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Abstract—Camouflaged object detection (COD) is a challeng-
ing task that identifies camouflaged objects from highly similar
backgrounds. Existing methods typically treat the whole object
equally while neglecting the indistinguishable regions that require
more attention than other regions. In this paper, we propose
a Fuzzy Boundary-Guided Network (FBG-Net) for camouflaged
object detection, which mimics the human behavior that pays
more attention to these low-confidence regions when observing
objects. Specifically, we devise two main building blocks: (1)
Mixed Semantics Aggregation Module (MSAM) to integrate
boundary and texture features cumulatively in the high-to-low
scales, and (2) Fuzzy Boundary-Guided Module (FBGM) to locate
and enhance the low-confidence regions under the guidance of
fuzzy boundary. Extensive experiments demonstrate the effec-
tiveness of FBG-Net with superior performance to existing state-
of-the-art methods. https://github.com/YAOSL98/FBG-Net

Index Terms—camouflaged object detection, fuzzy boundary,
low-confidence regions

I. INTRODUCTION

Identifying a camouflaged object from its background,
known as camouflaged object detection (COD), is a fun-
damental task that facilitates various applications, such as
animal conservation [1], medical image analysis [2], and image
synthesis [3]. Recent works [4]–[6] have achieved a new state-
of-the-art performance on all COD benchmarks. However,
existing detecting results still suffer from incomplete and
even false boundaries, as objects are highly similar to the
background in ambiguous regions, especially when objects are
small, or heavily obscured.

The reason of low detection accuracy in indistinguishable
regions is that these methods treat the whole object equally
while ignoring that different regions have different detection
difficulty levels. In fact, a biological study validates that when
humans detect camouflaged objects, they spend more search
time in the “difficult visual environment” [7]. In other words,
humans pay more attention to the indistinguishable regions.
They tend to zoom in and out to find discriminative clues on
different image scales.
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Fig. 1. Detection results with low-confidence regions. Our method exhibits
more accurate results compared with the state-of-the-art methods (Zoom-
Net [8], SegMaR [6], and PENet [9]), as shown in red boxes.

To improve the detection accuracy in these uncertain re-
gions, some methods introduce additional network or training
data. UGTR [10] employs an additional network to esti-
mate the uncertainties, while these uncertain regions may
be inconsistent with that of the final prediction network.
UJSC [11] introduces salient object detection (SOD) training
dataset and an adversarial learning framework between the
SOD task and COD task to impose greater penalties on the
inconsistent detection results. Similarly, ZoomNet [8] proposes
an uncertainty-aware loss. However, these methods fail to ex-
plicitly detect and enhance the uncertain regions that coincide
with the detection result.

Fig. 1 demonstrates the cutting-edge approaches success-
fully localize objects, but still fail to clearly detect the cam-
ouflaged objects on blurred boundaries or hard-to-distinguish
regions, labeled by red boxes. Consequently, our work aims
to solve a question: how to locate and focus on the indis-
tinguishable regions explicitly at different scales for accurate
detection?

In this paper, we propose a Fuzzy Boundary-Guided Net-
work (FBG-Net) for camouflaged object detection, which
explicitly explores uncertain regions by fuzzy boundary de-
tection and clustering. Specifically, to detect and preserve
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Fig. 2. (a) Overview of our FBG-Net and (b) the illustration of FBGM . Gbin and Gedge represent the ground truth of the object and the corresponding
boundary, respectively.

subtle boundaries in different feature scales, we aggregate the
boundary information coupled with texture features from high
to low scales by the proposed Mixed Semantics Aggregation
Module (MSAM), which imitates the coarse-to-fine observa-
tion process of humans. Moreover, the embedded multi-scale
Feature Magnification and Fusion Unit (FMFU) is designed
to explore fine-grained edge structures for indistinguishable
details. Finally, we design a Fuzzy Boundary-Guided Module
(FBGM) to locate and strengthen the low-confidence regions
by graph-based techniques. This targeted enhancement strat-
egy enables the proposed FBG-Net to focus on low-confidence
regions during training, rendering fine-grained detection of
camouflaged objects.

Our contributions are summarized as follows:
• We propose a Fuzzy Boundary-Guided Network (FBG-

Net), which brings uncertainty guidance into COD task.
• We develop a new Fuzzy Boundary-Guided Module

(FBGM) to explicitly capture fuzzy boundaries and uti-
lize graph-based techniques to focus on low-confidence
regions.

• Our FBG-Net achieves new records on three commonly
used benchmarks, i.e., CAMO [12], NC4K [13], and
COD10K [3].

II. RELATED WORK

A. Camouflaged Object Detection

In recent decades, camouflaged object detection (COD),
as a task of identifying camouflaged objects from their
surroundings, has gained great attention from the computer
vision community. Valuable attempts can be summarized into
three aspects. The first kind of method constructs advanced
network architectures or modules to explore distinguishable
features for COD [14]. The second kind excavates extra and
valuable clues, such as edge or fixation-relative masks, from
the shared features and combines them into the joint learn-
ing or multi-task learning frameworks using cross-modality
fusion techniques [5], [12], [13]. The last kind belongs to

bio-inspired approaches, and the network design or learning
strategy is inspired by the behavior of predators or human
visual perception [3], [15]. In addition, there are also works
that notice the impact of uncertain region on camouflage object
detection. UGTR [16] employs a probabilistic representational
model to gain an uncertain map, while further in combination
with transformer to explicitly reason the final detection result.
Li et al. [17] introduce a similarity measure to explicitly
model the contradicting attribute of SOD and COD, rendering
an adversarial learning network to estimate the pixel-wise
confidence as uncertainty. However, both methods generate
the uncertain regions upon the whole image, easily leading
to false enhancement in the background regions. Our method
belongs to the bio-inspired approach, which imitates the be-
havior of humans when observing hard-to-distinguish regions
of camouflage objects.

In contrast to previous approaches, our method detects the
low-confidence region by locating the fuzzy boundaries, and
targeted strengthen the hard-to-distinguish regions at different
feature scales.

B. boundary-guided Network

Boundary guidance aims to extract extra and valuable edge
features and incorporate them into camouflage object features
using cross-modality fusion techniques. The ideas have been
widely used in object detection, including salient object detec-
tion [18] and camouflaged object detection [4]. As the bound-
ary prior can contribute to localization and segmentation for
object detection [19], [20], recent SOD methods [18], [20] and
COD methods [4], [5] extract the essential edge features and
incorporate them into object features to accurately localize,
segment, and detect objects. Nevertheless, these methods all
treat the target object boundary as a whole, neglecting the
indistinguishable regions, which require more attention.

Different from the existing entire-boundary guidance net-
work, our FBG-Net only focuses on part of the boundaries,
which is more concentrated on guiding and enhancing relative
features for high-precision object detection.



C. Multi-scale Feature Fusion Network

Multi-scale feature fusion network aims to explore object-
related clues in multi-scale features and fuse these features
for camouflage object prediction. This idea has been widely
used in SOD [21] and COD [8]. Existing multi-layer pyramid
feature extraction structures [22], [23] are prone to lose many
texture and structure details, which are unsuitable for dense
prediction tasks [24], [25] that emphasize the integrity of
regions and edges. Therefore, recent CNN-based COD meth-
ods [3], [5], [14], [15] and SOD methods [26], [27] employ
the inter-layer features to enhance the feature representation.
To enhance boundary guidance in COD tasks, recent methods
blend both edge and texture features to learn discriminative
mixed-scale semantics [4].

Unlike them, our work magnifies the coupled edge and
texture features upon each feature scale, integrates the mixed
features in the current scale and accumulative scales sepa-
rately to preserve fine-grained edge structure, and consolidates
the corresponding features.

III. PROPOSED METHOD

Overview. The overall architecture of our FBG-Net is illus-
trated in Fig. 2 (a). Given an RGB image, we first feed it into
the backbone to extract multi-level features Si(i = 1, 2, 3, 4).
These features are further fed into an Atrous Spatial Pyramid
Pooling (ASPP) [28] for boundary prediction map Pedge.
Then, the Mixed Semantics Aggregation Modules (MSAM)
couples both boundary and texture clues cumulatively along
the high-to-low feature scale. Finally, the Fuzzy Boundary-
Guided Module (FBGM) leverages the boundary prediction
Pedge and aggregated feature O1 to explore fuzzy boundaries
and enhance the uncertain regions for the final prediction
map Pbin. This section details the proposed modules and loss
function.

A. Mixed Semantics Aggregation Module (MSAM)

To aggregate the boundary features and multi-scale texture
features, we design a Mixed Semantics Aggregation Module
(MSAM) to gather these features cumulatively along high-
to-low scale features, which imitates the human observation
process from global to local detail. As shown in Fig. 3,
MSAM is composed of two branches. The boundary prediction
map Pedge is used to enhance the features Si in the current
scale and the features Oi+1 in previous accumulative scales,
respectively. We employ concatenation followed by channel
attention to explore valuable feature channels and improve
feature representation for the accumulative features Oi as
output. The output Oi of MSAM can be formulated as

Oi = CA(CAT (Fconv(Si)⊕ S′
i, F (Oi+1)⊕O′

i+1)), (1)

where CA(·) is a channel attention, CAT (·) is concatenation,
Fconv(·) is a 3×3 convolution, and ⊕ is an element-wise sum.

For each branch, we design FMFU to magnify the texture
feature and boundary prediction map Pedge into different

scales. Fig. 3 illustrates the detailed structure of FMFU. Espe-
cially, for the branch with input Si(i = 1, 2, 3, 4) and Pedge,
we evenly divide Si into four feature maps Sj

i (j = 1, 2, 3, 4)
along channel dimension. Then four feature groups are resized
to 1.25x, 1.50x, 1.75x, and 2.00x scales respectively.

To enhance the boundary-related regions, we resize Pedge

to corresponding scales, as labeled by the red dots in Fig. 3,
and strengthen Sj

i by bit-wise multiplication. Finally, we feed
these aggregated features of each scale into different 3 × 3
dilated convolutions followed by down-sampling. The dilation
rate is d(d = 1, 3, 5, 7), and final output is S

′

i .
The output S′

i of FMFU can be formulated as

S′
i = CAT (D(F d

conv(Se ⊗ U(Sj
i )))), (2)

where CAT (·) is concatenation, D(·) is down-sampling,
F d
conv(·) is 3 × 3 dilation convolution with a dilation rate of

d, ⊗ is element-wise multiplication and U(·) is up-sampling
operation. Similarly, we can obtain O′

i+1 by FMFU.

B. Fuzzy Boundary-Guided Module (FBGM)

FBGM aims to locate and enhance the hard-to-distinguish
regions under the guidance of fuzzy boundary, which is
illustrated in Fig. 2 (b). Firstly, we generate a fuzzy boundary
mask by the confidence level in the predicted boundary map
Pedge. Then, we project the features of the local uncertain
region and the whole image into graph space, represented as
VE and VB , to establish global-range dependency relationships
between them. Finally, cross-graph interaction is employed to
output the enhanced features V ′

B and final prediction Pbin.
1) Fuzzy Boundary Extraction: We divide the boundary

prediction map Pedge into high-confidence and low-confidence
regions, where the latter is the region that needs to be
enhanced.

Specifically, for each pixel xk, (k = 1, 2, ...,K), where K
is the number of pixels in Pedge, we normalize the probability
value p(xk) into the range of [0, 1]. A high value indicates a
high confidence of the boundary pixel. Then we divide these
pixels into different clusters Ns by

Ns = {xm, xn ∈ Ns|dist(
xn

ep(xn)
,

xm

ep(xm)
) ≤ ϵ}, (3)

where m,n ∈ {1, 2, ...,K}, xn and xm represent 2D pixel
coordinates, s ∈ {1, 2, ..., S}, S is the total number of clusters,
dist is Euclidean distance, and ϵ is a threshold, ϵ = 160.

Eq. 3 clusters pixels with higher probability and close
position into the same class. Once the number of pixels in
Ns is larger than a threshold γ (γ=15 in our experiment), Ns

is recognized as the high-confidence class, otherwise Ns is
recognized as the low-confidence class. Moreover, we divide
the Pedge into P × P patches (P = 12 in our experiments).
A patch containing pixels from a low confidence class is
identified as an uncertain region as demonstrated by red boxes
in Fig. 2 (b). We preserve the uncertain regions and mask
off the high-confidence regions, and use 1× 1 convolution to
render the fuzzy boundary detection feature Fedge ∈ Rh×w×C .



U

U

U

U

1.50x

1.25x

1.75x

2.00x

Conv

3*3

Conv

3*3

d=3

𝑷𝒆𝒅𝒈𝒆

Conv

3*3

d=5

Conv

3*3

d=7

D

D

D

D

𝑺𝒊\𝑶𝒊+𝟏 𝑺𝒊
′\𝑶𝒊+𝟏

′

𝑺𝒊
𝟏|𝑶𝒊+𝟏

𝟏

𝑺𝒊
𝟐|𝑶𝒊+𝟏

𝟐

𝑺𝒊
𝟑|𝑶𝒊+𝟏

𝟑

𝑺𝒊
𝟒|𝑶𝒊+𝟏

𝟒

Upsampling

Multiplication

Downsampling

Scale Transformation

Concatentation

C

Element-wise sum

𝑶𝒊

Conv

3*3𝑺𝒊 FMFU

𝑶𝒊+𝟏
Conv

3*3
FMFU

C

𝑷𝒆𝒅𝒈𝒆

𝑷𝒆𝒅𝒈𝒆

𝑺𝒊
′

𝑶𝒊+𝟏
′

Channel

Attention

Channel

Attention

C U D

Fig. 3. The architecture of the proposed MSAM and FMFU.

2) Graph Projection fproj: We project the feature of fuzzy
boundary Fedge ∈ Rh×w×C and feature of the whole image
O1 ∈ Rh×w×C into graph node representations VE ∈ RC×Z

and VB ∈ RC×Z(Z = h×w) by graph projection fproj [29].
The vertices of the graph is defined as cluster centers of feature
maps, and the graph edges measure the similarity between
these clusters in a feature space. Graph Projection renders
larger receptive fields than traditional convolution learning
networks, establishing relations between the whole features.

3) Cross-Graph Interaction: To enhance the features in the
uncertain region, we employ non-local attention operation to
establish the relations between two graphs VE and VB . We
use multi-layer perceptions (MLPs) to transform VE to the key
graph Vθ

E and the value graph Vγ
E , while VB is transformed to

the query graph Vκ
B . The similarity matrix Ainter

VE→VB
∈ R(Z×Z)

is calculated by a matrix multiplication as

Ainter
VE→VB

= fnorm(Vκ
B
T × Vθ

E), (4)

where fnorm represents the softmax operation. Consequently,
we obtain the enhanced feature V ′

B by

V
′

B = Ainter
VE→VB

× Vγ
E
T
+ VB . (5)

Finally, we map the graph representations V ′

B back to the
original feature space, and use 1× 1 convolution operation to
generate the final prediction map Pbin.

C. Loss Function

Our FBG-Net is trained end-to-end by two loss terms: the
dice loss Ldice and the structure loss Lstr [36]. Lstr includes
a weighted binary cross entropy loss Lwbce and a IoU loss
Lwiou, defined as Lstr = Lwbce + Lwiou. The overall loss is

Ltotal = Ldice(Pedge, Gedge) + Lw
str(Pbin, Gbin), (6)

where Gbin and Gedge denote object binary ground truth anno-
tations and corresponding boundary ground truth, respectively.

IV. EXPERIMENTS

A. Experiment Setting

Our FBG-Net is implemented with PyTorch on an NVIDIA
A40 GPU 48G. We employ pre-trained Swin Transformer [37]
on ImageNet as our backbone. We resize all the input images
to 384×384. The whole training stage takes about 2 hours with
batch sizes of 16 and 30 epochs. We evaluate our FBG-Net
on three widely used benchmarks: CAMO [12], COD10K [3]
and NC4K [13]. Our training set includes 1,000 images from
the CAMO and 3,040 images from COD10K, and the test
set merges 250 images from CAMO, 2,026 images from
COD10K, and 4,121 images from NC4K.

We employ four evaluation metrics, including mean absolute
error ( M ), weighted F-measure (Fw

β ) [38], structure-measure
(Sα) [39] and mean E-measure(Em) [40]. M is defined as
the element-wise difference between the prediction map and
binary ground truth. Sα is defined as Sα = αSo + (1−α)Sr,
where So is object-aware structural similarity and Sr is
region-aware structural similarity. Em evaluates the pixel-level
similarity and image-level statistic, which is related to human
visual perception. Fw

β is a measure of both precision and
recall. Fw

β is more comprehensive and reliable than F-measure.

B. Comparison with State-of-the-arts

We compare FBG-Net with 16 state-of-the-art COD meth-
ods, including the CNN-based methods and the Transformer-
based methods. For a fair comparison, all the results are
provided by their authors or computed using released codes,
and we train and test them with the same evaluation protocol.

Tab. I shows that FBG-Net outperforms other methods on
three benchmarks. Specifically, FBG-Net outperforms the best
CNN-based method PENet [9] by an average of 14.33% on
M , and the best Transformer-based method EVP [35] by an
average of 10.43% on M .

Fig. 4 shows a visual comparison of FBG-Net with other
two boundary-guided methods BGNet [4] and MGL [5]. We
leverage red arrows to indicate fuzzy boundaries in Fig. 4
(c) and compare the prediction maps and GT for clear vi-
sualization in the following columns, where the red color
indicates false predictions. By contrast, wrong predictions in
red typically appear around the fuzzy boundaries for all meth-
ods, validating the uncertain regions need additional attention
in COD task. Moreover, due to our targeted enhancement
strategy, FBG-Net exhibits the fewest red regions compared
to BGNet and MGL.



TABLE I
QUANTITATIVE COMPARISON WITH OTHER COD STATE-OF-THE-ART METHODS ON THREE BENCHMARKS USING FOUR WIDELY USED EVALUATION
METRICS (I.E., Sα , Em , Fw

β , AND M ). ”↑” / ”↓” INDICATES THAT LARGER/SMALLER IS BETTER. THE BEST RESULTS ARE HIGHLIGHTED IN RED.

Method Pub.’Year CAMO-Test (250 images) COD10K-Test (2,026 images) NC4K (4,121 images)
Sα ↑ Em ↑ Fw

β ↑ M ↓ Sα ↑ Em ↑ Fw
β ↑ M ↓ Sα ↑ Em ↑ Fw

β ↑ M ↓
CNN-Based Models

SINet [3] CVPR’20 0.745 0.804 0.644 0.092 0.776 0.864 0.631 0.043 0.808 0.871 0.723 0.058
MGL [5] CVPR’21 0.772 0.806 0.664 0.089 0.811 0.844 0.654 0.037 0.829 0.862 0.731 0.055
LSR [13] CVPR’21 0.787 0.838 0.696 0.080 0.804 0.880 0.673 0.037 0.840 0.895 0.766 0.048
PFNet [15] CVPR’21 0.782 0.841 0.695 0.085 0.800 0.877 0.660 0.040 0.829 0.887 0.745 0.053
UJSC [11] CVPR’21 0.800 0.873 0.728 0.073 0.809 0.891 0.684 0.035 0.842 0.907 0.771 0.047
BASNet [30] AAAI’22 0.794 0.851 0.717 0.079 0.817 0.891 0.699 0.034 0.841 0.897 0.771 0.048
SegMaR [6] CVPR’22 0.805 0.864 0.724 0.072 0.813 0.880 0.682 0.035 0.844 0.905 0.773 0.047
BGNet [4] IJCAI’22 0.812 0.870 0.749 0.073 0.831 0.901 0.722 0.033 0.851 0.907 0.788 0.044
ZoomNet [8] CVPR’22 0.820 0.892 0.752 0.066 0.838 0.911 0.729 0.029 0.853 0.912 0.784 0.043
FEDER-R50 [31] CVPR’23 0.807 0.873 0.785 0.069 0.823 0.900 0.740 0.032 0.846 0.905 0.817 0.045
PENet [9] IJCAI’23 0.828 0.890 0.771 0.063 0.831 0.908 0.723 0.031 0.855 0.912 0.795 0.042

Transformer-Based Models
VST [32] ICCV’21 0.807 0.848 0.713 0.081 0.820 0.879 0.698 0.037 0.845 0.893 0.767 0.048
UGTR [10] ICCV’21 0.785 0.822 0.685 0.086 0.818 0.852 0.667 0.035 0.839 0.874 0.746 0.052
TPRNet [33] TVCJ’22 0.807 0.861 0.725 0.074 0.817 0.887 0.683 0.036 0.846 0.898 0.768 0.048
ICON [34] PAMI’22 0.838 0.894 0.769 0.058 0.818 0.904 0.688 0.033 0.847 0.911 0.784 0.045
EVP [35] CVPR’23 0.846 0.895 0.777 0.059 0.843 0.907 0.742 0.029 0.863 0.919 0.800 0.041
Ours - 0.855 0.916 0.809 0.051 0.845 0.919 0.747 0.028 0.872 0.927 0.820 0.036

TABLE II
ABLATION ANALYSIS OF OUR MODULES. B: BASELINE. M: MIXED SEMANTICS AGGREGATION MODULE. F: FUZZY BOUNDARY-GUIDED MODULE. THE

BEST RESULTS ARE HIGHLIGHTED IN RED.

Method FLOPs (G) Params (M) CAMO-Test COD10K-Test NC4K
Sα ↑ Em ↑ Fw↑

β M ↓ Sα ↑ Em ↑ Fw↑
β M ↓ Sα ↑ Em ↑ Fw↑

β M ↓
B 53.83 92.99 0.805 0.863 0.733 0.072 0.817 0.891 0.694 0.036 0.845 0.899 0.775 0.049
B+F 56.17 93.09 0.818 0.905 0.763 0.054 0.826 0.893 0.714 0.033 0.851 0.914 0.804 0.046
B+M 64.12 99.69 0.842 0.910 0.789 0.053 0.833 0.912 0.740 0.029 0.869 0.921 0.816 0.039
B+F+M 66.46 99.79 0.855 0.916 0.809 0.051 0.845 0.919 0.747 0.028 0.872 0.927 0.820 0.036

C. Ablation Study

We validate the effectiveness of the Fuzzy Boundary-Guided
Module (FBGM) and Mixed Semantics Aggregation Module
(MSAM) in Tab. II. On the first row, we only preserve the
ASPP module and remove both MSAM and FBGM, where
MSAM is replaced by several up-sampling and concatenation
operations, and O1 is the final prediction.

Compared to the basic setting on the first row, adding
FBGM and MSAM gains 7.23% and 19.9% performance
improvement on M respectively, which demonstrates the ef-
fectiveness of fuzzy boundary guidance and the rationality of
integrating boundary with texture features by multi-scale oper-
ations. The last row validates the combination of both FBGM
and MSAM achieves the best performance. Additionally, we
report corresponding floating point operations (FLOPs) and
number of parameters in Tab. II, showcasing the efficiency
of our design with small parameters achieving significant
performance enhancements.

To validate the effectiveness of FBG-Net on challenging
images with indistinguishable regions, we select a sub-dataset
from CAMO, COD10K, and NC4K test sets, where the
number of uncertain patches in each image is more than 5. We
use M as the evaluation metric which depicts the element-wise
difference between the prediction map and binary ground truth
directly. The sub-dataset contains 51, 136, and 752 images
from the above datasets, respectively. Tab. III shows the sub-
dataset involves higher detection difficulty with larger M than

the original test sets. Compared with two competitive methods,
i.e., ZoomNet and ICON, our method has remarkable im-
provements on the subset, which surpasses these two methods
by 17.20% and 16.91% in terms of M on average, while
the percentage of improvement is only 14.15% and 15.74%
on the original test sets. By contrast, our FBG-Net renders
superior performance on hard-to-detect images than cutting-
edge methods.

(a) Image (b) GT (d) Ours (e) BGNet (f) MGL(c) Our boundary 
prediction

Fig. 4. Visual comparison of FBG-Net with BGNet [4] and MGL [5]. Red
arrows in (c) point to fuzzy boundaries. Red color in (d) (e) (f) indicates
lower similarity between GT and predictions while blue color indicates higher
similarity.



TABLE III
PERFORMANCE RESULTS ON SUBSETS WHERE THE NUMBER OF

UNCERTAIN PATCHES IS MORE THAN 5 ON M ↓. (·/·) DENOTES (RESULTS
ON ORIGINAL TEST SETS / RESULTS ON TEST SUB-SETS).

Methods CAMO-Test COD10K-Test NC4K
(250 / 51) (2,026 / 136) (4,121 / 752)

ZoomNet 0.066 / 0.093 0.029 / 0.044 0.043 / 0.055
ICON 0.058 / 0.083 0.033 / 0.045 0.045 / 0.059
Ours 0.051 / 0.067 0.028 / 0.040 0.036 / 0.047

V. CONCLUSION

To focus on the indistinguishable regions for COD, we
propose an effective Fuzzy Boundary-Guided Network (FBG-
Net) according to the observed behavior of humans. FBG-
Net cumulatively integrates boundary and texture features in
multi-scales by the designed Mixed Semantics Aggregation
Module (MSAM) and explicitly locates and enhances low-
confidence regions by the designed Fuzzy Boundary-Guided
Module (FBGM). Extensive experiments demonstrate a su-
perior performance of the proposed approach on three COD
benchmarks.
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