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Synonyms

Relation between objects and their digital images

Definition

Digitization is a mathematical model of con-
verting continuous subsets of the plane or space
(representing real objects) to digital sets in Z

2

or Z
3 or similar grids (representing segmented

images of these objects). This definition can be
generalized to any dimension n > 3: Digitization
converts (transforms) continuous subsets of R

n

to digital sets in Z
n or, equivalently, to functions

from Z
n to {0, 1}.

Background

A fundamental task of knowledge representa-
tion and processing is to infer properties of real
objects or situations given their representations.
In spatial knowledge representation and, in par-

ticular, in computer vision and medical imaging,
real objects are represented in a pictorial way as
finite and discrete sets of pixels or voxels. The
discrete sets result in a quantization process, in
which real objects are approximated by discrete
sets. In computer vision, this process is called
sampling or digitization and is naturally realized
by technical devices like computer tomography
scanners, CCD cameras, or document scanners.
Digital images obtained by digitization are suit-
able to estimate the real object properties like vol-
ume and surface area. Therefore, a fundamental
question addressed in spatial knowledge repre-
sentation is: Which properties inferred from dis-
crete representations of real objects correspond
to properties of their originals, and under what
conditions this is the case? While this problem
is well-understood in the 2D case with respect to
topology [1–5], it is not as simple in 3D, as shown
in [6]. Only recently a first comprehensive answer
to this question with respect to important topolog-
ical and geometric properties of 3D objects has
been presented in [7, 8].

Some recent works done for the general case
are shown below. It is proven in [9] that although
Gauss digitized boundaries of subsets of Rn, for
n ≥ 3 may not be manifolds, non-manifoldness
may only occur in places where the normal vector
is almost aligned with some digitization axis,
showing that although an object and its digitiza-
tion are close in the Hausdorff sense through the
projection map, they may not be homeomorphic.
Nevertheless, in that entry, the authors prove
the validity of the digital surface integral as a
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multigrid convergent integral estimator of subsets
of Rn, for n ≥ 3, as long as the digital normal
estimator is also multigrid convergent. In addi-
tion, [10] is a short survey on digital analytical
geometry where the main idea is to analytically
characterize digital sets to describe its continuous
counterpart in R

n, for n ≥ 3 and related trans-
form. This way, digital subsets of Zn are defined
by a list of inequalities and not by an enumer-
ation of points in Z

n. Finally, in [11], a modus
operandi is proposed to model a digital subset of
Z

n as a cubical complex proving that the digital
fundamental group of a digital subset of Z

n is
isomorphic to the fundamental group of its corre-
sponding cubical complex, ensuring the topolog-
ical correctness of the approach. Thus, properties
of digital subsets of Zn can be computed on their
corresponding cubical complexes using powerful
algebraic-topological tools. Observe that this last
approach “closes" a loop: starting from a con-
tinuous subset of R

n, a digital subset of Z
n is

obtained and used to compute a cubical complex
whose embedding in R

n is again a continuous
subset of Rn.

The description of geometric and, in particu-
lar, topological features in discrete structures is
based on graph theory, which is widely accepted
in the computer science community. A graph is
obtained when a neighborhood relation is intro-
duced into a discrete set, e.g., a finite subset
of Z

2 or Z
3, where Z denotes the integers. On

the one hand, graph theory allows investigation
into connectivity and separability of discrete sets
(e.g., for a simple and natural definition of con-
nectivity, see [12, 13]). On the other hand, a
finite graph is an elementary structure that can
be easily implemented on computers. Discrete
representations are analyzed by algorithms based
on graph theory, and the properties extracted are
assumed to represent properties of the original
objects. Since practical applications, for example,
in image analysis, show that this is not always the
case, it is necessary to relate properties of discrete
representations to the corresponding properties of
the originals. Since such relations can describe
and justify the algorithms on discrete graphs,
their characterization contributes directly to the
computational investigation of algorithms on dis-

crete structures. This computational investigation
is an important part of the research in computer
science and, in particular, in computer vision
[14], where it can contribute to the develop-
ment of more suitable and reliable algorithms
for extracting the required shape properties from
discrete representations.

It is clear that no discrete representation can
exhibit all features of the real original. Thus
one has to accept compromises. The compro-
mise chosen depends on the specific applica-
tion and on the questions which are typical for
that application. Real objects and their spatial
relations can be characterized using geometric
features. Therefore, any useful discrete represen-
tation should model the geometry faithfully in
order to avoid false conclusions. Topology deals
with the invariance of fundamental geometric
features like connectivity and separability. Topo-
logical properties play an important role, since
they are the most primitive object features and
human visual system seems to be well-adapted to
cope with topological properties.

However, one does not have any direct access
to spatial properties of real objects. Therefore,
real objects are represented as bounded subsets
of the Euclidean space R

3 and their 2D views
(projections) as bounded continuous subsets of
the plane R

2. Hence, from the theoretical point
of view of knowledge representation, the goal is
to relate two different pictorial representations
of objects in the real world: a discrete and a
continuous representation.

Already two of the first entries in computer
vision deal with the relation between the con-
tinuous object and its digital images obtained
by modeling a digitization process. Pavlidis [1]
and Serra [2] proved independently in 1982 that
an r-regular continuous 2D set S (the defini-
tion follows below) and the continuous analog
of the digital image of S have the same shape
in a topological sense. Pavlidis used 2D square
grids and Serra used 2D hexagonal sampling
grids.

In 3D this problem is much more complicated.
In 2005 it has been shown in [6] that the con-
nectivity properties are preserved when digitizing
a 3D r-regular object with a sufficiently dense
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sampling grid, but the preservation of connec-
tivity is much weaker than topology. Stelldinger
and Köthe [6] also found out that topology
preservation can even not be guaranteed with
sampling grids of arbitrary density if one uses
the straightforward voxel reconstruction, since
the surface of the continuous analog of the digital
image may not be a 2D manifold. The question
on how to guarantee topology preservation dur-
ing digitization in 3D remained unsolved until
2007.

The solution was provided in [7], where
the same digitization model as Pavlidis and
Serra is used, and also r-regular sets (but in
R

3) are used to model the continuous objects.
As already shown in [6], the generalization of
Pavlidis’ straightforward reconstruction method
to 3D fails since the reconstructed surface
may not be a 2D manifold. For example,
Fig. 1a, b shows a continuous object and its
digital reconstruction whose surface is not a
2D manifold. However, it is possible to use
several other reconstruction methods that all
result in a 3D object with a 2D manifold surface.
Moreover it is also shown in [7] that these
reconstructions and the original continuous
object are homeomorphic and their surfaces are
close to each other.

The first reconstruction method, majority
interpolation, is a voxel-based representation

on a grid with doubled resolution. It always leads
to a well-composed set in the sense of [15],
which implies that a lot of problems in 3D digital
geometry become relatively simple.

The second method is the most simple one.
It just uses balls with a certain radius instead
of cubical voxels. When choosing an appropriate
radius, the topology of an r-regular object will
not be destroyed during digitization.

The third method is a modification of the well-
known marching cubes algorithm [16]. The orig-
inal marching cubes algorithm does not always
construct a topologically sound surface due to
several ambiguous cases [17, 18]. As shown in
[7] and [8], most of the ambiguous cases can not
occur in the digitization of an r-regular object and
that the only remaining ambiguous case always
occurs in an unambiguous way, which can be
dealt with by a slight modification of the original
marching cubes algorithm. Thus the generated
surface is not only topologically sound, but it
also has exactly the same topology as the original
object before digitization. Moreover it is shown
that one can use trilinear interpolation and that
one can even blend the trilinear patches smoothly
into each other such that one gets smooth object
surfaces with the correct topology. Each of these
methods has its own advantages making the pre-
sented results applicable to many different image
analysis algorithms.

Digitization, Fig. 1 The digital reconstruction (b) of an r-regular object (a) may not be well-composed, i.e., its surface
may not be a 2D manifold as can be seen in the magnification
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In the general case, well-composed digital
subsets of Z

n do not present topological para-
doxes. They also have very interesting properties
and practical applications. Different “flavors" of
well-composedness (WC) are present in the liter-
ature: WC based on equivalence of connectivities
(EWC), digital WC (DWC), WC in the Alexan-
drov sense (AWC), and WC in the continuous
sense (CWC). All these definitions are equivalent
in 2D. For the 3D case, we have DWC ⇔ AWC
⇔ CWC. For the nD case, n ≥ 3, we have
EWC ⇐ DWC. The rest of equivalences for
the case n > 3 are open problems nowadays.
The definition of well-composedness has also
been extended to arbitrary grids and multivalued
images (AGWC) (see [19]).

Methods for repairing digital subsets of Z
n,

for n > 3, to convert them in well-composed
ones are a complicated open problem. A first
step in this direction is done in [20] in which a
combinatorial method is given for computing a
simplicial complex homotopy equivalent to the
cubical complex associated to a given digital
subset of Zn. This simplicial complex is contin-
uously well-composed for n ≤ 3 and weakly
well-composed for n > 3 in the sense that for
any two n-simplices incident to a common vertex

v, there always exists a face-connected path of
n-simplices incident to v. A graphical diagram
of the method is given in Fig. 2. Observe that
cubical and simplicial complexes derived from
that method are also stored as digital subsets of
Z

n, so that later calculations on the elements of
the complex can be done efficiently.

Theory

The (Euclidean) distance between two points x

and y in R
n is denoted by d(x, y), and the

(Hausdorff) distance between two subsets of R
n

is the maximal distance between each point of
one set and the nearest point of the other. Let
A ⊂ R

n and B ⊂ R
m be sets. A function

f : A → B is called homeomorphism if
it is bijective, and both it and its inverse are
continuous. If f is a homeomorphism, then A

and B are homeomorphic. Let A and B be the
two subsets of R

n (particularly, n = 2 or 3).
Then a homeomorphism f : Rn → R

n such that
f (A) = B and d(x, f (x)) ≤ r , for all x ∈ R

n,
is called an r-homeomorphism of A to B, and A

and B are r-homeomorphic. A Jordan curve is a
set J ⊂ R

n which is homeomorphic to a circle.

Digitization, Fig. 2 We start from I = (Zn, FI ) being
FI a digital subset of Zn (in fact, FI ⊂ 4Zn). The digital
subset FJ of Zn encodes the cells of the associated cubical
complex Q(I) (blue is used for 0-cells, red for 1-cells,
and green for 2-cells). Now, we “repair" FJ to obtain the
digital subset FL of Zn by “thickening" the critical points

of FJ . Then, we compute the simplicial complex PS(I)

whose set of vertices is FL, satisfying that there exists a
face-connected path of n-simplices in PS(I) joining any
two n-simplices incident to a common vertex in PS(I),
that is, PS(I) is weakly well-composed (see [20])



Digitization 5

D

Let A be any subset of Rn. The complement of A

is denoted by Ac. All points in A are foreground,
while the points in Ac are called background. The
open ball in R

n of radius r and center c is the
set B0

r (c) = {x ∈ R
n | d(x, c) < r}, and the

closed ball in R
n of radius r and center c is the set

Br (c) = {x ∈ R
n | d(x, c) ≤ r}. The boundary

of A, denoted ∂A, consists of all points x ∈ R
n

with the property that if B is any open set of Rn

such that x ∈ B, then B∩A 
= ∅ and B∩Ac 
= ∅.
An open ball B0

r (c) is tangent to ∂A at a point
x ∈ ∂A if ∂A ∩ ∂B0

r (c) = {x}. An open ball
B0

r (c) is an osculating open ball of radius r to ∂A

at point x ∈ ∂A if B0
r (c) is tangent to ∂A at x and

either B0
r (c) ⊆ A0 or B0

r (c) ⊆ (Ac)0, where A0

is a maximal open subset of A, i.e., A without its
boundary.

Definition 1 A set A ⊂ R
n is called r-regular if,

for each point x ∈ ∂A, there exist two osculating
open balls of radius r to ∂A at x such that one
lies entirely in A and the other lies entirely in Ac.
Examples illustrating 2D and 3D cases are shown
in Fig. 3.

Note that the boundary of a 3D r-regular set
is a 2D manifold surface. Any set S which is a
translated and rotated version of the set 2·r ′√

3
Z

3 is

called a cubic r ′-grid and its elements are called
sampling points. Note that the distance d(x, p)

from each point x ∈ R
3 to the nearest sampling

point s ∈ S is at most r ′. The voxel VS(s) of a
sampling point s ∈ S is its Voronoi region R

3:

VS(s) = {x ∈ R
3 | d(x, s) ≤ d(x, q), ∀q ∈

S}, i.e., VS(s) is the set of all points of R3 which
are at least as close to s as to any other point in
S. In particular, note that VS(s) is a cube whose
vertices lie on a sphere of radius r ′ and center s.

Definition 2 Let S be a cubic r ′-grid, and let
A be any subset of R

3. The union of all voxels
with sampling points lying in A is the digital
reconstruction of A with respect to S, Â =
⋃

s∈(S∩A) VS(s).

This method for reconstructing the object from
the set of included sampling points is the 3D
generalization of the 2D Gauss digitization (see
[13]) which has been used by Gauss to compute
the area of discs and which has also been used by
[1] in his sampling theorem.

For any two points p and q of S, VS(p)∩VS(q)

is either empty or a common vertex, edge, or
face of both. If VS(p) ∩ VS(q) is a common
face, edge, or vertex, then VS(p) and VS(q) are
face-adjacent, edge-adjacent, or vertex-adjacent,
respectively. Two voxels VS(p) and VS(q) of Â

are connected in Â if there exists a sequence
VS(s1), . . . ,VS(sk), with k ∈ Z and k > 1, such
that s1 = p, sk = q, and si ∈ A (or equivalently,
VS(si) ⊂ Â), for each i ∈ {1, . . . , k}, and VS(sj )

and VS(sj+1) are face-adjacent, for each j ∈
{1, . . . , k − 1}. A (connected) component of Â

is a maximal set of connected voxels in Â.

Digitization, Fig. 3 For each boundary point of a 2D/3D, r-regular set exists an outside and an inside osculating open
r-disc/ball
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Definition 3 Let S be a cubic r ′-grid, and let
T be any subset of S. Then

⋃
t∈T VS(t) is

well-composed if ∂(
⋃

t∈T VS(t)) is a surface
in R

3 or, equivalently, if for every point x ∈
∂(

⋃
t∈T VS(t)), there exists a positive number r

such that the intersection of ∂(
⋃

t∈T VS(t)) and
B0

r (x) is homeomorphic to the open unit disk in
R

2, D = {(x, y) ∈ R
2 | x2 + y2 < 1}.

Well-composed digital reconstructions can be
characterized by two local conditions depending
only on voxels of points of S. Let s1, . . . , s4

be any four points of S such that
⋂4

i=1 VS(si)

is a common edge of VS(s1), . . . ,VS(s4).
The set {VS(s1), . . . ,VS(s4)} is an instance
of the critical configuration (C1) with respect
to

⋃
t∈T VS(t) if two of these voxels are

in
⋃

t∈T VS(t) and the other two are in
(
⋃

t∈T VS(t))c and the two voxels in
⋃

t∈T VS(t)

(resp. (
⋃

t∈T VS(t))c) are edge-adjacent, as
shown in Fig. 4a. Now, let s1, . . . , s8 be any
eight points of S such that

⋂8
i=1 VS(si) is a

common vertex of VS(s1), . . . ,VS(s8). The
set {VS(s1), . . . ,VS(s4)} is an instance of
the critical configuration (C2) with respect
to

⋃
t∈T VS(t) if two of these voxels are in

⋃
t∈T VS(t) (resp. (

⋃
t∈T VS(t))c) and the other

six are in (
⋃

t∈T VS(t))c (resp.
⋃

t∈T VS(t))
and the two voxels in

⋃
t∈T VS(t) (resp.

(
⋃

t∈T VS(t))c) are vertex-adjacent, as shown
in Fig. 4b. The following theorem from [15]

establishes an important equivalence between
well-composedness and the (non)existence of
critical configurations (C1) and (C2).

Theorem 1 ( [15]) Let S be a cubic r0-grid and
let T be any subset of S. Then,

⋃
t∈T VS(t) is

well-composed if the set of voxels {V(s)|s ∈
S} does not contain any instance of the critical
configuration (C1) nor any instance of the critical
configuration (C2) with respect to

⋃
t∈T VS(t).

A simple consequence of the 2D digitization
theorem by [1] is that the reconstruction of
an r ′-regular set is well-composed. The main
difficulty of 3D digitization as compared to
2D lies in the fact that digital reconstruction
Â of A with respect to S is not guaranteed
to be well-composed. An example is provided
in Fig. 5. Therefore, it is necessary to repair Â

in order to ensure the topological equivalence
between A and repaired Â. The first topology-
preserving repairing method has been proposed
in [7], where also the following theorem
is proven. It is an interesting observation
that it took 25 years to obtain this 3D
theorem.

Theorem 2 ( [7]) If A is an r-regular object and
S is a cubic r ′-grid with 2r ′ < r , then the result of
the topology-preserving repairing method of the
reconstruction Â is r-homeomorphic to A.

Digitization, Fig. 4 (a) Critical configuration (C1). (b) Critical configuration (C2). For the sake of clarity, only the
voxels of foreground or background points are shown
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Digitization, Fig. 5 The
surface of an object only
needs to have an arbitrarily
small but nonzero
curvature in order to make
occurrences of the critical
configuration (C1) possible
in the digital reconstruction

Application

A complete understanding of the loss of informa-
tion due to the digitization process is fundamen-
tal for the justification of any computer vision
application. If the relevant information is not
contained in the digital image, there is no way to
reconstruct it without using context knowledge.
Thus, whenever one needs to have guarantees
for the correct behavior of some computer vision
algorithm, one has to be aware of what happens
during digitization. This entry gives an exemplary
insight to the topic, the related problems, and the
way to solve them.

Open Problems

The analysis of the effect of digitization to the
information being extractable from an image
is a challenging research area. The newest
results approximate real acquisition processes
and thus give direct implications for many
computer vision algorithms which rely on precise
information of the structures being approximated
by the digital image. However, in reality the
digitization process is still more complicated
than the models which are used for topological
or geometric sampling theorems. The goal is
to derive guarantees for digitization models
approximating real digitization processes.

For the case n ≥ 3, the equivalences between
the different definitions of well-composedness
(EWC, DWC, AWC, EWC, AGWC) is an open
problem together with a general method for
repairing non-well-composed digital sets in Z

n.
Besides, the study of which properties well-
composed images own in Z

n that reflect the
continuous world is a promising line of research,
such as the link between critical points and Morse
theory [21] or topological persistence [22] and
tree of shapes. A more exhaustive list can be
consulted in [19, Section 10].
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