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ABSTRACT

Homography describes the mapping relations of the same plane
across views. In scenarios with multiple planes, single homogra-
phy estimation aims to obtain the optimal solution generated by the
largest consistent plane to obey the coplanar constraints. However,
existing methods typically consider all planes equally, neglecting the
negative impact of regions that differ significantly from the largest
approximate planar areas (dominant plane). In this work, we pro-
pose a depth-guided dominant plane perception network to achieve
unsupervised homography estimation with additional attention on
the dominant plane. Specifically, we leverage the depth-wise prior
to adaptively detecting the approximate dominant plane, invoking
essential scene structures for unsupervised homography estimation.
Then, we enhance the corresponding features of the dominant plane
and explore their correlations through a specially designed percep-
tual module. Finally, we employ dominant plane perception on
multi-scale features progressively to estimate the homography in a
coarse-to-fine manner. Extensive experiments on a large parallax
dataset demonstrate that our method improves the alignment perfor-
mance by 10.29%, yielding more accurate alignment than previous
competitive methods.

Index Terms— Homography estimation, depth guidance, image
alignment

1. INTRODUCTION

Homography describes the mapping relations of the same plane
across views, and it is widely used in multi-view image processing,
such as image/video stitching [1, 2], image alignment [3, 4], and
SLAM [5]. In the scenarios with multiple planes, the homography
estimated by the approximate maximal planar regions can be re-
garded as the optimal solution, that aligns significantly large areas
as well as minimizes the alignment error on the other planes [6].

To estimate the approximate optimal solution, most of the ex-
isting methods capture more matching features to cover each plane.
For example, traditional methods [7–10] introduce extra structures
to generate more valid matching features, and they also employ the
outlier removal strategy [11–13] to select consistent features. Un-
fortunately, these methods still suffer from the lack of discriminative
features under low-texture or blurry image pairs. In contrast, deep
learning-based methods [14–18] capture dense matching features.
However, these methods consider all matching features equally and
ignore the negative impact of features that differ significantly from
the large consistent planes, leading to inaccurate alignments in the
dominant plane, as illustrated in Fig. 1.

*equal corresponding author. This work was supported in part by the
NSF of China under Grant Nos.62272083, 62102061 and U22B2052, and in
part by the Liaoning Provincial NSF under Grant 2022-MS-137 and 2022-
MS-128.

Fig. 1: Visualization of image alignment results with and without
depth guidance. The result of UDIS [16] w/o depth maps employs
only (a) as input, and our result leverages both (a) and (b) as inputs.
The alignment results are generated by superimposing the warped
target and reference images, and the misaligned pixels are visualized
as colored ghosts.

To focus on the discriminative features of large consistent
planes, some existing methods [6, 19, 20] predict a mask to re-
move large foregrounds or moving objects. However, they predicted
mask is a side product of homography estimation, that lacks reliable
guidance for scene structure information and easily fails in image
pairs with large parallax. The dominant plane is crucial for gen-
erating the optimal solution of homography, and we focus on the
dominant plane to estimate homography, thus significantly reducing
the artifacts and misalignment as illustrated in Fig. 1 the magnified
part marked with the red box. Consequently, our main idea is to de-
tect and leverage the discriminative features of the dominant plane
for accurate homography estimation.

In this work, we propose a depth-guided dominant plane per-
ception network to generate the approximate optimal solution for
unsupervised homography estimation. Specifically, we leverage the
prior knowledge of depth maps to divide multiple planes and select
the plane with the largest regions as a dominant plane. Moreover,
we develop a dominant plane perception module that guides the net-
work to focus on the dominant planes and explore their correlation
over multi-scale features. Finally, we employ both global and lo-
cal alignment loss to promote content alignment and strengthen the
alignment of the dominant plane. To summarize, our main contribu-
tions are threefold: (1) We invoke depth-guided scene decomposi-
tion to select the plane with maximal consistency for addressing the
homography estimation of scenes with multiple planes. (2) We de-
sign a dominant plane perception module to enhance the features of
the dominant plane and explore their correspondences to estimate an
approximately optimal homography without ground truth. (3) Our
method achieves state-of-the-art performance and outperforms pre-
vious methods by 10.29% for alignment on real-world datasets.
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Fig. 2: The overall pipeline of the proposed method. The image pairs with parallax and their correspondence depth map as input, and the
depth-guided scene decomposition uses the depth division module (DDM) to detect the dominant plane. We design the dominant plane
perception module (DPP) to enhance the features of the domain plane, and it is inserted into multi-scale features to regress final homography
H by hierarchical homography regression (HHR).

2. METHOD

Overview: Figure 2 demonstrates the overall structure of the pro-
posed unsupervised homography estimation network with depth-
guided dominant plane perception learning. Given a pair of target
image It and reference image Ir , we obtain their corresponding
depth maps Idt and Idr by existing depth estimation network [21].
Firstly, we leverage the depth-guided scene decomposition with the
depth division module DDM to select the largest approximately
planar regions Pm

t and Pm
r (Sec. 2.1). Then, we design a dom-

inant plane perception module (DPP) to enhance features of the
dominant plane at different feature scales (Sec. 2.2). Based on the
enhanced features, we employ a hierarchical homography regression
(HHR) mechanism, starting from the 1/8 feature scale at level 1 and
finishing with the 1/2 feature scale at level 3 (Sec. 2.3). Finally,
we optimize the model with the unsupervised objective function
(Sec. 2.4).2.1. Depth-guided Scene Decomposition
We utilize the depth prior to dividing the depth map into different re-
gions based on the depth value of each pixel. The depth regions are
used as masks to select corresponding approximate plane regions in
the RGB image. Firstly, we employ the pre-trained model [21] to
predict raw depth maps Idr and Idt . Then, as shown in the depth di-
vision module DDM of Fig. 3 (a), we quantize the raw depth map
by histogram and select the first N largest modes of the multimodal
depth distributions to decompose the original depth map into N + 1
regions D1, D2, ...DN+1, including N depth interval windows and
a window of the remaining part. Finally, we generate N + 1 binary
masks M j , j ∈ [1, 2, ...N + 1], where each mask corresponds to a
region, and pixels within a region have a pixel value of 1. Conse-
quently, we can divide the original image into N + 1 approximate
planes by:

P j
r = Ir ⊗M j

r , P
j
t = It ⊗M j

t , j ∈ [1, 2, ...N + 1], (1)

where P j
r and P j

t represent the j-th plane in reference and target
image respectively, ⊗ represents the element-wise multiplication.
M j

t and M j
r represent the masks of target and reference images,

respectively. Then, we select the plane with the largest areas Pm
r =

max(P j
r ), P

m
t = max(P j

t ) as the dominant plane.
As demonstrated in Fig. 3 (b), we decompose the depth maps

and generate the corresponding planar regions P 1, P 2, and P 3 with
similar depth. In this work, we set N = 2 to decompose the original
depth map into three regions, and our ablation experiments validate

Fig. 3: Schematic of depth division and RGB image decomposition.
‘IW’ represents the depth interval window, and D1, D2, and D3

represent different depth division regions. P1, P2, and P3 indicate
the decomposed different planar regions with similar depth values.

the performance of different depth map division numbers.

2.2. Dominant Plane Perception

Based on the detected dominant plane, we design a dominant plane
perception module DPP that guides the network to focus on the
dominant plane in multi-scale features, as shown in the right part
of Fig. 2. Specifically, we fuse the features of the entire image and
the dominant plane to enhance the representation of dominant plane
features and then leverage correlation calculations to capture dis-
criminative features for homography estimation.

Firstly, we apply a max-pooling layer and an average-pooling
layer in parallel to remove noise and preserve significant features
for dominant plane images f i

rp and f i
tp. After a sigmoid layer, the

feature of the dominant plane enhances the entire image feature by:

F i
r = f i

rp ⊗ S(max(f i
rp)⊕ avg(f i

rp))⊕ f i
r, i ∈ [1, 2, 3], (2)

where F i
r represents the enhanced feature of the reference image on

the i-th feature scale. S indicates a sigmoid layer, and ⊕ indicates
element-wise summation. The same operations are applied on f i

tp

and f i
t to generate enhanced feature F i

t .
Subsequently, we explore the correlation between the enhanced

features F i
t and F i

r . We leverage two convolutional layers Conv1
and Conv2 with the 3 × 3 and the 1 × 1 convolutional kernels to
activate features and employ matrix multiplication to calculate the
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correlation Ci in each feature scale by:

Ci = (Conv2(Conv1(F
i
r)))⊗ (R⃝(Conv2(Conv1(F

i
t )))), (3)

where i ∈ [1, 2, 3], and R⃝ indicates reshape operation.
To focus on discriminative features, we leverage a softmax layer

S to normalize the correlation map and apply an element-wise mul-
tiplication on activated F i

t . Finally, the final dominant plane percep-
tion feature F i

out is obtained as:

F i
out = Conv2(F

i
t )⊗ S(Ci)⊕ F i

r , i ∈ [1, 2, 3]. (4)

2.3. Hierarchical Homography Regression

To consider features in both shallow and deep feature scales simulta-
neously, we utilize a hierarchical mechanism with a recurrent refine-
ment strategy to estimate offsets of four image vertexes, which are
then combined with direct linear transformation (DLT) [2] to gener-
ate the homography matrix. Specifically, we initially leverage the
dominant plane perceptual features in 1/8 scale to regress offsets
∆1 and corresponding H1 through regression module R(·). The
module R(·) is composed of four Conv+BN+ReLU convolutional
blocks and a linear block. Then H1 performs a coarse alignment
for 1/4 feature scale of the target image to estimate residual offsets
∆2. After that, a similar operation is used for 1/2 feature scale to es-
timate residual offsets ∆3. In hierarchical homography regression,
we accumulate the residual offsets of each scale to estimate the final
homography H:

H = DLT (

3∑
i=1

∆i), i ∈ [1, 2, 3]. (5)

2.4. Unsupervised Training

Our total loss function Ltotal consists of Lglobal and Llocal, ex-
pressed as Eq. 6. Lglobal is the global alignment loss to ensure the
alignment of the entire image, and meanwhile Llocal is a local align-
ment loss to align the dominant planes.

Ltotal = λLglobal + (1− λ)Llocal, (6)

where λ is a trade-off parameter of two terms. For each scale, we
impose unsupervised constraints to minimize L1 distance between
the warped target image and its corresponding reference image by:

Lglobal =

3∑
i=1

∥Hi(It)−Hi(E)⊗ Ir∥1 , (7)

where Hi is the predicted homography at i-th feature scale, and E
is an all-one matrix with identical size with Ir . In addition, we also
leverage the same loss to constrain the alignment of the dominant
planes Pm

t and Pm
r by Llocal.

3. EXPERIMENTS

Dataset: We evaluate our method on the most widely used UDIS-
D dataset [16] to keep the same setting with [16] and [17], which
contains 10440 training images and 1106 testing images with a size
of 512 × 512. UDIS-D is a real-world dataset that includes a wide
variety of challenging image pairs with different overlap rates and
parallax such as indoor, nighttime, dark, and snowy.
Details: During the training phase, we resize each image to 128 ×
128 as input. We set N = 2 for depth map division and the trade-off

parameter in the loss function is λ = 0.9. Our network is imple-
mented in PyTorch [22] and runs an NVIDIA RTX 3090 GPU. The
learning rate is 1 × 10−4 and the training process consists of 150
epochs with a batch size of 64.

3.1. Comparison with Existing Methods

We compare our method with two categories of existing homog-
raphy estimation methods: (1) Deep learning-based methods in-
cluding DHN [14], UDHN [15], CA-UDHN [19], UDIS [16], and
MGDH [17]. (2) Traditional methods including APAP [2], ELA [7],
SPW [8], and LPC [9]. We employ PSNR [23] and SSIM [24]
metrics to measure the performance of different methods.
Quantitative comparison: Tables 1 and 2 demonstrate the quan-
titative comparison results of our method with deep learning-based
methods and traditional methods, respectively. We divide the test
results into three levels according to their performance, including
‘Easy (Top 0-30%)’, ‘Moderate (Top 30-60%)’, and ‘Hard (Top
60-100%)’. For fairness, we use the same image resolution for all
inputs to evaluate the performance.

Table 1: Quantitative comparison with cutting-edge deep learning
based methods on UDIS-D dataset with 128×128 resolutions. Bold
indicates the best performance.

Methods
PSNR ↑ SSIM ↑

Easy Moderate Hard Average Easy Moderate Hard Average

DHN [14] 16.40 13.36 11.48 13.52 0.409 0.170 0.076 0.204
UDHN [15] 19.39 15.93 13.09 15.83 0.573 0.334 0.165 0.338
CA-UDHN [19] 18.05 13.13 11.00 13.16 0.339 0.181 0.105 0.198
UDIS [16] 27.84 23.95 20.70 23.80 0.902 0.830 0.685 0.793
MGDH [17] 28.41 24.63 21.59 24.54 0.913 0.853 0.733 0.823
Ours 30.97 26.99 22.20 26.25 0.946 0.901 0.742 0.850

Table 2: Quantitative comparison with traditional methods and the
second-best deep learning-based method on UDIS-D dataset with
512× 512 resolutions. Bold indicates the best performance.

Methods
PSNR ↑ SSIM ↑

Easy Moderate Hard Average Easy Moderate Hard Average

APAP [2] 27.96 24.39 18.55 23.27 0.901 0.837 0.682 0.794
ELA [7] 29.36 25.10 19.19 24.01 0.917 0.855 0.691 0.808
SPW [8] 26.98 22.67 16.77 21.60 0.880 0.758 0.490 0.687
LPC [9] 26.94 22.63 19.31 22.59 0.878 0.764 0.610 0.736
MGDH [17] 29.52 25.24 21.20 24.89 0.923 0.859 0.708 0.817
Ours 30.60 26.78 22.12 26.05 0.956 0.925 0.845 0.902

Table 1 demonstrates that our method achieves state-of-the-art
performance on all performance levels and outperforms others by a
large margin. Our average PSNR is 26.25 dB, which is 10.29% and
6.97% higher than the next two methods UDIS [16] and MGDH [17],
respectively. CA-UDHN [19] shares a similar idea that employs
the predicted mask to focus on the dominant plane, but its PSNR
is 49.87% lower than that of our method. It indicates that we lever-
age the prior knowledge of depth maps to detect the more reliably
dominant plane, yielding more accurate alignment results.

In Table 2, we utilize 512 × 512 resolutions to evaluate the
performance of traditional methods as these methods typically fail
to extract features at 128 × 128 resolutions. Table 2 demonstrates
that our method exhibits tremendous advantages on all metrics, and
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APAP [2] ELA [7] SPW [8] LPC [9] UDIS [16] OursInputs MGDH [17]

Fig. 4: Qualitative comparison of our method and other cutting-edge methods. The alignment results are generated by superimposing
the warped target and reference images, and the highlight regions are overlapping alignment areas, while the non-overlapping regions are
visualized as colored ghosts. The red box on the upper right is the zoomed-in region captured in the overlapping regions.
our PSNR and SSIM still outperform the second-best deep learning-
based method MGDH. In addition, our PSNR is 2.04 dB higher than
the second-best traditional method ELA. Our superior performance
validates our dominant plane perception strategy significantly en-
hances the crucial features compared to the outlier removal strategy
in traditional methods.

Table 3: Ablation analysis for the different components on UDIS-D
dataset. Bold indicates the best performance.

Metrics w/o DPP w/o Level 1 w/o Level 1+2 w/o Llocal Ours

PSNR ↑ 24.94 25.70 24.17 26.15 26.25
SSIM ↑ 0.806 0.835 0.783 0.847 0.850

Table 4: Ablation analysis for approximate plane division on UDIS-
D dataset. N indicates the number of depth interval windows and
P = N + 1 represents the number of correspondence approximate
planes. Bold indicates the best performance.

Metrics N = 0, P = 1 N = 1, P = 2 N = 2, P = 3 N = 3, P = 4

PSNR ↑ 24.94 26.13 26.25 26.19
SSIM ↑ 0.806 0.846 0.850 0.843

Qualitative comparison: We visualize the alignment results of our
method and the six most related comparison methods in Fig. 4. The
first row is an outdoor complex scene and the second row is an indoor
low-texture scene. As highlighted in the red box and the correspond-
ing zoomed-in regions, our method aligns two images accurately
without any artifacts, while other methods exhibit severe deforma-
tion and ghosts. ELA fails in the low-textured image as it is difficult
to extract discriminative features. The deep learning-based methods
(UDIS [16] and MGDH [17]) predict homography based on the en-
tire image, which is easily influenced by features on non-dominant
planes. In contrast, our method focuses on the dominant plane to
estimate homography, rendering clear and natural alignment results.

3.2. Ablation Studies

We employ a series of ablation studies to validate the effectiveness of
the proposed method including different components and the num-
ber of plane divisions.
The effectiveness of different components: To validate the effec-
tiveness of the DPP module, Llocal loss, and HHR module, we test
performance with or without the corresponding components. Table 3

Fig. 5: Visualization of alignment results without corresponding
component, where the zoomed-in regions on the bottom right ex-
hibit severe artifacts.

demonstrates that the performance without DPP decreases 5.25% on
PSNR metric, while the performance without Llocal only decreases
0.3% as the global alignment loss also includes the alignment of the
enhanced dominant plane. In addition, the accuracy of the alignment
results decreases dramatically without Level 1 or Level 1 + 2 of the
HHR module. Fig. 5 illustrates image alignment results without cor-
responding components. As demonstrated in the zoomed-in regions,
the alignment results suffer from various degrees of misalignment
and artifacts. On the contrary, our method involved in all the pro-
posed modules exhibits accurate alignment in the zoomed-in region,
validating the effectiveness of the proposed components.
The number of plane divisions: To select the optimal number of
approximate plane divisions, we test performance with different N
values. Table 4 indicates that our method achieves the best perfor-
mance when N = 2, P = 3. When N > 2, the scenarios may be
split too finely and affect the performance of alignment.

4. CONCLUSION

We noticed the problem of multiple planes in homography estima-
tion and leveraged a depth-guided dominant plane perception to
solve it. Compared with the state-of-the-art methods, our method
achieves excellent alignment results on real-world scenes. In the
future, we will explore the learning-based dominant plane segmen-
tation method, invoking an adaptive and accurate dominant plane
detection for homography estimation.
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