98.0 94.3 63.1 65.7 98.6 94.3 98.7 94.3 86.9 88.2 

Reduced Reference FMPD [51] 88.6 96.0 94.3 98.0 65.7 70.4 88.6 95.5 65.7 96.0 87.2 89.3 

No-Reference Our method 91.3 88.9 91.1 92.4 91.8 91.5 95.3 89.4 91.1 88.9 91.0 91.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

meshes and a variety of distortion types). On this database, the

proposed method shows good performance and provide the

highest correlation coefficients ( r s = 94 . 4% and r p = 94 . 8% ). 
• On the LIRIS masking database (see Table 4 ), our method pro-

vides the highest Spearman and Pearson correlation coefficients

on the whole corpus ( r s = 95 . 8% and r p = 95 . 5% ) and outper-

forms the NR methods (BMQI, NR-SVR, and NR-GRNN) as well

as the most effective FR and RR methods. 
• On the UWB compression database (see Table 5 ), the proposed

method performs the best in terms of PLCC score ( r p = 93 . 8% )

outperforming the most effective methods. In addition, it pro-

vides the second higher r s score on the whole repository ( r s =
92 . 7% ) against r s = 93 . 5% for the RR method DAME. 

• On the IEETA simplification database (see Table 6 ), the pro-

posed method provides the highest correlation coefficients ( r s =
91 . 0% and r p = 91 . 1% ). The perceptual methods MSDM2, TPDM,

and FMPD also perform well in this database. 

5. Conclusion 

We have proposed in this paper an effective blind objective

MVQ method for the assessment of the perceived mesh visual

quality. Feature vectors are first extracted using three fine-tuned

CNN models and the compact multi-linear pooling is then used

to fuse the extracted feature vectors into a global feature rep-

resentation. In addition, 3D visual saliency is adapted to select

the most relevant patches taking into account that distortions are

more important in salient regions. Several tests have been con-

ducted, in particular, we show that the patch selection strategy is

very effective. Moreover, different combination strategies are tested

and compared, and we show that combining multiple DCNNs in-

creases the performances and we can derive an effective blind

MVQ method. Through comparisons with the state of the art on

prominent MVQ databases, it is shown that the proposed method

provides high correlations with subjective scores and overcomes

effective existing full reference and reduced reference methods. 
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