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ABSTRACT

In this paper, we introduce a novel approach to 3D object re-
trieval by 3D curve matching. First, we project 2D object
edges obtained from a depth image into 3D space. Second, we
find distinctive feature points on the object. Third, we repre-
sent the shortest paths between the features by robust descrip-
tors invariant to rotation, scaling, and translation. Finally, we
match two 3D objects using the Maximum Weight Subgraph
search. The most important contribution of this paper is the
powerful object representation by 3D curves together with the
corresponding matching algorithm. Excellent retrieval results
achieved with our method show its benefits compared to the
state-of-the-art.

Index Terms— 3D Object Retrieval, 3D Curve Matching

1. INTRODUCTION

Researchers early realised that accuracy and robustness of the
object segmentation, detection, and recognition can be re-
markably increased, if 2D data is enriched with 2.5D or 3D
information. In the most related work [1] to our approach
the same 3D line segment data structure to represent 3D ob-
jects is employed. However, instead of using a correspon-
dence graph of all pairs of 3D line segments, we first de-
tect feature points and subsequently use them for comput-
ing the Maximum Weight Subgraph. Nguyen et al. [2] de-
scribe an algorithm that combines 2D images and 3D point
clouds. In our approach, 2D lines are first extracted from a
2D image and then back-projected to get a set of 3D points
for each line. Based on these point sets, 3D lines are esti-
mated. In another relevant method [3], the authors use range
data for reliable silhouette extraction that represents an ob-
ject for recognition. Payet and Todorovic [4] address view-
invariant object detection and pose estimation from a single
image by using contours as basis features. In this approach,
a few view-dependent shape templates are jointly used for
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detecting object occurrences and estimating their 3D poses.
However, their work requires training examples of arbitrary
views of an object to learn a sparse object model.

A highly related 2D skeleton matching approach was pro-
posed by Bai and Latecki [5]. They match skeletons based
on dissimilarities between the shortest paths connecting their
endpoints. For this, each shortest path is sampled by a fixed
number of points. Each of these points is represented by a ra-
dius of a maximum disc that has been determined for it during
the skeletonisation process. In this way, every shortest path is
represented by a vector of radii. Subsequently, matching costs
for all pairs of skeleton endpoints are calculated. This is done
by an approach called Optimal Subsequence Bijection (OSB).
Afterwards, all output values of the OSB are rearranged and
given as input to the Hungarian algorithm, where the match-
ing problem is reduced to a classical assignment problem of a
bipartite graph.

The input to our approach is a depth image preprocessed
by the methods described in [6] and [1]. First, the Canny
edge detector is applied and the obtained object contours are
projected to 3D. Second, a local coordinate system (LCS) is
determined. Third, representative feature points are identified
and shortest paths between them are computed (Section 2).
Since some of these paths are ambiguous, a modification of
the Dijkstra algorithm is needed (Section 3). In the next step a
shortest path descriptor based on relative angles is generated
(Section 4). Finally, we perform the matching (Section 5) by
transforming the problem into the search of Maximum Weight
Subgraphs (MWS). At the end, the comparison of the user
generated model and the object captured by the depth device
is conducted.

2. OBJECT FEATURE POINTS

Our proposed matching procedure utilises the concept of
shortest paths introduced in [5]. Consequently, object fea-
tures are necessary, because they act like the skeleton end
nodes described in the original method. To simplify their
computation, we assume that the objects are symmetric and
are approximable by cube-similar geometries. The feature
detection process is depicted and explained in Figure 1. In
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Fig. 1: Top left: initial feature points (green); virtual feature points
(cyan); closest object correspondences (red); imaginary diagonal
(orange). Top right: false positive removal. Bottom left: valid
feature points after false positive removal (pink); corner point can-
didates after rectangular fitting (blue). Bottom right: 2D cluster
scheme for mid-level features according to their position inside the
LCS.

order to perform the shortest path analysis, feature connec-
tions need to be established. Therefore, we search for 3D
curves, which can be interpreted as possible links between
two points. Thus, all 3D curves have to be taken into ac-
count for each feature point pair, with the aim to find at least
one segment satisfying the following constraints. Firstly, the
length of the curve has to be greater than the average of all
line lengths. Secondly, the ratio of lengths between the 3D
curve and the virtual link has to be greater than T (R). Thirdly,
the distance of the curve’s orientation to the one of the virtual
segment has to be below T (W ). Fourthly, the closest distance
from the currently observed feature point to either start or
endpoint of the curve (used for verifying the virtual link), has
to be below T (C). If all these constraints are fulfilled, the
observed feature pair is marked as connected. Even if the
result is suffering from a small amount of wrong connections,
it does not decrease the robustness of our methodology due
to our modified shortest path algorithm.

3. MODIFIED DIJKSTRA ALGORITHM

Even if we compare objects of the same class, it can happen
that paths are not similar or ambiguous, although all features
are found and connections are established correctly. For ex-
ample, in case of the user-generated chair model, there are at
least two paths from the lower left front leg to the upper right

back with identical lengths. If there is no appropriate crite-
rion, the algorithm has to choose non-deterministically one
of these paths. Other kinds of path irritations are caused by
inaccuracies occurring during the depth acquisition, the line
approximation or the curve back-projection. Consequently,
there is a high risk to retrieve another result as the actual
shortest path. In this case, the dissimilarity would increase
drastically and the whole matching algorithm would fail. To
tackle this problem, we propose two additional mechanisms
to improve the result of the Dijkstra algorithm. Firstly, all
shortest paths of the query object are monitored. This is done
by a simple description in terms of left/right, up/down and
front/back with the objective to depict the paths taken dur-
ing the computation. These path descriptors are then given
as input to the shortest path computation of the target object.
However, if connections are missing, it is not possible to fol-
low the instructions of the path descriptor anymore. For these
situations, we formulated a second rule: The algorithm is al-
lowed to establish one missing feature connection based on
the information given by the query path descriptor. If this new
connection does not support the further path computation, the
algorithm terminates.

4. SHORTEST PATH REPRESENTATION

The shortest path representation is a crucial factor regarding
the actual matching process (Section 5). It constitutes the only
way to compute the cost values that are required to match fea-
ture pairs. For this, a feature vector is introduced consisting
of K ′ tuples rm = ((α, β)m,1, . . . , (α, β)m,K′)

T, where α
and β denote angles and m is the corresponding path. By em-
ploying these two angles, we are able to uniquely describe a
3D point. Therefore, we firstly compute the angle α between
the point vector and z-axis of our LCS. Secondly, the point is
projected onto the x,y-plane, where we calculate β as shown
in Figure 2. In order to describe the whole path m based
on this angle constellation, it is sampled by K ′ equidistantly
distributed points (see Figure 2). Afterwards, each sample
point is linked with the feature point from which the path is
emanating with the result of K ′ sample vectors, which get fi-
nally described by α and β. Attributable to the use of relative
angles based on the object’s LCS, our path descriptor is in-
variant to rotation, translation and scaling (RTS). The actual
dissimilarity between the paths is calculated based on their
representation vectors. Therefore, the vector rm is separated
into two sub-vectors r(α)

m and r
(β)
m . The sub-vectors, in turn,

are given as input to a distance measurement approach, e.g.,
DTW or EMD.

5. FEATURE POINT MATCHING

The proposed matching principle works in analogy to the Path
Similarity Skeleton Graph Matching algorithm proposed in
[5], but we adapted it to depth sensory data and a completely
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Fig. 2: Demonstration of our path representation. The red circles
indicate the position of the sample points, the lines drawn in cyan
are the sample vectors (|gi|) between the currently observed feature
and each sample point on the path used for the descriptor.

different object representation. Our matching strategy also in-
volves the Optimal Subsequence Bijection (OSB) procedure
proposed by Latecki et al. [7]. OSB can be used for elas-
tic matching of sequences of different lengths. It is similar to
the Dynamic Time Warping and the Longest Common Subse-
quence (LCSS) algorithms, but outperformed these methods
during a comprehensive evaluation. Its key property is its ca-
pability to exclude outliers from the matching. Moreover, it
is suitable for partial matching and it preserves the order of
points during traversing the graph.

Attributed to the use of the OSB, our method requires a
deterministic and reproducible scheme regarding the order of
feature points; a problem that can easily be solved in 2D,
but not in 3D. In order to do so, first, the z coordinates pz
of all features are extracted pi=1,...,|Θ| = (pi,x, pi,y, pi,z)

T

and arranged in descending order inside a vector s. By sub-
tracting neighbouring elements in s, we retrieve a new vector
s′ = (s1 − s2, s2 − s3, . . . , s|Θ|−1 − s|Θ|)

T, where the dif-
ference values are analysed in terms of peak occurrences as
shown in Figure 3. For each peak a z value is computed based
on the two elements in s leading to this peak. Afterwards,
these z values are used to cluster the features along the z-axis.
Finally, the points inside each cluster are ordered counter-
clockwise in 2D. The technique completes with recombin-
ing all clusters. Therefore, the currently processed feature
point, accommodated in one of the z clusters, is projected in
the 2D space of the remaining ones, respectively (Figure 3).
The closest point to this projection identifies the start for the
counting operation. The final feature matching and the overall
object similarity is computed with the Maximum Weight Sub-
graphs [8] considering mutual exclusion (mutex) constraints
on weighted graphs.

6. EXPERIMENTS

To be comparable to other methods, we evaluated our method-
ology on the same chair database as used in [1] consisting of
213 objects. Regarding the set of stands with 40 instances, we
decided to extend it by further 67 objects. Additionally, we
introduced a third dataset consisting of images of tables that
encompasses 70 objects. All objects have been recorded with
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Fig. 3: Left: chair object and its feature points (blue). The
plot next to it visualises the values stored in s′; peaks can be
detected by using the average (red dashed line) or the standard
derivation (blue line) of s′. Right: feature points (blue) clus-
tered according to the peaks in s′. The points in each cluster
are ordered counter-clockwise in relation to the currently pro-
cessed point (red), that is projected (pink) into the remaining
clusters.

a RGB-D device (Kinect) from different viewpoints within
complex real-world scenes. Hence, some parts of the ob-
jects are occluded, missing or distorted by outliers. Exam-
ple images can be seen in Figure 4. Our ground truth data

Fig. 4: Example images used for evaluation.

was generated manually and each entry corresponds to one
scene object that is described in terms of “chair”, “stand”, “ta-
ble” and “undefined”. The similarity values obtained with our
method used for object retrieval and precision-recall graphs
were generated for quantitative evaluation. Furthermore, we
also assessed the average precision (AP) as introduced in [9].
All thresholds used in our experiments are based on the mean
and on the standard deviation derived by incorporating all 3D
curves. During our experiments we used the Dynamic Time
Warping as well as the Earth Mover’s Distance to calculate
the distances between the paths (Section 4).

Point Detection: To evaluate the robustness and accuracy of
our feature detection method, a feature ground truth has been
created for the most challenging object type in our dataset,
namely the chair. As presented in Figure 5, we obtained ex-
cellent results, especially, if one considers the quality of our
data. The threshold T1 is responsible for the triangular and T2
for the rectangular fitting. All configurations led to good re-
sults, except T1=0.3 and T2=0.1, where the rectangular fitting
threshold is too restrictive.

Chair Database: First, we evaluated our approach on the



Fig. 5: Overview about four different threshold combinations (hor-
izontally plotted) regarding their power in terms of detected features
(vertically plotted). All of them perform as expected and lead to
good results, expect the configuration T1=0.3 and T2=0.1.

chair database used in [1]. This database is a real chal-
lenge for our method, since many chairs are of poor quality
and accommodate heavy outliers. Moreover, the dataset in-
cludes objects which principally cannot be recognised by our
method, e.g., office chairs. However, even in presence of
these negative factors, we have been able to obtain very good
results as shown in Figure 6. Moreover, the proposed method
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Fig. 6: Recall-Precision Graph (left) and ROC Curve (right) for the
chair database used in [1].

outperforms all of its competitors. Table 1 shows the AP of
our approach compared to several state-of-the-art methods.

Stand Database: Figure 7 shows the results of our stand
database evaluation. Even in this case, we obtained excel-
lent results, although we expected more irritations caused by
our path descriptor. Nevertheless, despite the fact that we ex-
tended the database with new objects, it only includes half of
the amount of true positives compared to the previous one.

Table Database: This evaluation was operating on our own
database. It is the smallest database in our evaluation. How-
ever, it has been chosen deliberately, since this object class
also provides a high risk of being ambiguous to the other
ones. This makes it even more attractable as we retrieve very

Method Average Precision
Our Method 0.760
Ma et al. (2012) 0.714
Janoch et al. (2011) 0.438
Felzenswalb et al. (2010) 0.419
Ferrari et al. (2010) 0.351

Table 1: The table shows the average precision of our method com-
pared to other state-of-the-art approaches. The most interesting in-
formation is its comparison to Ma et al. since their approach is the
most related one to ours.
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Fig. 7: Recall-Precision Graph (left) and ROC Curve (right) for the
stand database, AP = 0.8484.

promising results as shown in Figure 8. It seems, that the
different object proportions can be represented adequately by
our path descriptor.
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Fig. 8: Recall-Precision Graph (left) and ROC Curve (right) for the
table database, AP = 0.8840.

7. CONCLUSION

In this paper we presented a robust and generic 3D object
recognition algorithm based on 3D curves. To underline the
generic aspect, a user-generated and, hence, strongly ab-
stracted model is introduced as a query object. Moreover,
since this model is processed equally compared to the tar-
get one, the query can be easily replaced by other objects.
Furthermore, we proposed an intelligent method to localise
feature points by incorporating a local coordinate system.
Finally, we demonstrated how these steps are combined to
recognise 3D objects. In a comprehensive setup of experi-
ments we outperformed all related state-of-the-art methods.
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