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DPNet: Dual-Path Network for Real-Time Object
Detection With Lightweight Attention
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Abstract— The recent advances in compressing high-accuracy
convolutional neural networks (CNNs) have witnessed remark-
able progress in real-time object detection. To accelerate detection
speed, lightweight detectors always have few convolution layers
using a single-path backbone. Single-path architecture, how-
ever, involves continuous pooling and downsampling operations,
always resulting in coarse and inaccurate feature maps that are
disadvantageous to locate objects. On the other hand, due to
limited network capacity, recent lightweight networks are often
weak in representing large-scale visual data. To address these
problems, we present a dual-path network, named DPNet, with
a lightweight attention scheme for real-time object detection.
The dual-path architecture enables us to extract in parallel
high-level semantic features and low-level object details. Although
DPNet has a nearly duplicated shape with respect to single-
path detectors, the computational costs and model size are
not significantly increased. To enhance representation capability,
a lightweight self-correlation module (LSCM) is designed to cap-
ture global interactions, with only a few computational overheads
and network parameters. In the neck, LSCM is extended into a
lightweight cross correlation module (LCCM), capturing mutual
dependencies among neighboring scale features. We have con-
ducted exhaustive experiments on MS COCO, Pascal VOC 2007,
and ImageNet datasets. The experimental results demonstrate
that DPNet achieves a state-of-the-art trade off between detection
accuracy and implementation efficiency. More specifically, DPNet
achieves 31.3% AP on MS COCO test-dev, 82.7% mAP on Pascal
VOC 2007 test set, and 41.6% mAP on ImageNet validation set,
together with nearly 2.5M model size, 1.04 GFLOPs, and 164 and
196 frames/s (FPS) FPS for 320 × 320 input images of three
datasets.
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I. INTRODUCTION

OBJECT detection is a fundamental and challenging task
in the field of computer vision. It aims to detect the

minimum bounding boxes that cover objects of interest in input
images and assign associated semantic labels synchronously.
Typically, the recent approaches based on convolutional neural
networks (CNNs) can be roughly divided into two-stage [1],
[2] and one-stage [3], [4], [5], [6] detectors. The first category
produces candidate boxes using region proposal networks at
the beginning, which will be subsequently refined in the
next stage. Hence, these detectors are always not efficient
due to their multistage nature. In contrast, one-stage detec-
tors [3], [4], [5], [6] directly predict object categories and
regress bounding boxes on convolutional feature maps. Since
the whole pipeline is simplified, one-stage detectors always
achieve faster inference speed than two-stage detectors [1], [2].
In spite of achieving remarkable progress, the vast majority
of CNN-based detectors involve hundreds or even thousands
of convolutional layers and feature channels [7], [8], where
the model size and implementation efficiency are unacceptable
for real-world applications that require online estimations and
real-time predictions, such as self-driving, robot vision, and
virtual reality.

In order to adapt to real-world scenarios, a vast number
of lightweight networks [11], [12], [13] have been pro-
posed for real-time object detection. Derived from [11], [12],
and [10] used for image classification, these lightweight
networks prefer to directly inherit single-path architecture
using lightweight convolution in their backbones. For instance,
MobileNet-SSD [11], [12] combines MobileNet with SSD-
head. ThunerNet [13] adopts ShuffleNetV2 [10] as backbone
by replacing 3 × 3 depthwise convolution with 5 × 5 depth-
wise convolution. Pelee [14] employs a lightweight backbone
with a dense structure, reducing output scales of SSD-head
to save computational costs. Tiny-DSOD [15] introduces
depthwise convolutions both in backbone and feature pyramid
network (FPN). Tiny-YOLO families [5], [16], [17] reduce the
number of convolution layers or remove multiscale outputs in
the neck. Although these advanced and efficient networks have
achieved impressive detection results, they inherently suffer
from the following limitations.

1) Adopting aggressive downsampling strategy (e.g., pool-
ing and stride convolution), single-path architecture has
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Fig. 1. Feature heatmaps of two visual examples in MS COCO [9] validation
set using ShuffleNetV2 [10] and DPNet. The red denotes high responses, while
the blue indicates low activations. For clarity, bounding boxes and associated
labels have also been superimposed on objects of interest. Two rows show
the heatmaps from low-resolution (deep layer) and high-resolution (shallow
layer) features, respectively. Compared with ShuffleNetV2 [10], the heatmaps
of DPNet are more accurate, as most pixels with higher activations are located
in object regions. (Best viewed in color.)

been dominant in backbone design for real-time object
detection [12], [17], [18]. As fine object details are dis-
carded step-by-step from shallow-to-deep convolutional
layers, the produced high-level features are not beneficial
to accurately locate objects. Two visual examples are
given in Fig. 1. The first row shows that ShuffleNetV2
[10] prefers to extract features from surrounding areas
of input images. Although lightweight detectors fol-
low high-accuracy CNNs that employ FPN to relieve
this problem [15], simply integrating such inaccurate
features from shallow to deep layers via elementwise
addition or concatenation may be harmful for detecting
objects [19].

2) Due to the limited network capacity, recent lightweight
detectors may have weak representation ability of visual
data [20]. In the second row of Fig. 1, for example,
high filter responses sometimes spread over a cluttered
background (e.g., trees and sea), while areas containing
the objects of interest are less activated. The under-
lying reason mainly lies in that, due to the limited
receptive field, lightweight convolutions are very limited
in encoding global dependencies [20]. Some networks
prefer to utilize large convolution kernels (e.g., 31 × 31)
[21], [22] or self-attention [23]; yet, they always involve
huge computational cost and a heavy model size that is
not suitable for real-time object detection. As a result,
how to enhance feature representation ability with a
small computational budget still remains unclear for
lightweight object detection.

To address these shortcomings, this article describes a
dual-path network, called DPNet, with a lightweight atten-
tion design for real-time object detection. As shown in
Fig. 2, DPNet is composed of three components: backbone,
neck, and detection head. To remedy the problem of aban-
doning object details, unlike previous lightweight detection
networks [10], [11], [12] that always employ single-path
structure, DPNet adopts a parallel-path architecture, leading to
a dual-resolution backbone. More specifically, the resolution
of the low-resolution path (LRP) is gradually reduced as usual,

where high-level semantic cues are encoded. Conversely,
the resolution of the high-resolution path (HRP) remains
unchanged, where low-level spatial details are extracted.
Both paths are significant for lightweight object detection.
Considering the complementary nature of two subnetworks,
a bidirection fusion module (Bi-FM) is constructed to enhance
communications between two paths, facilitating information
flow among variable-resolution features. Although the back-
bone of DPNet has nearly duplicated shape with respect to
single-path architecture [10], [11], [12], the computational
complexity and network size are not significantly increased.

To leverage representation capability and computational
efficiency, we develop ShuffleNetV2 unit [10] with a
lightweight self-correlation module (LSCM) that mimics self-
attention [23], [24], producing an attention-based shuffle unit
(ASU). LSCM is decomposed into two steps: attention com-
putation and feature reweighting. Similar to self-attention,
the first step produces attention maps by calculating ele-
mentwise similarity. However, instead of exploring dense
pixel-to-pixel/channel-to-channel dependencies [23], [24] that
require a large amount of computations, LSCM is more
lightweight and computationally cheaper, as it investigates
sparse pixel-to-region/channel-to-group-channel mutual cor-
relations in low-dimensional embeddings, leading to the
linear computational costs with respect to input resolutions.
In the second step, LSCM adopts elementwise reweighting
to further reduce computational costs, where the calculated
attention maps are directly multiplied to flatten features, not
involving complicated matrix multiplication widely used in
self-attention. In Fig. 2, to make full use of features with
different resolutions in the neck, LSCM is further extended
to a lightweight cross correlation module (LCCM). LCCM
works in a bidirectional fashion: top–down (LCCM-TD) and
bottom–up (LCCM-BU). LCCM-TD introduces high-level
semantics to guide low-level features. Conversely, LCCM-BU
utilizes low-level details to refine high-level cues. As shown
in Fig. 1, since DPNet inherits the merits from the dual-path
backbone and lightweight attention design, pixels within tar-
get object regions (e.g., human heads, hands, and feet) are
correctly activated, either in high-resolution or low-resolution
features. In short, the main contributions of this article are
threefold.

1) In contrast to mainstream lightweight detectors that use a
single-path backbone, DPNet employs a dual-path archi-
tecture that extracts high-level semantics and maintains
low-level details, synchronously. Different from inte-
grating various resolution features in FPN, also known
as the neck part, of detection networks, our DPNet
designs a dual-resolution path in the backbone, which
is, to our best knowledge, rarely explored in recent
networks. Moreover, due to its elegant dual-path archi-
tecture, DPNet is able to perform feature interactions in
backbone that are impossible in traditional single-path
object detectors.

2) We design a lightweight attention-based module LSCM
that leverages implementing efficiency and represen-
tation capability. LSCM is computationally cheap as
its computational complexity is linear to input fea-
ture resolutions. Even so, it still achieves powerful
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Fig. 2. Overview architecture of DPNet. The backbone is mainly constructed by ASUs, together with a stem and two Bi-FMs. Meanwhile, it has a
dual-resolution structure: HRP and LRP are denoted by purple and blue dashed rectangles, respectively. In the neck, LCCM works in a bidirectional fashion
are denoted by orange and green dashed rectangles, to enhance cross-scale interactions. Our detection head uses several lightweight ConvBlocks for final
predictions. (Best viewed in color.)

representation ability by investigating global spatial and
channel interactions. We also extend LSCM to LCCM
in the neck part, where correlated dependencies are
well explored between neighboring scale features with
different resolutions.

3) We test DPNet on three challenging datasets: MS
COCO [9], Pascal VOC 2007 [25], and ImageNet
ILSVRC 2017 [26]. Extensive experiments demon-
strate that our method achieves a state-of-the-art trade
off in terms of detection accuracy and implemen-
tation efficiency. Specifically, DPNet achieves 31.3%
AP on MS COCO test-dev, 82.7% mAP on Pascal
VOC 2007 test set, and 41.6% mAP on ImageNet
validation set, respectively, together with only 2.5M
model size, 1.04 GFLOPs, and 164 and 196 FPS for
320 × 320 input images of three datasets.

The remainder of this article is organized as follows. After
a brief introduction of related work in Section II, we elaborate
on the details of our DPNet in Section III. Experimental results
are given in Section IV, and Section V provides concluding
remarks and future work.

II. RELATED WORK

In order to adapt to real-time applications, a vast number
of methods have been proposed to compress object detectors,
such as quantization [27], pruning [28], knowledge distilla-
tion [29], and lightweight model design [13], [14], [30]. As our
method belongs to the last category, we briefly review related
work in this direction.

A. Real-Time Object Detection With Lightweight Design

Although many state-of-the-art one-stage detectors [3],
[4], [5], [6] have achieved real-time inference speed, their
model size and computational costs are still unacceptable for
real-time applications. To alleviate such limitations, design-
ing lightweight detectors has attracted great attention in

recent years [13], [14], [15], [30]. Generally, real-time object
detectors can be broadly divided into two categories: CNN-
based [13], [15], [30] and Transformer-based [20], [31]
lightweight networks.

The first category often adopts compact operations, such
as depthwise [11], groupwise [12], and factorized con-
volution [32], to construct their backbones. For example,
MobileNet-SSD [12] equips MobileNet [11] with SSD
head [4] to achieve satisfactory detection results. Thunder-
Net [13] employs ShuffleNetV2 [10] as the backbone and
designs a spatial attention module to capture global con-
text. Tiny-DSOD [15] proposes an efficient depthwise dense
block to replace the origin one in DenseNet [33]. Pelee [14]
introduces an efficient variant of [33] to obtain real-time
predictions. YOLO families [5], [16], as the most popular and
advanced one-stage detectors, are often shrunk to a tiny ver-
sion [17] that compresses model size by reducing convolution
layers. MobileDets [30], another lightweight neural architec-
ture search detector, achieves better latency and compatibility
on various mobile platforms. Some methods design a plug-
and-play module in a lightweight backbone for efficient object
detection. For instance, Jin et al. [34] propose an augmented
encoder–decoder path in widely used residual block. DAC [35]
speeds up by learning attention within convolutional kernels.
The alternative approaches employ a joint learning scheme
that utilizes additional learning tasks for real-time object
detection, such as multi-object tracking and segmentation [36],
and object detection and color conversion in under water
scenarios [37].

Transformer models [20], [31], [38], on the other hand,
begin to show their potential for object detection in
recent years. As Transformers derive from a self-attention
scheme [39] that involves huge computations, researchers
reduce the model size by designing lightweight CNN-
transformer hybrids [20], [31]. For instance, MobileViT [20]
still adopts single-path architecture, inserting Transformer
block into inverted bottleneck module [12] for real-time object
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detection. Lite Transformer [40] employs a long-short range
attention to speed up computation, where local and global cues
are captured by local convolution and self-attention. Mobile-
Former [31] provides a lightweight mixture network, where
CNN branch extracts local features, while the Transformer
branch investigates global cues. Meanwhile, the local and
global features interact with each other to improve perfor-
mance. Switch Transformer [41], as a pioneer model scaling
to trillion parameters, replaces traditional dense FFN with a
sparse switch FFN. Besides taking running speed into account,
FlashAttention [42] also considers the memory constraint in
designing efficient Transformers.

In contrast to most of the aforementioned methods designed
in a single-path manner, our DPNet adopts a dual-path archi-
tecture. LRP extracts high-level rich semantics, as well as HRP
abstracts low-level accurate details, both of which are essential
for real-time object detection. Although dual-path architecture
has been explored for lightweight semantic segmentation [43],
[44], to our best knowledge, only Mobile-Former [31] employs
dual-path architecture. However, it still involves a heavy model
size, and the resolutions of both paths are gradually reduced
as usual. In contrast, DPNet is a lightweight detector, where
the resolution is kept constant throughout the entire HRP.

B. Visual Attention

Due to the powerful capability of capturing global con-
text, visual attention [39], [45], [46], [47] has been widely
employed in CNNs to develop object detection. These
networks can be roughly divided into two categories: squeeze-
attention [45], [48], [49] and self-attention [23], [38], [39].

The first category highlights important feature channels and
positions, known as channelwise and spatialwise attention,
through network learning. For example, SENet [45] utilizes
a pooling operation to encode global context. GSNet [47]
explores second-order global pooling to reweight feature chan-
nels. Besides channel attention, some networks [49], [50]
advocate learning spatial attention that captures global posi-
tional context. For instance, CBAM [49] adopts average and
max pooling in channel and spatial dimensions, respectively.
ECANet [46] replaces fully connected layers with 1-D con-
volutional layers. Although capturing context clues through
global pooling is computationally efficient, it is still weak in
representing elementwise interactions.

The second category captures global context by calcu-
lating the correlation matrix between each image element.
Nonlocal network [23], as a pioneer, models pixel-to-pixel
relationship, where each position is reweighted by all other
positions. Instead of computing dense attention maps, CCNet
[51] proposes two consecutive criss-cross attentions to reduce
computational costs. GCNet [48], however, considers that
only reweighting feature channels is enough to capture global
context. ANNet [52] proposes spatial pyramid pooling in a
nonlocal network to accelerate inference speed. Although these
advanced networks achieve powerful capability to capture
global context, they still suffer from heavy computations.

Different from these approaches, our DPNet employs LSCM
to leverage representation ability and computational efficiency.
From the perspective of capturing global context clues, LSCM

also investigates spatial and channel interactions that is mimic
to self-attention. However, LSCM is computationally cheap
as it explores pixel-to-region/channel-to-group-channel mutual
correlations, instead of dense pixel-to-pixel/channel-to-channel
dependencies widely used in self-attention.

C. Multiscale Feature Integration

Directly feeding convolutional features to the detection head
always leads to poor performance [11], [12], [14], thus fusing
multiscale convolution features often plays a significant role
for real-time object detection [5], [15], [16]. Following high-
accuracy detectors [53], [54], early attempts [13], [15], [55]
employ FPN to perform feature integration in a top–down
manner. More specifically, the low-resolution features are first
upsampled and then combined with high-resolution features by
elementwise addition or concatenation. To save computational
overheads, ThunderNet [13] and Tiny-YOLOV4 [17] both
fuse features using a tiny version of FPN that reduces the
number of outputs. LightDet [55] replaces 3 × 3 standard
convolution with compact depthwise separable convolution in
FPN. In contrast to this top–down fashion, EfficientDet [56]
adopts an additional bottom–up strategy that downsamples
high-resolution features to integrate with low-resolution ones.

In contrast to integrating multiscale feature maps via sim-
ple addition or stacking, LCCM is designed in the neck
to encode correlated dependencies from neighboring scale
features. In spite of adopting a bidirectional fusion strategy
that is similar to EfficientDet [56], LCCM requires very few
computational overheads due to its lightweight design.

III. OUR METHOD

In this section, we first describe the entire lightweight
dual-resolution architecture of DPNet, and then elaborate on
the details of LSCM in the backbone, together with LCCM in
the neck.

A. DPNet

The overall architecture of DPNet is depicted in Fig. 2. Con-
cretely, our DPNet consists of three components: backbone,
neck, and detection head. Immediately below, we introduce
each component in detail.

1) Backbone: The detailed structure of the DPNet back-
bone is given in Table I. More specifically, DPNet adopts
a dual-resolution backbone, leading to a parallel-path archi-
tecture: LRP and HRP, respectively. Both paths are mainly
constructed by a series of ASUs. Similar to traditional single-
path detectors [13], [14], [15], LRP employs a stem and
multiple ASUs with stride 2, gradually producing convo-
lution feature maps that have resolutions of (1/2), (1/4),
(1/8), (1/16), and (1/32) with respect to input image.
Note that the stem includes a stride 3 × 3 convolution
and a max-pooling, directly shrinking 4 times the input
resolution. In order to obtain high-quality object details,
on the other hand, HRP keeps a relatively high resolution
of LRP, maintaining unchanged feature resolution that is
(1/8) of input image size. Among two paths, two Bi-FMs
are employed to enhance cross-resolution feature integration
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Fig. 3. Overview of the units used in backbone and detection head. (a) ASU, (b) stride ASU (s = 2), (c) Bi-FM, and (d) ConvBlock. Conv stands for
standard convolution, DWC denotes the depthwise convolution, BN [57] is the batch normalization, and Swish [58] indicates the Swish activation function.
(Best viewed in color).

TABLE I
DETAILED ARCHITECTURE OF BACKBONE IN DPNET. s DENOTES

STRIDE 2, AND LRP AND HRP INDICATE THE LOW-RESOLUTION AND
HIGH-RESOLUTION PATHS, RESPECTIVELY

and communication. Finally, as shown in Fig. 2, the com-
bined features, denoted by {C1, C2, C3} whose shapes are
{40 × 40 × 128, 20 × 20 × 256, 10 × 10 × 512}, serve as
the multiple inputs to neck part, which helps to explore the
mutual correlations. Next, we introduce ASU and Bi-FM in
detail, respectively.

a) ASU: As depicted in Fig. 3(a), ASU adopts a
split-transform-merge structure that leverages the residual con-
nections and lightweight feature extractions. At the beginning
of each ASU, input features are first split into two low-
dimensional parts, transformed and identity branches, where
each one has half channels of the input. The transformed
branch serves as a residual function, while the identity
branch is used to facilitate model training. Instead of using
3 × 3 depthwise convolution [10], the transformed branch
sequentially adopts depthwise convolution with larger ker-
nel size (e.g., 5 × 5) and the proposed LSCM, both which
are used to obtain more powerful features. Thereafter, the
outputs of two branches are merged using concatenation so
that the number of channels keeps the same with respect
to the input. Finally, feature channels are shuffled to enable
information communication between two split branches. After
the shuffle, the next ASU begins. Fig. 3(b) also exhibits the
stride version of ASU, used to reduce feature resolutions,
where the 5 × 5 stride depthwise convolutions are utilized
in transformed and identity branches, respectively.

b) Bi-FM: Bi-FM serves as a bridge to enable com-
munications between HRP and LRP in the backbone. The
detailed structure of Bi-FM is illustrated in Fig. 3(c). Let Fh

i ∈

RH×W×C and Fl
i ∈ R(H/m)×(W/m)×mC , m ∈ {2, 4}, be inputs

of Bi-FM, and Fh
o ∈ RH×W×C and Fl

o ∈ R(H/m)×(W/m)×mC

be outputs of Bi-FM, respectively, where H × W stands for
input resolution, and C denotes the channel number. More
specifically, Fl

i first passes through a 1 × 1 convolution, and
then upsampled with equal dimensions for following fusion
with Fh

i . On the other hand, to produce Fl
o, Fh

i is fed into
a 5 × 5 stride depthwise convolution, and then downsampled
with equal dimensions for next feature integration with Fl

i .
Actually, the interactions between HRP and LRP can be
considered as cross-resolution residual functions, which are
helpful in training Bi-FM in an end-to-end manner.

2) Neck: Detection neck, also known as FPN [53], is a
fundamental component in state-of-the-art detectors to aggre-
gate multiscale features. Previous methods [53], [54] utilize
a simple fusion strategy that employs bilinear interpolation
and elementwise addition, often ignoring mutual dependencies
across features with different resolutions. To this end, LCCM
is adopted in the neck part of our DPNet, used to aggregate
cross-resolution features from different convolution layers.

The detailed architecture of the neck is illustrated in
Fig. 2. Note that LCCM works in a bidirectional fashion:
top–down and bottom–up directions denoted by LCCM-TD
and LCCM-BU, respectively. LCCM-TD aims to extract
high-level semantics for class identification, while LCCM-BU
desires to strengthen low-level details for object localization.
More specifically, receiving {C1, C2, C3} produced from the
backbone as inputs, our neck begins at a series of 1 × 1 con-
volutions, producing features with equal channel numbers and
various resolutions. These intermediate features, denoted by
{M1, M2, M3}, are first fused in top–down path via two
LCCM-TDs, and then aggregated in the bottom–up path via
two LCCM-BUs. Finally, the produced outputs, denoted as
{F1, F2, F3}, where correlated interactions among neigh-
boring scale feature maps are well integrated, are fed to the
lightweight detection head.

3) Detection Head: The detection head learns projec-
tions that map features to final estimations. Some detection
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Fig. 4. Overview of the lightweight attention employed in backbone and neck. (a) LSCM. (b) LCCM-TD. (c) LCCM-BU. (Best viewed in color.)

networks [11], [12] employ lightweight backbones, yet involve
SSD head [4] that is too heavy to make predictions. The alter-
native approaches [13], [14], [15] design lightweight detection
heads to reduce model size. Similarly, our DPNet also adopts
a lightweight detection head to accelerate inference speed.
As shown in Fig. 3(d), instead of using 3 × 3 depthwise con-
volution [13], [14], [15], DPNet utilizes compact convolutions
with larger kernel size (e.g., 5 × 5) to enlarge receptive fields,
increasing very limited model size. The detailed architecture
of the detection head is illustrated in Fig. 2. The input features
{F1, F2, F3}, produced from the neck part, undergo two
successive ConvBlocks. Then, a 1 × 1 convolution is used
to produce final outputs, receiving their supervision from the
associated ground-truth maps.

B. LSCM and LCCM

1) LSCM: The task of contextual formulation is to harvest
surrounding information, which is always accomplished by
global pooling [46], [49], [50]. In spite of producing high-level
features that represent the entirety of an image, such networks
are short in representation to provide elementwise interactions.
Lots of alternative efforts [23], [38], [39] have been devoted
to capture global context using dense attention maps, where
the importance of each individual pixel is encoded by all
other pixels. These methods, however, require a large amount
of computation. As the core unit of ASU, LSCM leverages
computational efficiency and representation ability. Intuitively,
there are two ways to save computational costs: shrinking
number of elements and reducing feature dimensions. We,
thus, introduce how LSCM works in these two aspects.

The detailed structure of LSCM is illustrated in Fig. 4(a).
Let F ∈ R

C×H×W be input features, where W , H , and
C stand for width, height, and channel number of inputs
F, respectively. To reduce image elements, we first apply a
pooling operation on input features F, producing a compact
representation R ∈ R

C×k×k, k2
≪ W ×H , where each element

in R represents an image region that includes W H/k2 pixels
in F. Then, both features F and R are flattened into two
2-D sequences X ∈ R

H W×C and X′
∈ R

k2
×C , facilitating

computations of the following spatial and channel attention.

In spatial attention, two linear projections {Wk
sp, Wq

sp} ∈

RC×C/r are first learned to project input sequences X and X′

into two low-dimensional embeddings Ksp ∈ RH W×C/r and
Qsp ∈ Rk2

×C/r , where r is a nonnegative scale factor that
controls feature compression ratio

Ksp = XWk
sp, Qsp = X′Wq

sp. (1)

After that, the spatial pixel-to-region mutual correlations are
calculated using a matrix product between Ksp and Qsp, which
sequentially undergo a linear projection WO

sp ∈ Rk2
×1, layer

normalization LN(·), and sigmoid function σ(·), producing
final spatial attention map Ssp ∈ R

H W×1

Ssp = σ
(

LN
(

KspQ⊤

spWO
sp

))
. (2)

In channel attention, to reduce feature dimensions, a linear
projection Wq

ch ∈ RC/r×C is first learned to map input sequence
X′ into a low-dimensional embedding Qch ∈ RC/r×k2

, where
each channel in Qch represents a group of r channels in X′.
On the other hand, another linear projection Wk

ch ∈ RC×C also
maps input sequence X′ into Kch ∈ RC×k2

Kch = Wk
chX′⊤, Qch = Wq

chX′⊤. (3)

Next, similar to spatial attention, the channel-to-group-channel
correlations are computed using a matrix product between Kch
and Qch, which sequentially undergo a linear projection WO

ch
∈ RC/r×1, layer normalization LN(·), and sigmoid function
σ(·), producing final channel attention map Sch ∈ R

C×1

Sch = σ
(
LN

(
KchQ⊤

chWO
ch

))
. (4)

At the end, the learned spatial attention map Ssp and chan-
nel attention map Sch are used to reweight input sequence
X, respectively, and thereafter combined using elementwise
addition, producing integrated features X̃ ∈ RH W×C

X̃ = (Ssp ⊙ X) ⊕ (Sch ⊙ X) (5)

where ⊕ and ⊙ are the elementwise addition and multiplica-
tion, respectively. Note that two attention maps Ssp and Sch
are multiplied with input sequence X in the ways of column
reweighting and row reweighting, respectively. The produced
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TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON AMONG SELF-ATTENTION,

EFFICIENT ATTENTION, AND LSCM. HEREIN, n = W × H , c REP-
RESENTS THE CHANNEL NUMBERS OF INPUT FEATURES, AND s

STANDS FOR THE STACKED NUMBER OF POOLING FEATURES

sequence X̃ is finally reshaped to F̃ ∈ RC×H×W with equal
dimension with respect to input feature F, which is ready for
following 1 × 1 convolution, as shown in Fig. 3(a).

We also compare the computational complexity of LSCM
with self-attention [23], [24] and efficient attention [51], [52],
as they all have powerful representation ability in investigating
global context. Although both approaches are able to calculate
spatial and channel attention, they share similar computational
complexity. As a result, Table II only reports the comparison
results that take spatial attention into account. Previous meth-
ods and our LSCM both involve two computational steps:
calculating elementwise similarities and reweighting input
features. In self-attention [23], [24], computing dense spatial
attention and reweighting features both require n2c operations,
leading to a quadric complexity of input resolution. On the
efficient attention [51], [52] side, CCNet [51] decomposes
self-attention into two consecutive criss-cross attentions. Thus,
the computational complexity is linear to the sum of feature
height and width. On the other hand, ANNet [52] desires to
reduce the computational costs of matrix multiplication, lead-
ing to the linear complexity of stacked pooled feature numbers.
On the contrary, our LSCM only needs nc(k2/r) operations
that is also linear to input resolution, as feature elements
have been greatly reduced using global pooling. Particularly,
feature reweighting does not involve matrix multiplication,
only requiring nc operations, far smaller than O(nsc) and
O(n(H +W )c) in efficient attention, and n2c in self-attention.

2) LCCM: This section extends LSCM to a multiple-input
version, known as LCCM, since it is used in the neck part to
combine multiscale features. Recalling that LCCM works in
a bidirectional fashion: top–down and bottom–up, denoted by
LCCM-TD and LCCM-BU, respectively. Since they work in a
similar way, we only elaborate on LCCM-TD in this section,
and then point out its major differences with LCCM-BU.

The detailed architecture of LCCM-TD is exhibited in
Fig. 4(b). Generally, LCCM-TD shares similar structure with
LSCM, except two inputs that have different resolutions. Let
Fh ∈ R

C×Hh×Wh and Fl ∈ R
C×Hl×Wl be high-resolution and

low-resolution input features, respectively. Herein, Hh = 2Hl ,
Wh = 2Wl , as Fh and Fl come from neighboring scale
convolution layers. In order to explore cross-layer interactions
and save computational cost, the resolutions of Fh and Fl have
to be shrunk at the same time using global pooling, and then
flattened into two 2-D sequences X′

h ∈ R
k2

×C and X′

l ∈ R
k2

×C ,
respectively. Note k2

≪ Hl × Wl < Hh × Wh . Meanwhile,
the input features Fh are also flattened into a 2-D sequence

Xh ∈ R
Hh Wh×C , ready to participate following computations

of spatial and channel attention.
In spatial attention, input features Xh and X′

l undergo two
linear projections {Wk

sp, Wq
sp} ∈ RC×C/r , resulting in two

low-dimensional embeddings Ktd
sp ∈ RHh Wh×C/r and Qtd

sp ∈

Rk2
×C/r , respectively, where r is a nonnegative scale factor

that controls feature compression ratio

Ktd
sp = XhWk

sp, Qtd
sp = X′

lW
q
sp. (6)

After that, the spatial cross-layer interactions are calculated
using a matrix product between Ktd

sp and Qtd
sp, which are

sequentially fed into a linear projection WO
sp ∈ Rk2

×1, layer
normalization LN(·), and sigmoid function σ(·), producing
final spatial attention map Std

sp ∈ R
Hh Wh×1

Std
sp = σ

(
LN

(
Ktd

spQtd
sp

⊤WO
sp

))
. (7)

In channel attention, a linear projection Wq
ch ∈ RC/r×C first

maps input sequence X′

l into a low-dimensional embedding
Qtd

ch ∈ RC/r×k2
. Then, another linear projection Wk

ch ∈ RC×C

is learned to map input sequence X′

h into Ktd
ch ∈ RC×k2

Ktd
ch = Wk

chX′

h
⊤
, Qtd

ch = Wq
chX′

l
⊤
. (8)

Next, similar to spatial attention, the cross-layer correlations
are computed using a matrix product between Ktd

ch and Qtd
ch,

which sequentially undergo a linear projection WO
ch ∈ RC/r×1,

layer normalization LN(·), and sigmoid function σ(·), produc-
ing final channel attention map Std

ch ∈ R
C×1

Std
ch = σ

(
LN

(
Ktd

chQtd
ch

⊤WO
ch

))
. (9)

Thereafter, the learned spatial attention map Std
ch and channel

attention map Std
sp are used to reweight high-resolution input

Xh , respectively, and combined using elementwise addition,
producing integrated features Xw ∈ RHh Wh×C

Xw =
(
Std

sp ⊙ Xh
)
⊕

(
Std

ch ⊙ Xh
)
. (10)

The entire reweighting process serves as a residual function
that facilitates training LCCM-TD in an end-to-end manner

X̃h = Xw ⊕ Xh . (11)

Note that two weighting operations in (10) are the column and
row reweighting, respectively, similar to LSCM. The produced
sequence X̃h is finally reshaped to F̃h ∈ RC×Hh×Wh with equal
dimension with respect to input feature Fh , which is ready for
next integration, as shown in Fig. 2.

Regarding LCCM-BU, its detailed architecture is shown in
Fig. 4(c). There is only one difference with respect to LCCM-
TD: When spatial attention is computed, the resolution has to
be downsampled two times for exact reweighting and identity
mapping.

IV. EXPERIMENTS

In order to evaluate the proposed DPNet, we have conducted
exhausted experiments on three challenging object detection
datasets: MS COCO [9], Pascal VOC 2007 [25], and Ima-
geNet [26], including comprehensive comparisons with recent
real-time detection networks and ablation studies. Experimen-
tal results show that our DPNet achieves a state-of-the-art trade
off in terms of detection accuracy and implementing efficiency.

Authorized licensed use limited to: Temple University. Downloaded on March 03,2025 at 20:42:37 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: DPNet FOR REAL-TIME OBJECT DETECTION WITH LIGHTWEIGHT ATTENTION 4511

A. Dataset and Evaluation Metrics

1) MS COCO: MS COCO dataset [9] is the most popu-
lar object detection dataset in the field of computer vision.
It involves 80 categories, containing 118-K training, 5-K
validation, and 20-K testing images. As usual, we have con-
ducted all experiments using the training set to train our
DPNet. A system-level comparison with recent state-of-the-
art networks is reported on test dev. Otherwise, a series of
ablation studies are reported on the validation set.

2) Pascal VOC 2007: Pascal VOC 2007 dataset [25] is rel-
atively smaller, compared with MS COCO [9], only including
20 classes for object detection. Following [14] and [15], DPNet
is trained on the union of VOC 2007 and VOC 2012 trainval
set that contains 16 551 images together, and evaluated on the
VOC 2007 test set, including 4952 images.

3) ImageNet: ImageNet [26] is widely used for a Large
Scale Visual Recognition Challenge (LSVRC2017), and object
detection has become core task since 2013. It is associated
with 200 object categories, including 288-K training, 20-K
validation, and 40-K testing images. We train our DPNet using
the training set and evaluate it on the validation set.

4) Evaluation Metrics: For fair comparison with other
state-of-the-art real-time detectors on MS COCO dataset [9],
we employ the standard evaluation metrics [5], [17], [60],
such as AP, AP50, AP75, APS , APM , and APL . More specifi-
cally, AP is averagely evaluated at intersection area over the
union (IoU area between the predicted bounding boxes and
ground-truth bounding boxes), ranging from 0.5 to 0.95 with
updated step 0.05, reflecting the comprehensive performance
of the detector. AP50 and AP75 are computed when IoU is
0.5 or 0.75, respectively. On the other hand, APS , APM , and
APL are used to evaluate the performance of bounding boxes
whose areas are within the range of (0, 322

], (322, 962),
[962, +∞) pixels, representing the performance for small,
medium, and large objects. For Pascal VOC 2007 [25] and
ImageNet [26] datasets, we only report the results of AP50,
denoted as mAP, following [13], [66]. On the other hand,
the widely used floating-point operations per second (FLOPs),
model size (parameters), and frames per second (FPS) are used
to measure implementation efficiency.

B. Implementation Details

1) Training Settings: DPNet is trained from scratch with
a minibatch of 88 images on MS COCO dataset [9], using a
hardware server platform with a single RTX 2080Ti GPU. The
stochastic gradient descent algorithm [67] is adopted to train
DPNet for 300 epochs, with only five epochs warm up. The
initialized learning rate is set as 1.5 × 10−2, following cosine
learning strategy [68], together with weight decay and momen-
tum that are set as 5 × 10−4 and 9 × 10−1, respectively.
We also adopt half-precision (FP16) [69] and exponential
moving average scheme [70] to reduce GPU memory usage
and accelerate training convergence. Instead of using fancy
methods [63], [71], we only employ SSD [4] to perform basic
data augmentation. Specifically, we first use color distortion to
augment original images, which are further expanded and ran-
domly cropped. After that, transformed images are resized to
320 × 320, which are also randomly flipped and normalized.

In inference process, following [5] and [17], we transform
DPNet from pytorch to TensorRT FP16 to accelerate detection
speed. All the settings on Pascal VOC 2007 dataset [25] and
ImageNet [26] are the same with MS COCO [9], except the
predicted class numbers are 20 and 200, respectively, instead
of 80 categories used in [9]. Our code is open-source and is
publicly available at: https://github.com/Huiminshii/DPNet.

2) Loss Settings: As illustrated in Fig. 2, there are three
losses used in lightweight detection head: cross-entropy loss
Lcls and Liou for object classification and IoU prediction,
respectively, and IoU loss Lreg for bounding box regression.
Thus, the total loss L can be written as follows:

L = Lcls + α × Liou + β × Lreg. (12)

Following [69], two nonnegative parameters α and β are set
as 1 and 0.5. To produce ground truth, we employ SimOTA
label assignment strategy [69], [72].

3) Selected State-of-the-Art Baselines: In order to show the
advantages of DPNet, we selected 20 state-of-the-art detectors
for comparison, including high-accuracy and lightweight net-
works. The first category contains SSD [4], RetainNet [60],
YOLOs [5], [17], ATSS [61], Sparse R-CNN [62], Swin
transformer [38], TopFormer [59], and MobileFormer [31].
On the other hand, the second one includes tiny ver-
sion of YOLO families [5], [17], MobileNet-SSDLite [12],
Pelee [14], Tiny-DSOD [15], MobileDets [30], Thunder-
Net [13], ParCNet-SSD [65], YOLO-ReT [64], Mobile-ViT-
SSDLite [20], PP-YOLO-Tiny [73], YOLOX-Nano [69], and
SCPNet [74]. Unless special statement, the baseline results are
directly borrowed from the corresponding publications.

C. Comparisons With State-of-the-Art Real-Time Detectors

1) Experimental Results on MS COCO Dataset: Table III
reports the quantitative comparison results with selected
state-of-the-art real-time detectors, demonstrating that DPNet
achieves the best trade off in terms of detection accuracy and
implementing efficiency. When DPNet is trained from scratch,
it achieves 29.6% AP on MS COCO test-dev, together with
only 2.5M model size, 1.04 GFLOPs, and 164 FPS. DPNet
surpasses all other baselines by large margins in detection
AP, AP50, and AP75 (e.g., it is better by 1.1%, 0.4%, and
1.2% than ParCNet [65], the second-rank real-time detector).
Meanwhile, it has smallest computational costs (e.g., approx-
imately 0.3 GFLOPs, 0.4 GFLOPs, and 2.4 GFLOPs smaller
to Pelee [14], MobileDets [30], and Tiny-YOLOV4 [17]) and
delivers fewest number of network parameters (e.g., 0.2M,
2.4M, and 3.5M smaller to Mobile-VIT [20], MobileDets [30],
and Pelee [14]). To further improve detective accuracy, the
backbone of DPNet is also pre-trained using ImageNet 1K
and 21K dataset [26], respectively, bringing 0.6% and 1.7%
AP improvement with respect to trained DPNet from scratch.

Table III also reports the results compared with some
high-accuracy detectors that achieve approximately real-time
speed. Although these heavy networks have higher detec-
tion accuracy than DPNet, they often require dozens even
hundreds of GFLOPs and parameters that are unsuitable for
real-world applications with limited computational resources
and restricted storage memories. Particularly, it is intriguing
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TABLE III
COMPARISON WITH THE HIGH-ACCURACY AND REAL-TIME OBJECT DETECTORS IN TERMS OF DETECTION ACCURACY AND IMPLEMENTING

EFFICIENCY ON MS COCO TEST-DEV [9]. “-” DENOTES THE RESULTS ARE NOT REPORTED. ‘†’ AND ‘‡’ MEAN THAT DPNET IS
PRETRAINED USING IMAGENET 1K AND 21K DATASET [26], RESPECTIVELY. THE BEST RESULTS ARE INDICATED BY

BOLD FONT AMONG ALL LIGHTWEIGHT DETECTORS

Fig. 5. Some visual examples of qualitative detection results on MS COCO test-dev [9]. For clarity, the estimated bounding boxes and associated labels are
also superimposed on detected objects. (Best viewed in color.)

that DPNet is even superior to YOLOV3 [5] and Top-
Former [59] that have heavier model sizes. MobileFormer [31],
another detector also with a dual-path backbone, outperforms
DPNet by a margin of 2.9% AP, yet its GFLOPs are nearly
161× larger than DPNet.

Fig. 5 shows the qualitative detective results of some visual
examples on MS COCO test-dev. For friendly visualization,

the estimated bounding boxes and associated labels are also
superimposed on detected objects. It demonstrates that DPNet
not only correctly classifies objects within different scales but
also produces accurate bounding boxes for all objects. For
instance, “players” in the second and third examples as well
as “people” in the tenth and eleventh examples are crowded
or heavily overlapped, yet DPNet is able to accurately detect
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TABLE IV
COMPARISON WITH THE HIGH-ACCURACY AND REAL-TIME OBJECT DETECTORS IN TERMS OF DETECTION ACCURACY AND IMPLEMENTING

EFFICIENCY ON PASCAL VOC 2007 TEST SET [25]. “-” DENOTES THE RESULTS ARE NOT REPORTED. ‘†’ AND ‘‡’ MEAN THAT DPNET
IS PRETRAINED USING IMAGENET 1K AND 21K DATASET [26], RESPECTIVELY. THE BEST RESULTS ARE INDICATED BY BOLD FONT

AMONG ALL LIGHTWEIGHT DETECTORS

them. Moreover, DPNet can tackle object scale variations,
such as “plane” and “truck” in the eighth example as well
as “giraffe” in the 17th example. Finally, our method shows
excellent ability to correctly detect tiny object instances, such
as “plane” in the seventh example and tiny “balls” in the
first, fifth, tenth, and nineteenth examples, respectively. All the
results on this dataset show that DPNet learns a powerful rep-
resentation to capture spatialwise/channelwise dependencies
and interactions, yielding impressive detection performance
with very limited computational overheads.

2) Experimental Results on Pascal VOC 2007 Dataset: In
Table IV, we have also reported the quantitative results on Pas-
cal VOC 2007 test set [25], where dual-path backbone is first
pretrained on MS COCO [9], and then fine-tuned on the union
of Pascal VOC 2007 and 2012. DPNet still yields the best trade
off with 79.2% mAP, together with only 2.5M model size
and 1.0 GFLOPs, outperforming other state-of-the-art real-
time detectors by a large margin. For example, compared with
second-rank ThunderNet [13], involving a more complicated
backbone that includes hundred layers, DPNet is easier to
execute with only 1.0 GFLOPs, yet obtaining a large margin
of 0.6% mAP improvement. To further improve performance,
we also utilize ImageNet 1K and 21K [26] to pre-train dual-
path backbone. With the same model size and GFLOPs,
the mAP averagely increases by 3.15%. Regarding to FPS,
DPNet runs faster than most baselines, such as Pelee [14],
Tiny-DSOD [15], and DSOD-Lite [66]. Although DPNet runs
slightly slower than ThunderNet [13] and Tiny-YOLOV3
[5], we still obtain real-time detective speed of 196 FPS,
which is enough for real-world applications in timely fash-
ion. Among all baselines, although PP-YOLO-Tiny [73] and
YOLOX-Nano [69] save approximately 60% GFLOPs and
64% model size of our DPNet, they deliver poor detection
results with 11.0% and 6.2% mAP drops, respectively. Note
that DPNet runs slightly faster than it is evaluated on the MS
COCO dataset [9]. This stems form the fact that Pascal VOC
2007 involves less classes for classification and detection.
Fig. 6 illustrates some visual examples of detection results
on the Pascal VOC 2007 test set. As can be seen, DPNet still

TABLE V
COMPARISON WITH REAL-TIME OBJECT DETECTORS IN TERMS OF

DETECTION ACCURACY AND EFFICIENCY ON IMAGENET
VAL. SET [26]

obtains visually pleasing detection results, where large visual
variance of object appearance, orientations, and scales are well
handled, consistenting with the detection outputs as shown in
Fig. 5.

3) Experimental Results on ImageNet Dataset: This section
reports the comparison results on ImageNet Dataset [26].
As the majority of recent real-time object detection methods
are evaluated in Pascal VOC 2017 [25] and MS COCO
dataset [9], we reproduce some state-of-the-art methods, and
resize the inputs to 320 × 320 for fair comparison. The
results are reported in Table V. Consistenting with the results
reported in Tables III and IV, DPNet improves by a large
margin of 1.8% mAP with respect to the second-rank model
ThunderNet [13]. Even so, DPNet has the smallest GFLOPs
and model parameters, and second-rank real-time running
speed.

D. Ablation Study

To understand the underlying behavior of DPNet, this
section reports the results of a series of ablation studies.

1) Ablation Study for Components of Backbone: With fixed
neck and detection head, Table VI presents the ablation studies
that quantify the contributions of different components in
backbone, where only LRP is first used to build up our
baseline, then HRP and Bi-FM are added step-by-step. This
experiment shows that each of these components consistently
improves the detection performance, together with a slight
increase in model size and GFLOPs. Among all components,
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Fig. 6. Visual Examples of qualitative detection results on Pascal VOC 2007 test set [25]. For clarity, the estimated bounding boxes and associated labels
are also superimposed on detected objects. (Best viewed in color.)

TABLE VI
ABLATION STUDIES FOR THE CONTRIBUTIONS OF DIFFERENT COMPONENTS IN BACKBONE. THE IMPROVEMENTS DENOTED BY RED NUMBERS ARE

WITH RESPECT TO BASELINE. NOTE THAT THE NUMBER OF PARAMETERS AND GFLOPS ARE EVALUATED WHEN THE INPUT IMAGE IS OF
RESOLUTION OF 320 × 320

it is observed that HRP brings significant improvements
(e.g., 2.0%, 3.1%, and 2.0% in terms of AP, AP50, and
AP75, respectively), demonstrating the advantage of designing
dual-path architecture backbone. In addition, the dual-path
backbone improves 3.4% APL , 4.2% APM , and 1.9% APS ,
respectively, mainly benefiting from the HRP that retains fine
object details as much as possible, especially for medium
and tiny objects. Some visual results by sequentially adding
individual components are shown in Fig. 7. It is observed that
when components are sequentially introduced, the detection
results are increasingly close to the ground truth, which is
consistent with the quantitative results reported in Table VI.
It is worth to note that in the third example, our method is
able to correctly detect and identify flowers as “pottedplant,”
although they are not annotated in ground truth.

2) Ablation Study for Different Lightweight Backbones:
Different backbones have been shown to vary in their abil-
ity to represent large-scale visual data. To further analyze
DPNet, we conduct experiments using different lightweight
backbones. In particular, also given fixed neck and detec-
tion head, we sequentially replace backbone of DPNet with
ResNet-18 [7], MobileNetV2 [12], ShuffleNetV2 [10], and

Fig. 7. Visual examples of qualitative detection results to evaluate the
contribution of each component. From left to right are the input image,
corresponding ground truth, predicted results from LRP, LRP + HRP, and
full DPNet. For clarity, the estimated bounding boxes and associated labels
are also superimposed on detected objects. (Best viewed in color.)

Tiny-Darknet [5]. As reported in Table VII, ShuffleNetV2
[10] has the smallest model size and GFLOPs, yet ranks at
the bottom in terms of detection accuracy, probably due to
its very limited network capacity. Even though our backbone
has nearly 5× smaller model size and 3.5× faster running
speed, it still achieves better results than ResNet-18 [7]. This
mainly stems from the fact that the embedded LSCM has a
powerful ability to capture elementwise interactions with very
small computational costs.
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TABLE VII
ABLATION STUDIES USING DIFFERENT LIGHTWEIGHT BACKBONES. NOTE

THAT THE RED NUMBERS ARE WITH RESPECT TO THE SECOND-RANK
METHOD RESNET-18 [7]

TABLE VIII
ABLATION STUDIES FOR LSCM AND COMPARISON WITH OTHER STATE-

OF-THE-ART ATTENTION MODULES. NOTE THAT THE RED NUMBERS
ARE WITH RESPECT TO THE BASELINE

3) Ablation Study for LSCM: There exists many attention
modules used to capture global context. Therefore, this section
compares the introduced LSCM with recent state-of-the-art
attention blocks. More specifically, the baseline is constructed
using the entire DPNet, except omitting LSCM in all ASUs
of dual-path backbone. Thereafter, LSCM and other attention
modules are alternatively inserted in the same place shown in
Fig. 3(a). The comparison results are reported in Table VIII.
It shows that LSCM not only outperforms attention blocks that
only investigate channel attention (e.g., SE [45], ECA [46],
and GC [48]) but also surpasses counterparts that involve
both spatial and channel attention together (e.g., CBAM [49],
SK [75], and SA [76]). Compared with the baseline, a slight
increase of model size and GFLOPs demonstrates that LSCM
is a lightweight and efficient module, yet obtains significant
improvement of 1.7% AP, 2.5% AP50, and 2.1% AP75, respec-
tively. Moreover, it is intriguing that LSCM has nearly the
same number of parameters and GFLOPs with respect to other
attention blocks, but achieves more accurate detection results.

4) Ablation Study for LCCM: As neck plays an essential
role for real-time object detection, this section evaluates the
effect of introduced LCCM by fixed backbone and detection
head. To deeply analyze LCCM, we first only consider LCCM-
TD, and then, LCCM-BU is sequentially added. The ablation
results are reported in Table IX, together with the compar-
ison of recent widely used FPNs. When only LCCM-TD is
adopted, compared with [77], it has a slight performance drop
(0.2% of AP and AP75), demonstrating that directly fusing
features in a top–down manner is not enough to achieve
promising results [56]. However, when both LCCM-TD and
LCCM-BU are utilized, DPNet outperforms [77] by a large
margin. Furthermore, LCCM with LCCM-TD and LCCM-
BU combined has the smallest model size and GFLOPs,
yet delivers the best detection performance. Concretely, the

TABLE IX
ABLATION STUDIES FOR LCCM AND COMPARISON WITH OTHER STATE-

OF-THE-ART FPNS. NOTE THAT THE RED AND GREEN NUMBERS ARE
WITH RESPECT TO THE SECOND-RANK METHOD ASF [77]

TABLE X
ABLATION STUDY OF THE VERSATILITY OF DPNET FOR DIFFERENT

VISUAL TASKS, INCLUDING CLASSIFICATION, OBJECT DETECTION,
AND INSTANCE SEGMENTATION. NOTE THAT EACH TASK

IS EVALUATED USING TOP-1 ACCURACY, AP, AND
MASK AP, RESPECTIVELY

entire DPNet using LCCM only has 2.42M parameters and
1.04 GFLOPs, but yields 1.4% and 1.1% AP improvement
with respect to FPN [53] and BFP [78]. It is interesting
that PAFPN [56] also employs bottom–up and top–down
fusion paths, but LCCM still outperforms it in terms of AP,
AP50, and AP75, respectively, with very limited computational
costs.

5) Ablation Study for the Versatility of DPNet: This section
evaluates the versatility of DPNet for different visual tasks,
e.g., classification, detection, and segmentation. For classifi-
cation, we conduct experiments on the ImageNet dataset [26].
Specifically, the detection head is replaced with a fully con-
nected layer (FCL) for predicting image labels. We also
evaluate DPNet on MS COCO dataset [9] for instance segmen-
tation. Concretely, an extra branch is added for each input of
the detection head for mask estimation. The performance and
implementation efficiency of DPNet for each task are reported
in Table X. The classification task requires a larger model size
and GFLOPs and slower FPS, probably because the additional
FCL occupies a large number of parameters and computations.
Conversely, there is only a slight increase in parameters and
GFLOPs for instance segmentation tasks.

6) Ablation Study for Various Input Size: To further show
the advantages of our method, we perform ablation stud-
ies on Pascal VOC [25] and MS COCO datasets [9] with
the input size of 224 × 224, 300 × 300, 320 × 320, and
416 × 416, respectively. In Pascal VOC [25] dataset, we select
DSOD-Lite [66] and ThunderNet [13] as baselines, while
Mobile-ViT [20], ThunderNet [13], and ParCNet [65] are used
to compare with DPNet on MS COCO dataset [9]. Fig. 8
exhibits the comparison results. Among all baselines, our
method achieves the best detection performance no matter
what the input resolution is. It is also observed that the
detection results are consistently improved with the increase in
input size, indicating larger input size always results in better
performance.
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Fig. 8. Performance changes with various input sizes in (a) MS COCO and
(b) Pascal VOC 2007 datasets. (Best viewed in color.)

TABLE XI
ABLATION STUDIES FOR POOLING SIZE k OF LSCM

TABLE XII
ABLATION STUDIES FOR CHANNEL COMPRESSION RATIO r OF LSCM

E. Analysis of Parameter Settings

1) Effect of Pooling Size k of LSCM: The pooling size k
determines element numbers used to calculate mutual depen-
dencies, significantly influencing the computational efficiency
of LSCM. We thus evaluate the performance variance along
with the change of k, ranged from 3 to 9 with updated step 2.
The results are reported in Table XI. As can be seen, the rise
of pooling size k produces more feature elements involved
in correlation calculation, leading to nearly 2× increase of
GFLOPs, yet without significant expansion of model param-
eters. The best result of 28.8% AP is obtained when k is 5,
thus chosen as the default setting in DPNet.

2) Effect of Reduction Ratio r of LSCM: Besides pooling
size k, the reduction ratio r is another important factor that
controls the capacity and the running speed of LSCM. As a
result, we conduct experiments by changing r , and report the
results in Table XII. Note when r = 1, our LSCM degenerates
to compute dense attention maps similar to self-attention [23],
leading to the highest detection AP, but at the same time it has
the heaviest model size and the largest computational costs.
Apart from this, along with the increase of r , the model size
and GFLOPs gradually decline, but the best AP peaks at r = 8,
which is also opt to default setting in DPNet.

V. CONCLUSION REMARKS AND FUTURE WORK

This article has presented a dual-path lightweight network,
called DPNet, for real-time object detection. The designed
dual-path backbone enables us to extract high-level semantics,

and at the same time maintain low-level details. Furthermore,
two parallel paths are not independent, since the feature
exchange enhances information communications between two
paths. To improve the representation capability of our DPNet,
a lightweight attention block, LSCM, is designed in the
backbone to capture global interactions with a small compu-
tational overhead. We also extend LSCM into LCCM in the
neck part, where correlated dependencies are well investigated
between neighboring scale features with different resolutions.
We have evaluated our method on three popular object detec-
tion datasets: MS COCO, Pascal VOC 2007, and ImageNet.
The experimental results demonstrate that DPNet achieves a
state-of-the-art trade-off in terms of detection accuracy and
implementation efficiency.

In the future, we are interested in two directions to improve
DPNet. As shown in Table III, there is still a large performance
gap between DPNet and high-accuracy detectors, requiring
further efforts to improve our model. In addition to achieving
superior performance for real-time object detection, we believe
that DPNet can be easily used for other visual tasks, such as
image classification [7], semantic segmentation [51], [52], and
salient object detection [79], [80].
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