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A B S T R A C T

Despite the advances in machine learning techniques, similarity assessment among multimedia data remains
a challenging task of broad interest in computer science. Substantial progress has been achieved in acquiring
meaningful data representations, but how to compare them, plays a pivotal role in machine learning and
retrieval tasks. Traditional pairwise measures are widely used, yet unsupervised affinity learning approaches
have emerged as a valuable solution for enhancing retrieval effectiveness. These methods leverage the
dataset manifold to encode contextual information, refining initial similarity/dissimilarity measures through
post-processing. In other words, measuring the similarity between data objects within the context of other
data objects is often more effective. This survey provides a comprehensive discussion about unsupervised
post-processing methods, addressing the historical development and proposing an organization of the area,
with a specific emphasis on image retrieval. A systematic review was conducted contributing to a formal
understanding of the field. Additionally, an experimental study is presented to evaluate the potential of
such methods in improving retrieval results, focusing on recent features extracted from Convolutional Neural
Networks (CNNs) and Transformer models, in 8 distinct datasets, and over 329.877 images analyzed. State-of-
the-art comparison for Flowers, Corel5k, and ALOI datasets, the Rank Flow Embedding method outperformed
all state-of-art approaches, achieving 99.65%, 96.79%, and 97.73%, respectively.
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1. Introduction

The correlation between technological advancements and the di-
minished costs regarding capture and storage devices is inherently tied
to the fast generation and pervasive dissemination of images. As a
corollary, the field of image retrieval confronts mounting challenges,
due to the huge expansion of image collections, whether in diversity or
amount of images [1]. Strategies such as Content-Based Image Retrieval
(CBIR) established itself as a crucial tool in this scenario, exploiting
advances associated with fundamental issues of image understanding.
The field aggregates researchers from different areas: computer vision,
machine learning, information retrieval, human–computer interaction,
database systems, data mining, information theory, and statistics [2,3].

CBIR organizes digital picture archives by visual content. It retrieves
images from a collection based on a visual query, crucially relying on
assessing similarity between images in high-dimensional spaces using
metrics like Euclidean distance [3]. Nevertheless, approaches relying
solely on Euclidean distance often struggle to capture non-linear and
intricate similarity relationships. As a result, many machine-learning
approaches have been employed to improve the effectiveness of im-
age retrieval tasks. Considering image retrieval approaches, a novel
Triplet-learning method with Opponent Class Adaptive Margin (OCAM)
loss significantly enhances content-based image retrieval (CBIR) per-
formance. OCAM outperforms existing methods, especially medical
imaging applications [4]. To enhance video action recognition without
extensive annotation, a vision-language multimodal embedding space
can be used in a semisupervised learning framework [5]. Utilizing a
siamese network, trained on both labeled and unlabeled data, another
method employs a CNN-F architecture with hyperbolic tanh activa-
tion [6], using a robust hash code generation, tailored for extensive
medical datasets. A Deep Collaborative Embedding model combines
end-to-end learning with collaborative factor analysis, utilizing contex-
tual information to refine tagging matrices and address out-of-sample
problems [7]. It is also possible to mention a novel Deep Semantic Mul-
timodal Hashing Network (DSMHN) designed for scalable image–text
and video–text retrievals. It offers flexibility by supporting various loss
functions with minimal modifications to the hash layer, demonstrating
scalability [8].

The TRCaptionNet, a novel deep learning model, automatically
generates accurate Turkish image captions using an image encoder,
vision transformer-based feature projection module, and text decoder,
leveraging both image and caption features [9]. Another study in-
troduces MSViT, employing vision transformer-based image retrieval.
It integrates global and local feature information using a two-branch
transformer network and a multiscale feature fusion strategy, enhanc-
ing feature representation [10]. One weakly-supervised approach intro-
duces a novel deep distance metric learning method for content-based
image retrieval in social media, leveraging community-contributed im-
ages and user-provided tags to preserve semantic and visual struc-
tures [11]. The second approach introduces a novel hashing method for
social image retrieval, utilizing user-provided tags to uncover semantic
information and optimize the tagging matrix through binary matrix
factorization [12].

Unsupervised learning techniques offer effective similarity measures
without needing labeled data, leveraging contextual information and
dataset structure [13].

Context-sensitive similarities enhance ranking and retrieval by cap-
turing complex geometric characteristics within the dataset mani-
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fold [14]. The relevance of considering the dataset manifold was
firstly evidenced for hand-crafted features, based on visual attributes
like color, texture, and shape [15]. However, the positive potential
of unsupervised manifold learning was also confirmed for different
representations, such as mid-level representations (based on Bag of
Visual Words) [16] and deep learning-based features trained by transfer
learning. Such methods can achieve relevant effectiveness gains [17]
for features based on Convolutional Neural Networks (CNNs) and
models based on Transformers. Unsupervised manifold learning ap-
proaches in image retrieval offer global and local consistency analysis,
contrasting with conventional methods relying on Euclidean distance
for local structure [18].

During the last decades, a variety of approaches have been ex-
ploited for context-sensitive similarity learning [14–17,19–21]. From a
broad perspective, most approaches can systematized into three main
categories: diffusion process [14,15,22], rank-based [17,19], and deep
learning approaches [21]. Although referenced in the literature un-
der diversified taxonomies (distance/affinity/similarity learning [23–
25], re-ranking [1,26,27], manifold learning [19]), distinct methods
keep in common the objective of post-processing an initial similar-
ity/dissimilarity measure to obtain a more global and effective mea-
sure. In general, the central role of unsupervised manifold structure
acquisition and integration is underscored by the utilization of con-
textual similarity measures that go beyond pairwise comparisons. It is
worth mentioning that these categories were defined to facilitate the
organization of the survey, considering predominant strategies in the
works, which, at the same time, are not limited to them.

In this work, we propose to survey the literature to present and
organize the vast spectrum of approaches related to unsupervised sim-
ilarity learning methods. To the best of our knowledge, this is the first
survey to gather and organize research papers focused on unsupervised
strategies based on manifold learning involving image retrieval tasks.
Academic and scientific image retrieval is the task of finding relevant
images from a database based on specific criteria or queries. It involves
using computational methods to search, analyze, and retrieve images
according to their visual features or associated textual metadata. While
various surveys [3,28,29] have been dedicated to the more general
theme related to CBIR, none of them focused on post-processing or
context-aware similarity approaches. This work aims to bridge this gap,
presenting a broad survey of the area, including both qualitative and
quantitative perspectives. The state-of-the-art comparison also encom-
passes the Flowers, Corel5k, and ALOI datasets; Rank Flow Embedding
method, for example, outperformed all state-of-art approaches, achiev-
ing the best results, 99.65%, 96.79%, and 97.73%, respectively [30].
This review of the field is original, and it is important to highlight its
technical contribution. Therefore, the main contributions of this survey
are three-fold:

• A qualitative analysis, which presents a general discussion about
the evolution and categorizations of the area;

• A systematic review conducted on various relevant digital li-
braries, identifying a significant number of works;

• An experimental study focusing on recent features based on Con-
volutional Neural Networks (CNN) and Transformer-based mod-
els.

The remainder of this paper is organized as follows: Section 2
reviews the evolution of the area, history, timeline, concepts, and net-
work analysis; Section 3 brings the systematic review and the adopted
methodology, the main papers are organized in tables and discussed
in specific subsections; Section 4 presents the experimental study; and

Section 5 presents the final remarks and discussions.
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2. Evolution and organization of the area

This section presents a comprehensive discussion of the field, with
a specific focus on qualitative analysis and organizational perspectives.
A brief retrospective is presented Section 2.1. Section 2.2 presents a
general overview and organization of the area. A timeline and repre-
sentative studies are discussed in 2.3. A visual perspective based on a
keyword networked analysis is presented in Section 2.4.

2.1. Brief history and open challenges

Manifold learning remains a persistent theme in the realm of data
representation and similarity measurement tasks. Nevertheless, arriving
at a unanimous concept and definition for it proved to be a non-trivial
endeavor. This section aims to discuss such concepts and definitions,
the main advances achieved, and the open challenges in the area. In
the context of image retrieval research, image collections are typically
represented and manipulated using features extracted from the images.
High-dimension representations often require changes in the dimen-
sionality level due to both effectiveness and efficiency aspects, leading
to the central purpose of dimensionality reduction. One of the formal
definitions of manifold learning is also a recent popular approach to
dimensionality reduction. Algorithms are built on the idea that many
datasets’ dimensionality can be described as a function of just a few
underlying parameters. Manifold learning algorithms try to discover
these parameters to find a low-dimensional representation of the data
[31].

In this field, there are two most commonly used linear techniques
for dimensionality reduction. PCA (Principal Components Analysis)
and MDS (Multidimensional Scaling). Both introduced solutions based
on matrices and their associating eigenvalues and eigenvectors. One
of the most widespread types of dimensionality reduction was the
PCA - Principal Component Analysis [32], however, limited to learn-
ing linear representations. Recent applications of Principal Component
Analysis (PCA) have extended across diverse fields, including computer
vision, contributing to interesting tasks. They were: facial and object
recognition, image compression, and finding relevance in astronomy
and bioinformatics. Conversely, Multidimensional Scaling (MDS), orig-
inating in the domain of psychology, has undergone a conceptual
expansion. Contemporary implementations in bioinformatics have en-
abled endeavors such as the creation of a comprehensive portrayal of
the protein structural landscape [33].

Nonetheless, over the years, the demand for non-linear and complex
representations has grown. Two research published in Science Maga-
zine used Locally Linear Embedding - LLE [34], in 2000, and ISOMAP
(Isometric Feature Mapping) [35] in 2002, and have been considered
major milestones in this theme. The first [34] highlights that most
areas of science depend on exploratory data analysis and visualization.
The fundamental problem of dimensionality reduction has been that
it is challenging to analyze large amounts of multivariate data. There-
fore, discovering compact representations of high-dimensional data is
a growing and fundamental challenge. Locally Linear Embedding (LLE)
is an unsupervised learning algorithm that computes low-dimensional,
neighborhood-preserving embeddings of high-dimensional inputs. LLE
maps input into a single global coordinate system of lower dimensional-
ity and are therefore different from clustering methods. LLE can learn
the global structure of nonlinear manifolds, such as those generated
by images, for example. The second [35], published in 2002, is an
enhancement of Tenenbaum’s algorithm [36] which generalizes to
arbitrary dimensionality if the connectivity and metric information of
the manifold are correctly supplied. The main concern is improving
dimensionality reduction algorithms’ robustness to noise and develop-
ing innovative approaches due to constraints in reducing neighborhood
size. This area is now crucial for future research exploration.

In 2003 [37], an interesting work highlighted a new universal
3

ranking algorithm for data situated in Euclidean space, such as text
or image data. The classification of the data concerning the structure
of the intrinsic variety is collectively revealed by a large amount of
data. In 2008, [38] the graph transduction method was one of the first
to exclusively address the problem of image retrieval with a diffusion
process in an unsupervised scenario. Since then, several approaches
based on diffusion processes have been proposed [14].

Diffusion-based approaches were followed by methods based on
ranking, more explored from 2011 onwards [39]. In 2013, the Ranked-
List-Similarity (RL-Sim) algorithm was proposed, taking into account
the rank correlation measures and the overlap between the neighbor-
hood sets aiming at computing a more effective distance measure [40].
Also, the Rank-Biased Overlap (RBO) approach, based on a probabilistic
user model, uses a key parameter that determines the strength weight
for the top positions in the ranking [41].

More recently, various deep learning methods have been employed.
These methods utilize an affinity graph to depict the overall structure
of the data [22]. They also incorporate affinity diffusion across neigh-
borhoods, which aids in identifying clusters of samples sharing similar
semantics. This process contributes to the creation of a progressive
model that incorporates an objective loss function aware of the group
structure. Known as the multistage procedure [22], this approach guar-
antees that at each phase, the model focuses exclusively on dependable
data groups that have been identified in the affinity graph up to that
point.

Significant advances have been achieved by different approaches,
including diffusion process, rank-based, and deep learning techniques.
However, despite the significant effectiveness gains reached in image
retrieval tasks, the area also includes some important open problems.
A relevant challenge common to the different approaches consists in
the capacity to deal with queries outside of the dataset, called unseen
queries. Although some methods have also proposed approaches to
handle the problem [17,42], it remains a challenge for most of the
approaches. It is partially associated with efficiency and scalability
aspects, which also constitute another important challenge in the area.
While effectiveness is widely evaluated, efficiency is often neglected
and considered by only a few works [42,43]. From another perspective,
an open opportunity consists of the broad use of robust Graph Neural
Network (GNN) models, few exploited [44,45], especially in some
recent works [46].

2.2. Overview and organization

The task of image retrieval has proved to be a broad field of
research with different levels of applications. Commonly, affinity values
are analyzed and similarities between elements are evaluated. How-
ever, the structure of the underlying data manifold ends up not being
considered, hence the need to obtain sensitive contextual similarities.
Such similarities must explore the context, usually the geometry, of
the underlying manifold. However, different approaches have been
exploited to represent and analyze the similarity information encoded
in the dataset manifold. Among the most representative works, it was
possible to organize the strategies into 3 major groups: (a) Diffusion
processes, (b) Ranking strategies; and (c) Deep approaches. It is imper-
ative to underscore that the division of the three groups herein was
meticulously undertaken with the intent of accentuating a prevailing
strategic approach within each evaluated work. The objective is not
to prescribe a conclusive or ultimate form of categorization but rather
to provide readers with enhanced access to research pertinent to the
highlighted strategy in each respective instance, without confining
these works exclusively to the delineated categories.

Diffusion methods interpret the affinity matrix as a weighted graph,
where nodes represent elements and connections reflect pairwise affin-
ity values. Affinities are reassessed through graph similarity diffusion,
often via random walks guided by a transition matrix. This process iter-
atively updates affinity matrices until convergence, improving retrieval

performance continuously [14].
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Considering the need for improvement strategies and computa-
tional costs, rank-based approaches have attracted attention. The use
of ranking information may bring relevant advantages, as lowers com-
putational efforts and independence of distance measures. In opposition
to distance measures, which compare only pairs of images, ranked lists
establish a deeper relationship, involving the comparison of the query
image with all dataset images. The ranked lists constitute a rich source
of similarity information, including the neighborhood set, which can be
modeled in terms of top-𝑘 rank positions [1,47].

A recent strategic approach, termed the deep approach, uses contour
features to represent views and infer 3D object characteristics. Zhu
et al. [48] exemplify this approach, which leverages deep learning-
based unified representations increasingly replacing traditional meth-
ods in retrieval tasks. Their contour-based representation has proven
successful in 3D model-based and shape retrieval tasks, representing a
recent advancement in the field.

It is possible to observe in Fig. 1 the cut of the literature that
this survey proposes to delimit and comment on. Focusing on all the
works that involved unsupervised learning and image retrieval, those
that used well-known datasets were included in the survey; next, the
papers reviewed chose some strategy for extracting features from the
images, which were transformed into treatable data; then a distance
function; and the works that included some type of context-aware
similarity measures that brought final gains in the effectiveness of the
retrieval task. We followed the organization in (a) Diffusion processes,
(b) Ranking strategies, and (c) Deep approaches.

To exemplify each one, the works representing each strategy were
cited; the graphs of (a) the Diffusion process proposed by Yang et al.
(2009) [49], the data points can be embedded into Euclidean space
by Diffusion Maps (DM), which can then reorganize the data points ac-
cording to their geometric relation as revealed by the diffusion process.
The first graph shows the colors of the points coded according to their
second diffusion coordinate using Diffusion Maps, and the last graph
shows the same plot using the Locally Constrained Diffusion Process
(LCDP). The second strategy, (b) Ranking strategies, was exemplified
using the work of Pedronette et al. (2018) [47], where the two graphs
show the capacity of exploiting the geometry of the dataset manifold
for computing new distances, where a query sample is selected in
each represented moon, represented by a labeled point marked with a
triangle. The color of other points is determined according to the closest
labeled point. Firstly, the Two-Moons dataset considered the Euclidean
distance, and once the geometry of the dataset is not considered, a large
number of points are misclassified. Then, in the second graph, the clas-
sification was computed by the proposed manifold learning algorithm.
The third strategy shows a qualitative analysis of the Oxford dataset
done by Liu et al. (2019) [50]. Generalized-Mean (GeM) [51] and
Guided Similarity Separation (GSS) descriptors are plotted using PCA
followed by t-distributed stochastic neighbor embedding (t-SNE) [52]
projection to two dimensions. In this case, it is presented three exam-
ples of queries with corresponding relevant database images colored
red, green, and blue. Each query image was displayed with an Average
Precision (AP) score; and a hard relevant database image.

2.3. Timeline and representative studies

The studies mentioned in the sections and which have stood out
over the years can be summarized in an image that represents the
timeline of the evolution of the area, in Fig. 2 The selected works
are representative of the 3 main approaches they focus on: Diffu-
sion process, Ranking, and Deep. Two research published in Science
Magazine used Locally Linear Embedding - LLE [34], in 2000, and
ISOMAP [35] in 2002, and have been considered the major mile-
stones in this theme. In 2003, one of the seminal papers [37] was
published, albeit with few experiments involving images. In 2008, the
graph transduction method [38] was one of the first to exclusively
4

address the problem of image recovery with a diffusion process in a
an unsupervised scenario. Then, several approaches based on diffu-
sion processes were proposed: Locally Constrained Diffusion Process
(LCDP) [49], Self-Smoothing Operator (SSO) [53], and Regularized
Diffusion Process (RDP) [20]. Ranking-based methods were more ex-
plored from 2011 onwards [39]. Some representative examples are the
Ranked List Similarities (RL-Sim) [1], the Sparse Contextual Activation
(SCA) [54] and the Reciprocal kNN Graph and Connected Compo-
nents [47] algorithms. During this decade, especially after 2011–2012,
there was a development of strategies based on ranking on parallel
fronts: at the same time that they gained greater notoriety in the
literature, they were also investigated and developed more effective,
robust, and efficient approaches. It is also worth mentioning inter-
esting strategies based on Deep approaches. Mining on manifolds -
Deep [21], a strategy that includes the attracts points that lie on the
same manifold and repels different manifolds; a Deep Neural Network,
which explores the capability of deep neural networks to generate
explicitly better feature representation for image retrieval [55]; the
Multi Domain 3D Shape, which proposed contour-based representation
for successful 3D model-based shape retrieval [48]; and also, Guided
Similarity Separation, an approach that uses the encoding neighbor
information into image descriptors, generating cluster assignments and
greatly optimization [50].

2.4. The big picture: the literature through keywords network analysis

This section aims to provide a broad perspective of the area using
visual representations based on the main keywords of surveyed papers.
The proposed visualization is grounded on formal network analysis and
is described in the following.

After performing searches including specific queries for the theme
detailed in this paper (details in Section 3), the Web Of Science and
Scopus tools allow the export of research papers details as files. It was
possible to identify and gather the keywords of all the research papers
related to the occurrences. It was also possible to organize the papers
by relevance, to obtain the first two thousand occurrences and their
respective keywords. Through this identification, it was possible to
elaborate on the construction of complex networks to analyze both the
number of occurrences and the number of times that two words appear
at the same time in a work.

For this purpose, we subdivided the years of publication according
to the main keywords utilized in the papers. Also, the data was exported
in the VOSViewer software to visualize each network for a period. This
software allows visualization of the complex network working with
different sizes of nodes (vertices) and connections (links). Before ex-
plaining each network model and each period analyzed, it is important
to detail the concepts behind network model creation. Any network
can be represented by a graph. Any graph can be represented by its
adjacency matrix, from which other matrices such as Laplacian can be
derived.

This kind of complex network analysis refers to the analysis of a
mathematical graph. The measure of the degree of the nodes (param-
eters under analysis) of a complex network (graph) is related to the
total number of edges (relations between the nodes) incident to this
node. Nodes with a higher number of edges to its incidents are called
hubs. Only the measure of nodes’ degrees may not adequately reflect
the complex importance of these node models.

A node is a measurable attribute, as shown in Fig. 7. The structure
portion of a network is easily modeled by graph theory. Specifically,
the network itself can be defined in terms of a set, 𝐆 = {𝐍,𝐋, 𝐟}, where

is a set of nodes, 𝐋 a set of links, and 𝐟 ∶ 𝐍 × 𝐍 a mapping function
hat defines the structure of 𝐆, how nodes are connected to each other

through links. The mapping function contains enough information to
draw the graph on a planar piece of paper using dots as nodes and
lines as links. But the set 𝐆 is inadequate to define the second part of
network, its dynamic behavior.
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Fig. 1. Steps of selection of literature available research papers. Focusing on all the works that involved Unsupervised learning and image retrieval, research papers that used
well-known Image Datasets were included in the survey; usually, each paper involved some strategy for Feature Extractions from the images, which were transformed into treatable
data (Image Features), followed by an appropriated Distance function; interestingly, some type of Context Aware Similarity Measures were necessary to bring final accuracy gains in
the retrieval task; it was possible to subdivide the strategies into 3 major groups: (a) Diffusion processes, (b) Ranking strategies; and (c) Deep approaches.
Fig. 2. The studies mentioned in the sections and which have stood out over the years can be summarized in an image that represents the timeline of the evolution of the area.
The selected research papers are representative of the 3 main approaches they focus on The diffusion process, Ranking, and Deep.
Definition of a Complex Network

𝐆(𝐭) = {𝐍(𝐭),𝐋(𝐭), 𝐟 (𝐭) ∶ 𝐉(𝐭)} (1)

where,
𝐭 = time, simulated or real,
𝐍 = nodes, also known as vertices,
𝐋 = links, also known as edges,
5

𝐟 ∶ 𝐍 × 𝐍 = mapping function that connects node pairs, yielding
topology,

𝐉 = algorithm for describing behaviors of nodes and links versus
time.

The elements of 𝐍 are called nodes, the elements of 𝐋 are called
links, and the mapping function 𝐟 is called the topology of 𝐆. The
cardinality or size of 𝐍, denoted small 𝐧, is the number of nodes in
𝐍, and 𝐦 is the number of links in 𝐋. Mathematically:
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𝐆 = [𝐍,𝐋, 𝐟 ] is a graph composed of three sets:
𝐍 = [𝐯𝟏, 𝐯𝟐,… , 𝐯𝐧] are nodes; and 𝐧 = |𝐍| is the number of nodes in

,
𝐋 = [𝐞𝟏, 𝐞𝟐,… , 𝐞𝐦] are links; and 𝐦 = |𝐋| is the number of links in

:
𝐟 ∶ 𝐋 → 𝐍 × 𝐍 maps links onto node pairs:
Additionally, 𝐯 and 𝐞 are used to designate an element of 𝐍 and

, respectively, and enumerate them with subscripts: 𝐯𝟏, 𝐯𝟐,… , 𝐯𝐧 and
𝟏, 𝐞𝟐,… , 𝐞𝐦.

A link is a mutual influence: node 𝐀 is linked to node 𝐁 if 𝐀
nfluences 𝐁, and vice-versa, denoted 𝐀 ↔ 𝐁. The correlation coefficient
f link 𝐀 ↔ 𝐁 is a measure of the influence of node 𝐀 on node 𝐁.
orrelations were normalized by dividing them by the maximum corre-

ation value of overall links. Connection matrix 𝐂: matrix 𝐍 × 𝐍 of links
onnecting nodes: 𝐂(𝐢,𝐣) = correlation result calculated between two
easurements (nodes). 𝐂 is symmetric when links are bidirectional,

.g. (𝐢, 𝐣). Then 𝐂(𝐢,𝐣) = 𝐂(𝐣,𝐢). If 𝐂 is non-singular, its eigenvector
= {𝐯𝟏, 𝐯𝟐,… , 𝐯𝐤} where 𝐯𝐢 are eigenvalues corresponding with nodes

𝐢. Then the solution to [𝐂 − 𝐕𝐈] = 𝟎, where 𝐈 is the identity matrix,
ields the eigenvalues 𝐕. The degree of a node is the number of
onnecting links. The betweenness centrality of node 𝐀 is the number
f shortest paths passing through node 𝐀 as determined by counting all
he shortest paths from all nodes to all other nodes [56].

A complex network was constructed from keyword co-occurrences,
ith nodes sized by word frequency. Four separate networks were

reated to analyze different publication periods. Initially, all data from
he search performed with the defined query are exported. In the
oSViewer software, the data type for creating the complex network

s chosen. The delimited search between the years 2000 and 2005 was
aved as a bibliographic file. Then, the creation of the network based on
ibliographic data (Data Type) is chosen, since the idea is to analyze
o-occurrences of keywords. In the Data Source step, the reading of
ata from reference files, RIS, EndNote, or RefWorks is selected, and
he RIS file is then selected. The type of analysis is then predetermined,
hich is by ‘‘co-occurrences’’. Co-occurrences mean that relationships
etween items (nodes) are established based on the number of docu-
ents in which keywords (units of analysis) appear together (at the

ame time). The method of counting these words and establishing the
ink was defined as ‘‘Full counting’’, where the relationship between
he words is a link with equal weight. Then the ‘‘threshold’’ is defined,
here the minimum number of occurrences of a word is determined as
qual to 2. In this network, of 191 words, 13 were above the threshold.

The spatial distance between nodes points to another important
iece of information: the number of co-citations. The more distant the
odes (words) the fewer citations of works in common they have. The
loser the nodes (words) are, the more citations of works in common
hey have. When larger gaps (spaces) are observed between groups of
lusters, work opportunities that relate to them are observed. Clusters
etween 2 others can point to an interface (intermediation) between 2
arge areas.

The first network is shown in Fig. 3 and represents the results
f keywords found in articles published from 2000 to 2005. In total,
here are 12 nodes with at least one connection and a maximum of

connections. It is observed that it is the least dense network (in
erms of numbers of nodes and links) while showing that occurrences
uch as ‘‘CBIR’’ and ‘‘classification’’ (hub) gain relevance around 2003
nd ‘‘diffusion’’ at the end of the interval (2005). For example, the
lassification node appears in 5 occurrences in this complex network.
urthermore, it was possible to calculate the link strength of this node,
hich is related to its degree (number of incident links) and is equal to
. Therefore, in addition to being a hub node, the node classification
s the most frequent keyword compared to the others in this range of
earches.

The second network built is shown in Fig. 4 covers the years 2006 to
011. In it, an increase in occurrences of keywords is observed, as well
6

s an increase in the number of nodes and links, pointing to an increase f
n the number of scientific works and the use of related keywords. In
otal, there are 19 nodes with at least one connection and a maximum
f 14 connections. ‘‘image retrieval’’, ‘‘relevance feedback’’ and ‘‘CBIR’’
re highlighted in the middle of the period and it is observed that from
he middle to the end the use of ‘‘manifold learning’’ and ‘‘re-ranking’’
s more frequent since they appear matched above 20 co-occurrences
n this network. Such a choice was necessary for better visualization of
he nodes that stood out in the period.

The third network built is shown in Fig. 5 includes the years 2012
o 2017. In this network, an increase in occurrences of keywords is
bserved, as well as an increase in the number of nodes and links,
ointing to an increase in the number of scientific works and the
se of related keywords. In total, there are 28 nodes with at least 7
onnections and import hubs (most connected nodes). They are ‘‘image
etrieval’’, ‘‘classification’’ and ‘‘retrieval’’. Also, ‘‘manifold learning’’,
‘dimensionality reduction’’, ‘‘re-ranking’’ and ‘‘manifold ranking’’ are
ighlighted in the middle to the end of the period, pointing to a growing
umber of research papers involving such subjects.

The last network generated included the result of searches for
rticles in magazines and journals within the established query, with
he filter from the year 2018 to 2022 (Fig. 6). The network analysis
nd model construction were generated with 15 co-occurrences and one
ew complex network. 39 nodes and 2 main clusters were obtained. The
irst year’s cluster has keywords such as CBIR, re-ranking, and diffusion;
he last few years are deep learning and deep metric learning. It is
he densest network among all those built and compared, pointing to a
rowth in the amount of work in the area, in addition to the importance
f themes related to images and new manipulation strategies.

Note that words like ‘‘information retrieval’’, ‘‘information storage’’
nd ‘‘image retrieval’’ are hubs, that is, nodes (keywords) that appear
ore frequently considering the network as a whole, and specifically,

ach time interval. The network also enabled us to verify different
lusters for each period: from 2005 to 2010 (predominantly blue),
here diffusion process works predominated; from 2010 to 2015 (pre-
ominantly green), research with manifold ranking, re-ranking, and
attern recognition grown; and from 2015 onward (predominantly
ellow), where deep strategies opened space and were associated with
etric learning, deep neural networks, and retrieval methods. This

nteresting complex network analysis helps to understand the evolution
f the research focuses in the area and its different related words, where
he degrees of the nodes (degree) denote the frequency with which
ords and searches grow in a given period, also the strength of the link

hat clusters the most frequently associated words in searches. In this
ense, network analysis is an abstraction of real facts. If abstraction can
elp in the explanation of the behavior of a real system, then network
nalysis is not only highly interesting but useful as well. It is interesting
o note that there are specific micro rules in the complex network
rganization, one of them called preferential attachment, where links are
ttracted to nodes that already have a lot of links (in this keywords
etwork analysis, this is related to pairs of keywords (nodes) commonly
sed that tended to be even more used in the papers). The fact that
his network has the majority of nodes with the same average number
f links and the specific number of nodes with many links (hubs)
escribes its topology structure as close to a Scale-free network [57],
hich follows a degree sequence distribution as a power-law. This

haracteristic is also called a macro level rule [56].

. Systematic review

In this section, we take into consideration investigations from the
iterature involving systematic reviews and surveys. In general, the
esearch involved keywords and strong search tools to find the papers
ssociated with the topic. We also tried to prioritize literature selection

rom well-known established publishers.
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Fig. 3. A complex network built to analyze both the number of occurrences and the number of times that two words appear at the same time in a work, from the year 2000
until 2005.
Fig. 4. A complex network built to analyze both the number of occurrences and the number of times that two words appear at the same time in a work, from the year 2006
until 2011.
3.1. Methodology

The central idea of this survey is to strategically gather the works
available in the literature that involve research with unsupervised
image recovery using manifold learning methods. It was necessary
to study the main synonymous terms before defining the words that
would compose the search. Considering that the target articles are
predominantly from Computer and Exact Sciences, reputable search
tools were chosen in available indexed databases: Scopus and the Web
of Science. Scopus is a search engine from Elsevier’s abstract and citation
database launched in 2004. Scopus covers nearly 36,377 titles from
approximately 11,678 publishers. Web of Science is a comprehensive
platform that allows one to track ideas across disciplines and time from
almost 1.9 billion cited references from over 171 million records, which
provides access to multiple databases that provide comprehensive ci-
tation data for many academic disciplines, maintained by Clarivate
Analytics. After defining the databases to be consulted, it was possible
to define the words for the search (query) in both tools. The final query
was defined as follows:
7

((‘‘multimedia’’ or ‘‘image’’ or ‘‘shape’’ or ‘‘object’’) and (‘‘manifold
learning’’ or ‘‘manifold’’ or ‘‘diffusion’’ or ‘‘re-ranking’’ or ‘‘reranking’’
or ‘‘re-rank’’ or ‘‘metric learning’’ or ‘‘affinity learning’’ or ‘‘distance
learning’’ or ‘‘similarity learning’’ or ‘‘query expansion’’ or ‘‘contextual-
sensitive similarity measures’’ or ‘‘contextual similarity’’ or ‘‘graph
transduction’’ or ‘‘co-transduction’’) and (‘‘retrieval’’ or ‘‘ranking’’)).

The first series of searches focused only on articles published in
journals and magazines. In the Web Of Science, 1519 occurrences of
works were obtained, and 1798 occurrences in the Scopus database.
The search filtered ‘‘Articles’’ and ‘‘Review articles’’, considering the
occurrence of words in the ‘‘Topics’’ fields, which include: ‘‘Title’’,
‘‘Abstract’’ and ‘‘Keywords’’, both from the publisher and the tool. The
occurrences included works from the year 1984 to 2022. The second
series of searches focused only on articles published at international
conferences. In the Web Of Science, 1122 occurrences of works were
obtained, and 2391 occurrences in the Scopus database. The search
filtered ‘‘Conference Papers’’ and ‘‘Conference Reviews’’, considering
the occurrence of words in the ‘‘Topics’’ fields, which include: ‘‘Title’’,
‘‘Abstract’’ and ‘‘Keywords’’, both from the publisher and the search
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Fig. 5. A complex network built to analyze both the number of occurrences and the number of times that two words appear at the same time in a work, from the year 2012
until 2017.

Fig. 6. The latest period complex network build to analyze both the number of co-occurrences, where two keywords appear at the same time in a work, from the year 2018 until
2022.
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Fig. 7. A complex network built to analyze both the number of occurrences and the number of times that two words appear at the same time in a work.
tool. The occurrences included works from the year 1986 to 2022.
Considering that there could be duplicate works when the lists were
joined, it was necessary to use a methodological strategy that involves
an algorithm in R language, called: ‘‘Bibliometrix: An R-tool for com-
prehensive science mapping analysis’’ [58]. The script reference is to
an extremely well-cited article (over 1600 citations) often used in
bibliometric analyses using the Bibliometrix package and an R script,
the access to the exported occurrence files was adapted to remove
duplicates in 4 results lists (2 from conferences, 2 from articles).

This step was extremely important to sequence the order of the
lists of articles that would enter the Survey. Instead of ordering the
lists according to their criteria, a renowned MCDA (Multiple Criteria
Decision Analysis) method was considered for the classification of
papers. The so-called ‘‘Methodi Ordinatio’’ is a proposed methodology
to select and rank relevant scientific papers encompassing the impact
factor, number of citations, and year of publication [59]. The method
𝐼𝑛𝑂𝑟𝑑 involves the following equation:

𝐼𝑛𝑂𝑟𝑑 = 𝛼𝐼𝐹 + 𝛽[10 − (𝑅𝑦 − 𝑃𝑦)] + 𝛾𝐶𝑖, (2)

where 𝛼 is the weight to be given to the Impact Factor (𝐼𝐹 ), originally
equal to 1. The 𝐼𝐹 is the Journal of Citation Reports (JCR) Impact
Factor of the journal where the paper was published. 𝛽 is the weight to
be given to how much more recent the publication is, usually 1, varying
from 1 to 10 (authors’ suggestion). 𝑅𝑦 is the Research Year and 𝑃𝑦
is the Publication Year. 𝛾 is the weight to be given to the number of
citations in the paper, originally 1. 𝐶𝑖 is the number of Citations in the
paper.

After exporting the lists of articles and conferences in spreadsheets,
another filter was applied to divide the articles. Since the Ordinatio
Method gives more weight to the most cited articles, it would not
be fair to keep recent articles (from 2019 onwards) on the same
list as the others. In this way, 4 ordered lists were obtained. 2 lists
of conference articles with different yearly intervals and 2 lists of
articles from journals and journals with different yearly intervals. List
1: journal and journal articles published up to 2018. List 2: journal and
journal articles published from 2019 onwards. List 3: conference papers
published up to 2018. List 4: conference papers published from 2019
onward. In each list, the method ordinatio for sorting was applied. In
each worksheet, titles and abstracts were read to define which ones
9

would be downloaded and read. It was possible to select from List 1,
43 articles; List 2, 30 articles; List 3, 38 articles; List 4, 35 articles. Then,
146 full articles were downloaded.

It is possible to observe in Fig. 8 the search steps and strategies
utilized to build this survey. It is a combination of well-established
methodologies for surveys, meta-analysis, and review organization.

3.2. Prisma flow

This section includes Prisma diagrams that represent the visual sum-
maries of the searches performed using the aforementioned method-
ological tools (Figs. 9 and 10). Two large databases Web of Science
and Scopus (Identification) were accessed. Then, the works were gath-
ered, and exported in files, to remove the duplicities via an algorithm
in the software R (Screening). To apply the multi-criteria decision
methodology, considering citations, we opted for the division of the
occurrences of works in two-time intervals: until 2018 and from 2018 to
2022 (Eligibility). Then, exclusion and inclusion criteria were followed
by access to the abstract, full texts, and quantitative and qualitative
analyses.

3.3. Selected works

This work aimed to provide a concise and accessible synthesis of
the primary research findings in the literature. Employing a rigorously
established search methodology, we systematically organized these
findings into tables. The tables are split by magazines and journal
papers (Tables 1, 2, 3, 4), and conference papers (Tables 5, 6, 7). They
highlight the predominant strategies used by authors. It is important
to note that the methodological diversity across the included works
transcends the categories used for organization. Nonetheless, this cat-
egorization serves as a useful tool to enhance accessibility, offering
insights into the focal themes and prevalent strategies within each
study.

3.4. Research categorizations and strategies

3.4.1. Diffusion
The works summarized in the tables according to the methodology

of selection performed, can be gathered in this section according to
their similarities in approaches.
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Fig. 8. The search sequence and strategies utilized to build this survey. It is a combination of well-established methodologies for surveys, meta-analysis, and review organization.
Firstly, it is conducted a large search in computer science databases (Web of Science and Scopus); an algorithm for duplicity removal is then applied (R-tool Bibliometrix) [58]; a
Complex Network analysis of the keywords according to time; an organization of the papers through a Multiple-criteria decision analysis, MCDA, Methodi Ordinatio [59]; 2 Prisma
flows [60] for each type of publication, defining eligibility; and 2 final tables summarized and organized by a ranking of the most cited papers.
Fig. 9. Prisma flow that depicts the flow of information through the different phases of a systematic review. It was chosen the articles related to the topic, according to this
well-known methodology for reviews [60].
Bai et al. [20] proposed a new affinity learning algorithm, the
Regularized Diffusion Process (RDP) [20]. It performs affinity learning
on tensor product hypergraphs, where hyperedges are utilized to cap-
ture the complex relationships. This way, the high-order information
is brought by both the hypergraph and the tensor-order learning. The
second is the use of contextual information to capture the geometry
10
of the underlying manifold, with the time complexity of NSS be-
ing much lower than most diffusion process literature available. Bai
et al. [100,114] also proposed Regularized Ensemble Diffusion (RED)
related to the smoothness of graph-based manifolds, also reducing time
complexity and outperforming other recent algorithms. In a similar
approach, Iscen et al. [110] proposed a regional diffusion mechanism,



Computer Science Review 53 (2024) 100657V.H. Pereira-Ferrero et al.
Fig. 10. Prisma flow that depicts the flow of information through the different phases of a systematic review. It was chosen the conference papers related to the topic, according
to this well-known methodology for reviews [60].
which handles one or more query vectors at the same cost, performing
diffusion through a sparse linear system solver, yielding practical query
times well below one second. Jiang et al. [53] proposed a diffusion
process that propagates similarity mass along the intrinsic manifold of
data points, called Self-Smoothing Operator (SSO), directly improving
a given similarity metric.

Wang et al. [105] proposed a fusion algorithm that combines mul-
tiple metrics through a diffusion process in an unsupervised way.

Bai et al. [15] studied similarity measures using graph transduc-
tion. The strategy includes new similarity measures learned, with
significant improvements in retrieval results if compared to existing
shape-matching methods, taking advantage of the manifold formed
by the existing shapes. Diffusion/Ranking Using graph transduction,
Bai et al. [75] propose a new shape retrieval algorithm, to fuse
different similarity measures for robust shape retrieval through a
semi-supervised learning framework.

Diffusion/Ranking Yang et al. [49] showed that other shapes influ-
ence the similarity measure of each pair of shapes, and the influence
may be beneficial even in the unsupervised setting. A locally con-
strained diffusion process showed stability in noise presence and, it is
possible to densify the shape space by adding synthetic points, called
’ghost points’.

Donoser & Bischof [14] revisited diffusion processes on affinity
graphs for capturing the intrinsic manifold structure. Interestingly,
11
automatically selecting a reasonable local neighborhood size is still an
open issue.

Below, it is possible to mention other important works, not yet
mentioned in the tables, but with relevant contributions to this field.

Yang et al. [117] investigated an innovative approach that adds
synthetic points directly to distance spaces. To define the distances
of ghost points to all other data points and insert ghost points to
densify the data manifold using the context information to significantly
improve the accuracy of retrievals. Through a diffusion process, and
testing datasets like MPEG-7 [61], Nister and Stewenius (N-S) [65], and
Caltech 101 [66], they find interesting results when compared with the
state of art methods.

Pedronette & Torres [118] developed a novel hybrid method, named
rank diffusion, which uses a diffusion process based on ranking infor-
mation, which propagates contextual information through a diffusion
process defined in terms of top-ranked objects, reducing the computa-
tional complexity of the proposed algorithm. A novel low-complexity
method is proposed exploiting characteristics of both diffusion and
rank-based approaches. High effectiveness gains can be obtained in sev-
eral well-known datasets, like MPEG-7 [61], Soccer [90], Brodatz [91],
ETH-80 [92], Holidays [67], UKBench [71], and at the same time, it is
a low-complexity algorithm.

Probabilistic distribution and deep features were explored by Alemu
& Pelillo (2020) [119]. To find a computationally efficient approach,
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Table 1
Summary of Articles (part 1) published in journals and magazines. The chosen order is the most relevant number of citations received.

Journal Year Authors Title Main contribution Strategy Datasets

IEEE Trans.
Pattern Anal.
Mach. Intell

2009 Bai,
Yang,
Latecki,
Liu
& Tu
[15]

Learning
Context-Sensitive Shape
Similarity by Graph
Transduction

Similarity measures to the query shape in a graph
structure are studied. A new similarity is learned
through graph transduction, iteratively so that the
neighbors of a given shape influence its final
similarity to the query. Graph transduction and
PageRank ranking yield significant improvements
in both shape classification and shape clustering

Diffusion MPEG-7 [61],
Kimia’s 99 [62],
Face (all) [63],
Swedish
leaf [64]

IEEE Trans.
Pattern Anal.
Mach. Intell

2012 Yang,
Prasad
& Latecki
[23]

Affinity Learning with
Diffusion on Tensor
Product Graph

Pairwise similarities and affinities are unreliable
due to noise or intrinsic issues. Tensor product
graph (TPG) by the tensor product of the original
graph brings greater retrieval scores.

Diffusion MPEG-7 [61],
N-S [65],
Caltech 101
[66],
INRIA Holidays
[67]

IEEE Trans.
Image
Process

2016 Bai
& Bai
[54]

Sparse Contextual
Activation for Efficient
Visual Re-Ranking

An extremely efficient algorithm for visual
re-ranking with a feature vector called sparse
contextual activation (SCA) that encodes the local
distribution of an image, vector comparison under
the generalized Jaccard metric. SCA improves
retrieval performance in an unsupervised manner.
Local Consistency Enhancement (LCE) is also being
developed to improve the performance of SCA.
The average time cost of re-ranking for a certain
query can be controlled.

Ranking PSB [68],
WM-SHREC07
[69],
YALE [70],
MPEG-7 [61],
UKBench [71]

Int. Journal
of Computer
Vision

2015 Tolias,
Avrithis
& Jégou
[72]

Image search with
selective match kernels:
aggregation across
single and multiple
images

A match kernel that takes the best of existing
techniques by combining an aggregation procedure
with a selective match kernel. After performing a
feature set augmentation, enjoy savings in memory
requirements. A novel model to further incorporate
matching kernels sharing the best properties of
Hamming Embedding and Vector of Locally
Aggregated Descriptors. The results include a
significant increase in performance while enjoying
a slight decrease in memory usage.

Ranking Holidays [67],
Ox.
Buildings [73],
Paris [74]
Table 2
Summary of Articles (part 2) published in journals and magazines. The chosen order is the most relevant number of citations received.

Journal Year Authors Title Main contribution Strategy Datasets

IEEE Trans.
Image
Process

2011 Bai,
Wang,
Yao,
Liu
&
Tu
[75]

Co-Transduction for
Shape Retrieval

To improve the accuracy of adopted similarity
measures, considering large intraclass variation.
Fuse different similarity measures for robust
shape retrieval through a semisupervised
learning framework. Co-transduction and
Tri-transduction algorithms to do a re-ranking
for a novel shape retrieval framework.

Diffusion
Ranking

MPEG-7 [61],
N-S [65],
Tari’s
shape [76],
Wei’s
trademark [77]

IEEE Trans.
Multim

2017 Bai,
Bai,
Zhou,
Zhang,
Tian
& Latecki
[78]

GIFT: Towards Scalable
3D Shape Retrieval

A real-time 3D shape search engine based on
the projective images of 3D shapes brings: (1)
efficient projection and extraction of preview
features using GPU acceleration; (2) the first
inverted file (FIF), is used to speed up the
multiview matching procedure; and (3) the
second inverted file, which captures a local
distribution of 3D shapes in the resource
collector, as an efficient context-based
re-classification.

Ranking ModelNet [79],
SHREC14
LSGTB [80],
ShapeNet
Core55 [81],
PSB [68],
WM-SHREC07
[68],
McGill [82]

IEEE Trans.
Pattern Anal.

Mach. Intell

2018 Bai,
Bai,
Tian
& Latecki
[20]

Regularized Diffusion
Process on Bidirectional
Context for Object
Retrieval

Tensor product diffusion can be able to reveal
the intrinsic relationship between objects. A
new affinity learning algorithm is proposed, the
Regularized Diffusion Process (RDP), which
measures the smoothness of the manifold and
simultaneously regularizes vertices in the
affinity graph. The work is a generic tool for
object retrieval, with the capacity of learning
more faithful similarities.

Diffusion MPEG-7 [61],
YALE [70],
ORL face [83],
UKBench [71],
Holidays [67],
Oxford [73],
TU Berlin
Sketch [84],
Wikipedia [85],
PSB [86]

Pattern
Recognition

2014 Chen,
Li,
Dick
& Hill
[87]

Ranking consistency for
image matching and
object retrieval

An image matching framework is proposed
exploring ranking relationships. A list-wise
min-hash scheme is developed, showing
flexibility and efficacy.

Ranking Oxford [73],
Paris [74],
Caltech [66],
Flickr [88]
12
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Table 3
Summary of Articles (part 3) published in journals and magazines. The chosen order is the most relevant number of citations received.

Journal Year Authors Title Main contribution Strategy Datasets

Inf.
Sciences

2012 Pedronette
& Torres
[89]

Exploiting pairwise
recommendation and
clustering strategies for
image re-ranking

A re-ranking method that considers
relationships among images, the quality of
ranked lists, and incorporates a clustering step
for improving the final effectiveness.

Ranking MPEG-7 [61],
Soccer [90],
Brodatz [91]

Pattern
Recog.

2018 Pedronette,
Gonçalves
& Guilherme
[47]

Unsupervised manifold
learning through
reciprocal kNN graph
and Connected
Components for image
retrieval tasks

A novel manifold learning approach that
exploits the intrinsic dataset geometry. The
dataset manifold is modeled and analyzed in
terms of a Reciprocal kNN Graph and its
Connected Components. This method yields
better effectiveness results than various
methods recently proposed.

Ranking MPEG-7 [61],
Soccer [90],
Brodatz
[91],
ETH-80 [92],
Holidays [67],
UKBench [71]

Image
and Vision
Comp.

2014 Pedronette,
Penatti
& Torres
[27]

Unsupervised manifold
learning using
Reciprocal kNN Graphs
in image re-ranking and
rank aggregation tasks

A novel unsupervised manifold learning
algorithm using Reciprocal kNN Graphs. With a
subset of ranked lists as input, the
computational and storage requirements are
minimal. The re-ranking and rank aggregation
algorithms yield better results in terms of
effectiveness.

Ranking MPEG-7 [61],
Brodatz [91],
UKBench [71]

Inf.
Sciences

2015 Bai,
Bai
& Wang
[93]

Beyond diffusion
process: Neighbor set
similarity for fast
re-ranking

A simple yet effective method called Neighbor
Set Similarity (NSS) is proposed, making use of
contextual information to capture the geometry
of the underlying manifold. A powerful fusion
process to utilize the complementarity of
different descriptors. The time complexity of
NSS is much lower than the diffusion process;
it is precise, faster, and proper for commercial
purposes.

Ranking MPEG-7 [61],
N-S [65],
ORL face [83]
Table 4
Summary of Articles (part 4) published in journals and magazines. The chosen order is the most relevant number of citations received.

Journal Year Authors Title Main contribution Strategy Datasets

Neuro-
computing

2016 Pedronette
& Torres
[94]

A Correlation Graph
Approach for
Unsupervised Manifold
Learning in Image
Retrieval Tasks

An unsupervised manifold learning algorithm
that takes into account the intrinsic dataset
geometry can significantly improve the
effectiveness of image retrieval systems with
low computational efforts

Ranking MPEG-7 [61],
Soccer [90],
Brodatz
[91],
ETH-80 [92],
UW [95],
UKBench [71]

Neuro-
computing

2018 Zhu,
Tang,
Wang,
Xu,
Wang,
Chen
& Tian
[96]

Saliency detection via
affinity graph learning
and weighted manifold
ranking

A bottom-up saliency detection approach by
affinity graph learning and weighted manifold
ranking. An unsupervised learning approach is
introduced to learn the affinity graph based on
image data self-representation. An algorithm
universally surpasses other unsupervised
graph-based saliency detection methods.

Ranking SOD [97],
ECSSD [98],
DUT-
OMRON [99]

IEEE Trans.
Image
Process

2018 Bai,
Zhou,
Wang,
Bai,
Latecki
& Tian
[100]

Automatic Ensemble
Diffusion for 3D Shape
and Image Retrieval

Considering that many works are sensitive to
noisy similarities, Regularized Ensemble
Diffusion (RED) is proposed, with weights
positively related to the smoothness of
graph-based manifolds (tensor product). RED
significantly reduces its proposed time
complexity and outperforms algorithms focused
on feature fusion or similarity diffusion, in
addition to setting new performances.

Diffusion ModelNet [79],
Holidays [67],
UKBench [71]
,
they introduced an incremental nearest neighbor (NN) selection method
considering the intrinsic manifold structure of a graph, the method
shows its effectiveness in quantifying the discriminating power of
given features in datasets like UKBench [71], INRIA Holidays [67],
Oxford [73] and Paris [74].

The quadratic growth of the kNN graph size due to the high quantity
of new connections between nodes in the graph is mentioned by
Magliani et al. (2019) [120]. They propose Locality-Sensitive Hashing
(LSH) projections, which obtain the same performance as a kNN graph
after diffusion. The experiments involved Oxford datasets [73] with the
advantage of less time, pointing to a better computational cost.

The geometry of data manifolds is an important aspect of diffu-
sion processability. However, the selection of neighbors tends to be
13

local [121]. Smooth Neighborhood (SN) is a proposal that mines the
neighborhood structure to satisfy the manifold assumption, by imposing
a weight learning paradigm. Through the MPEG7 dataset [61] and UK-
Bench [71], the proposal achieved better performance when compared
with state-of-art.

Another unsupervised deep learning approach is presented by
Huang et al. (2020) [22] focused on deriving discriminative feature
representations. Through a progressive affinity diffusion process, the
experiments involved the datasets CIFAR [122], ImageNet [123], and
MNIST [124] among others. The object image classification and clus-
tering showed the performance superiority of the proposed approach.

Dou et al. (2020) [125] mention the advantages of diffusion pro-
cesses and at the same time their limitations. They then proposed a
novel method, Graph Diffusion Networks (GRAD-Net), which learns

semantic representations by exploiting both local and global structures
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Table 5
Summary of Conference Papers (part 1) published in most relevant conferences reviewed.

Journal Year Authors Title Main contribution Strategy Datasets

CVPR
2017

2017 Zhong,
Zheng,
Cao
& Li
[26]

Re-ranking person
re-identification with
k-reciprocal
encoding

Considering Re-ID and the re-ranking under the
Jaccard distance, a more robust k-reciprocal
feature can capture similarity relationships
from similar samples, producing effective
improvements.

Ranking Market1501 [101],
CUHK03 [102],
MARS [103],
PRW [104]

CVPR
2011

2011 Qin,
Gammeter,
Bossard,
Quack,
& Van Gool
[39]

Hello neighbor:
Accurate object
retrieval with
k-reciprocal nearest
neighbors

An analysis of the 𝑘-reciprocal nearest neighbor
is used and different parts of the ranked
retrieval effectively re-ranking the retrieved
images, demonstrating a significant
improvement in comparative results.

Ranking Oxford5k,
Ox-ford105k [73],
Paris [74],
Un. of
Kentucky [71],
INRIA
Holidays [67]

CVPR
2012

2012 Wang,
Jiang,
Wang,
Zhou,
& Tu
[105]

Unsupervised metric
fusion by cross
diffusion

A fusion algorithm can output enhanced
metrics by combining multiple similarity
measures, through a diffusion process in an
unsupervised way.

Diffusion MPEG-7 [61],
AT&T Face
Image [83],
Caltech 101 [66],
N-S [65]

IEEE
TPAMI

2008 Jegou,
Schmid,
Harzallah,
& Verbeek
[16]

Accurate image search
using the contextual
dissimilarity measure

A contextual dissimilarity measure can improve
the accuracy in image search, considering the
local distribution of the vectors and modifying
the neighborhood structure. The approach
showed better results than standard distance

Ranking N-S
&
Lola [71]

IEEE
CVPR

2012 Shen,
Lin,
Brandt,
Avidan, &
Wu
[106]

Object retrieval and
localization with
spatially-constrained
similarity measure and
k-nn re-ranking

A novel spatial constraint similarity measure is
proposed, that considers object rotation,
scaling, or viewpoint change. Object retrieval
and localization significantly outperform other
methods.

Ranking Ox.
Buildings [73],
Paris [74],
Un. of
Kentucky [71],
INRIA
Holidays [67]
Table 6
Summary of Conference Papers (part 2) published in most relevant conferences reviewed.

Journal Year Authors Title Main contribution Strategy Datasets

IEEE Com.
Soc. Conf.
Com.
Vis. Pat.
Recog.

2009 Yang,
Koknar-
Tezel,
&
Latecki [49]

Locally constrained
diffusion process on
locally densified
distance spaces with
applications to shape
retrieval

A locally constrained diffusion process that is
more stable even if noise is present. The
addition of ghost points to densify sparse data
spaces demonstrates a significant increase in
the retrieval rates.

Diffusion
Ranking

MPEG-7 [61],
Swedish
Leaf [64]

IEEE CCVPR
2013

2013 Donoser
&
Bischof
[14]

Diffusion processes for
retrieval revisited

Considering retrieval applications, a generic
framework for diffusion processes could be
evaluated in different combinations of the
transition matrix. Constraining the diffusion
locally achieves the most promising boost in
performance.

Diffusion MPEG7 [61],
Yale [70],
ORL faces [83]

Comp. Vis.
ECCV

2012 Zhang,
Yang,
Cour,
Yu
&
Metaxas [107]

Query specific fusion
for image retrieval

A graph-based query-specific fusion in ordered
retrieval sets, by multiple retrieval methods,
may enhance the retrieval precision. The
retrieval quality is based on the consistency of
the top candidates’ nearest neighborhoods.

Ranking UKbench [71],
Corel-5K [108],
Holidays [67]
San Francisco
Landmarks [109]

IEEE CVPR 2017 Iscen,
Tolias,
Avrithis,
Furon,
Chum
&
Rennes [110]

Efficient diffusion on
region manifolds:
Recovering small
objects with compact
CNN representations

Focused on diffusion, a mechanism that
captures the image manifold in the feature
space, brings a significant boost in performance
of image retrieval with compact CNN
descriptors on standard benchmarks.

Diffusion Ox.
Buildings [73],
Paris [74],
Instre [111]

Comp. Vis.
ACCV

2009 Kontschieder,
Donoser
&
Bischof [112]

Beyond pairwise shape
similarity analysis

A modified mutual kNN graph as the
underlying representation showed great results
on shape retrieval tasks, and also an efficient
unsupervised clustering method.

Ranking MPEG-7 [61],
KIMIA99 [62]
14
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Table 7
Summary of Conference Papers (part 3) published in most relevant conferences reviewed.

Journal Year Authors Title Main contribution Strategy Datasets

IEEE
CVPR

2018 Iscen,
Tolias,
Avithris
&
Chum [21]

Mining on manifolds:
Metric learning without
labels

A novel unsupervised learning method attracts
points
that lie on the same manifold and repels
different manifolds, showing results on par or
outperforming prior models.

Deep Ox.
Buildings [73],
Paris [74],
Instre [111],
Holidays [67],
CUB200 [113]

IEEE
ICCV

2017 Bai,
Zhou,
Wang,
Bai,
Latecki,
&
Tian
[114]

Ensemble diffusion for
retrieval

Regularized Ensemble Diffusion (RED) proposed
is bundled with an automatic weight learning
paradigm, then negative impacts of noisy
similarities are suppressed.

Diffusion UKbench [71],
Holidays [67],
ModelNet40 [79]

IEEE
Int.
Conf.
Comp.
Vis.

2011 Jiang,
Wang,
&
Tu
[53]

Unsupervised metric
learning by
self-smoothing operator

The smoothing kernel is induced from an input
similarity matrix, which will be directly
improved through a smoothing/diffusion
process along the data manifold. Its
effectiveness has been demonstrated on tasks of
image retrieval, clustering, segmentation, and
classification

Diffusion MPEG-7 [61]

IEEE
CVPR

2018 Iscen,
Avrithis,
Tolias,
Furon
&
Chum
[115]

Fast spectral ranking
for similarity search

The image retrieval as linear filtering over a
graph is applied with fast spectral ranking and
reproduces the excellent results of the online
linear system solution.

Ranking Ox.
Buildings [73],
Paris [74],
Instre [111]

IEEE
WCACV

2015 Yang,
Matei aa &
Davis
[116]

Re-ranking by
multi-feature fusion
with diffusion for
image retrieval

A re-ranking algorithm that fuses multi-feature
information, pairwise similarity scores between
images, and a diffusion process to the fused
graph to reduce noise, which consistently
improves the performance of baselines.

Ranking UKbench [71],
Oxford [73],
Paris [74],
Holidays [67]
of the image manifold in an unsupervised fashion. Using datasets like
ORL face [83], Oxford [73], and Paris [74], they showed increased final
performance.

3.4.2. Ranking
Following the structure established in the preceding section, the

works delineated in the tables after the qualitative analysis can be sys-
tematically categorized within this section, elucidating commonalities
in their methodological approaches.

Bai et al. [93] also used contextual information to capture the
geometry of the underlying manifold, with the time complexity of
NSS being much lower than most diffusion processes combined with
re-ranking literature available.

Additionally, other work from Bai et al. [126] introduces a new
algorithm called Smooth Neighborhood (SN) that mines the neighbor-
hood structure to satisfy the manifold assumption. SN is adjusted to
tackle multiple affinity graphs by imposing a weight learning paradigm;
brings the theoretical guarantee of the underlying manifold struc-
ture and the capacity to deal with multiple affinity graphs. Testing
different datasets, like MPEG-7 [61], Uk-Bench [71], PSB [86] and
WM-SHREC07 [69], an integrated SN with Sparse Contextual Activa-
tion (SCA) showed to be a representative context-sensitive similarity,
that can yield state-of-the-art performances on shape retrieval, image
retrieval, and 3D model retrieval.

Also using graphs, Yang et al. [23] proposed to utilize the Tensor
Product Graph (TPG) which takes into account higher-order informa-
tion, for more reliable similarities. However, a graph diffusion process
on TPG is equivalent to a novel iterative algorithm, and affinities are
learned in an unsupervised setting.

Yang et al. [116] also joined graphs from multiple features with a
mixture Markov model, with a probabilistic model of similarity scores,
to determine the weight for each graph. Ranked lists of different queries
receive different weights.
15
Still working with graphs, Zhang et al. [107] modeled retrieval
ranks as graphs of candidate images and proposed a graph-based query-
specific fusion approach, where multiple graphs are merged and re-
ranked by conducting a link analysis on a fused graph.

Bai & Bai [54] developed the sparse contextual activation (SCA) as
a features vector, which encodes the local distribution of an image. The
vector comparison under the generalized Jaccard metric establishes the
re-ranking step. Additionally, a local consistency enhancement, in an
unsupervised manner, improved the retrieval. In a similar approach,
Zhong et al. [26] a k-reciprocal encoding method to re-rank the re-
ID. A k-reciprocal feature is calculated by encoding its 𝑘-reciprocal
nearest neighbors into a single vector, used for re-ranking also under
the Jaccard distance. Also, using the 𝑘-reciprocal nearest neighbor
structure, Qin et al. [39] treat different parts of the ranked retrieval list
with different distance measures, with benefits to both dimensionality
problems and uneven distribution of images.

Jegou et al. [16] also considered the local distribution of the vec-
tors and modified the neighborhood structure, with optimal parameter
choice shown to be quite context-dependent. Shen et al. [106] proposed
a new spatially-constrained similarity measure (SCSM) in addition to a
novel and robust re-ranking method with the 𝑘-nearest neighbors of the
query for automatically refining the initial search results.

Tolias et al. [72] proposed a vector aggregation method with se-
lective kernel and vector binarization, optimizing classifier efficiency
without increasing storage or query time.

Bai et al. [78] proposed a 3D shape search engine, which combines
GPU acceleration and inverted file, as GIFT. In online processing, once
a user submits a query shape, GIFT reacts and presents the retrieved
shapes within one second (without the off-line preprocessing opera-
tions, such as CNN model training and inverted file establishment).
While preserving high time efficiency, GIFT outperforms state-of-the-art
methods.

Chen et al. [87] proposed a framework for exploring intrinsic rank-

ing relationships for object retrieval tasks. Ranking consistency is an
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image similarity criterion, used as a verification method to efficiently
refine an existing ranking list. The results showed the flexibility and
efficacy of the proposed image-matching framework.

Pedronette & Torres [89] also investigated a re-ranking method,
which takes into account relationships among images and the qual-
ity of ranked lists. In this similar line, Pedronette et al. also have
successfully investigated manifold learning exploring datasets intrin-
sic geometry [27,47,94], often with the manifold being modeled and
analyzed in terms of a reciprocal kNN graph.

Besides, Kontschieder et al. [112] proposed a modified mutual kNN
graph as the underlying representation and demonstrated its perfor-
mance for the task of shape retrieval. Iscen et al. [115] proposed a fast
spectral ranking for similarity search, using a linear graph filtering of
a sparse signal in the frequency domain.

Below, it is possible to mention other important works, not yet
mentioned in the tables, but with relevant contributions to this field.

Pedronette, Valem, Almeida & Torres [19] indicated that manifold
learning methods can take into account the intrinsic global manifold
structure. A novel algorithm could be proposed based on the hyper-
graphs for unsupervised multimedia retrieval tasks. Different datasets
were tested, including MPEG-7 [61], Soccer [90], Brodatz [91], Hol-
idays [67], UKBench [71], Corel5K [108], ALOI [127], MediaEval
[128], and FCVID [129]. Interestingly, the LHRR algorithm exploits
the capacity of hypergraphs for modeling high-order similarity rela-
tionships and achieves highly effective results in diverse multimedia
retrieval scenarios.

Pedronette & Torres [130] introduced a novel unsupervised man-
ifold learning algorithm based on the correlation graph and Strongly
Connected Components (SCCs). The proposed algorithm computes a
new distance that takes into account the intrinsic geometry of the
dataset manifold. The tested datasets included MPEG-7 [61], Soc-
cer [90], Brodatz [91], ETH-80 [92]. The results demonstrated the high
effectiveness of the proposed method in several image retrieval tasks.

Pedronette, Torres & Calumby [131] used contextual spaces for im-
age re-ranking and rank aggregation. Two novel re-ranking approaches
that take into account contextual information were defined by the KNN.
They include contextual spaces for encoding contextual information;
two new re-ranking algorithms; and the evaluation of the proposed
algorithms in several CBIR tasks; testing datasets like MPEG-7 [61],
Brodatz [91], UW Dataset [95]. They used a combination of visual
and textual descriptors and a post-processing (re-ranking) method with
improved final results.

Iscen, Avrithis, Tolias, Furon, & Chum [132] proposed a new hybrid
filtering method, based on temporal filtering and spectral–temporal
graph, that allows for the first time to strike a reasonable balance
between the two extremes of manifold ranking. It delivers great results
in datasets like Oxford Buildings [73], and Paris [74], comparable with
the state of the art, with the advantage of lower memory demands.

Local Residual Similarity (LRS) was proposed by Sun et al. [133]
using the local neighborhood and the top-ranked images. The effec-
tiveness of LRS was demonstrated on two benchmark datasets, UK-
Bench [71], INRIA Holidays [67]. The authors showed that there could
be a significant improvement in the final performance, particularly
considering computational costs.

Still, considering image retrieval, Pang et al. [134] showed that a
graph defined by a set of deep image features can constitute a heat
transfer system. They proposed a practical solution to derive image
vectors, in addition to a heat equation-based image re-ranking method.
Such unsupervised-based methods showed to be compatible with dif-
ferent CNNs with interesting results for datasets like Oxford [73],
Paris [74], Holidays [67] and Flickr [88].

The same research group [135] proposed another generalized strat-
egy for image retrieval, using similarity propagation followed by a re-
ranking of image vectors. Among the advantages, the strategy showed
to be memory efficient, and did not require parameter tuning to achieve
16
optimal performance; interesting experiments were conducted on the
Oxford [73] and Paris [74] datasets.

Wang & Sun (2014) [136] focused on the problem of database
retrieval and Graph Transduction for contextual information by the
nearest neighbor graph. An optimal graph can be obtained and the
model is unified by an objective function, and optimized by an iter-
ative algorithm. By parameterizing the graph with combined weights,
improved the contextual similarity learning method, using the inter-
esting Open Access Series of Imaging Studies (OASIS) [137] in the
experiments.

Pedronette, Valem & Torres (2021) [138] investigated the Breadth-
First Search Tree (BFS) to exploit the similarity information encoded
in the ranking references. In obtaining top-k ranking results, the BFS
provided a hierarchical representation of the ranking results. The exper-
iments involved interesting results in the datasets: MPEG-7 [61], Soc-
cer [90], Brodatz [91], Holidays [67], UKBench [71], Corel5K [108],
CIFAR 10 [122], and ALOI [127]. Significant effectiveness gains were
obtained through the encoding of neighborhood relationships obtained
by ranking references.

Arun et al. (2017) [139] unified rank aggregation and image re-
ranking for more efficient retrieval results. Considering two-step clus-
tering, an adaptive procedure updated the similarity scores among
images, and the clusters played a key role in this process. Experiments
with interesting results were conducted on the datasets: Holidays [67],
Oxford [73], Corel [108], and Scene-15 [140].

Lao et al. (2021) [141] proposed a new approach in the selection of
graph methods employed in the re-ranking process. The Three Degree
Binary Graph (TDBG) was used to eliminate the outliers and a multi-
feature fusion method was also proposed to enhance the retrieval per-
formance for UKBench [71], and Corel [108] datasets, outperforming
existing state-of-the-art manifold-based re-ranking methods.

Delviniotti et al. (2016) [142] present two re-ranking mechanisms
for the improvement of image query results. The mechanisms seek to
adjust the contents of the original query result, by measuring the degree
to which the neighbor set of a result object agrees with that of the query
object itself. The approach provides a simple and uniform framework
for integrating structural information.

The problem of better feature representation is addressed by Shen
et al. (2021) [143]. The meta-learn proposed works by re-ranking up-
dates, and the similarity graph converges towards the target similarity
graph induced by the image labels. They performed tests in datasets like
Oxford [73], and Paris [74], and mentioned that the approach can work
independently or in conjunction with classical re-ranking approaches
for better image retrieval results.

3.4.3. Deep
Zhu, Rao, Bai, & Latecki [48] used contour features to represent

views, once they could provide sufficient information to infer the
characteristics of the whole 3D objects in a unified representation in
retrieval tasks. Deep learning-based representations tend to gradually
replace traditional learning or non-learning-based approaches. The pro-
posed contour-based representation is successful in 3D model-based 3D
shape retrieval tasking several datasets tested, such as SHREC’13 [144],
SHREC’14 [145], SHREC’16 [146], ShapeNet Core55 [79], SHREC’16
and SHREC’17 Track [81].

Still considering deep learning approaches, Iscen et al. (2018) [21]
presented a novel unsupervised framework for hard training. Initially,
a set of images is defined with a significant initial representation (like
a pre-trained CNN). The strategy included attraction points that lie on
the same manifold and repel different manifolds and showed results on
par with or outperforming prior models.

Zhao, Wang, Zhou, Shi, & Gao [55] proposed a modeling diffusion
process by deep neural networks. Exploring a highly nonlinear diffusion
process and the capability of deep neural networks, to generate explicit,
better feature representation for image retrieval in complex datasets

like Oxford5K and Oxford105K [73], Paris6k and Paris106K [74],
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Instre [111], Sculpture [147]. Interestingly, the proposed approach
achieved better retrieval results than the original diffusion process
isolated.

Liu et al. (2019) [50] mention that the nearest neighbor graph in
the exploration of information needed in image retrieval can have an
alternative approach by directly encoding neighbor information into
image descriptors. Their new approach is similar to the Deep Embedded
Clustering (DEC) [148], which alternates between generating cluster
assignments and optimizing the model. In addition, they used an un-
supervised loss based on pairwise separation of image similarities and
learned a new descriptor space that significantly improves retrieval
accuracy. The datasets improved included Oxford [73], Paris [74], and
Instre [111].

4. Experimental study

This section presents a brief experimental study on unsupervised
affinity learning approaches in image retrieval tasks to provide an
additional discussion on the topics presented in this survey. These
approaches receive as input a set of ranked lists obtained for a given
descriptor and post-process them to achieve more effective results. One
of the objectives is to highlight the effectiveness gains obtainable by
these methods with different datasets and descriptors.

A total of 8 datasets with diverse aspects were considered with
sizes ranging from 5000 to 108,754 images and class sizes from 50
to 1812. The datasets were divided into two categories: (i) general-
purpose, which includes a broad range of diverse categories, and (ii)
person re-identification (Re-ID), which consists of images of people.
For general-purpose datasets, it is common to have fewer classes with
more elements, but in Re-ID (Re-identification), the opposite is true. To
capture and analyze the diverse information contained in these images,
both Convolutional Neural Networks (CNN) and Vision Transformer
(ViT) models were used to extract features.

The methods used in this experimental analysis are all rank-based
and enhance the ranked lists by redefining the similarity between
elements, a process commonly known as similarity learning or re-
ranking. We considered 5 methods, which are all unsupervised and
briefly summarized as follows:

• BFS-Tree of Ranking References (BFSTREE) [138] uses a breadth-
first tree structure to model and analyze the similarity and im-
plicit relations between dataset elements based on rank correla-
tions.

• Cartesian Product of Ranking References (CPRR) [24] performs
Cartesian product of ranking references to learn similarities be-
tween data.

• Log-based Hypergraph of Ranking References (LHRR) [19] models
the ranked lists as hypergraphs and exploits the relations between
the elements in the dataset.

• Rank Flow Embedding (RFE) [17] employs a hypergraph to re-
define the similarity between elements. From this hypergraph, it
derives a graph and utilizes its connected components to identify
groups of the most similar elements for re-ranking.

• Rank-based Diffusion Process with Assured Convergence (RDPAC)
[149] performs a diffusion process to exploit the information
contained in the ranked lists.

Most methods are recent or provide results comparable to the
state-of-the-art according to their papers. All of them are available
on open-source software, the Unsupervised Distance Leaning Frame-
work (UDLF) [150]. In all methods, the default parameters of the
UDLF [150]1 were considered. The only parameters that were changed
are: (i) the neighborhood size (𝑘) according to the particularities of
each dataset2; and (ii) the ranked lists size (𝐿). For all datasets, 𝐿 =

1 UDLF version: https://github.com/UDLF/UDLF/releases/tag/v1.60.
2 Neighborhood sizes: 𝑘 = 90 for Corel5k [108]; 𝑘 = 50 for CUB200 [113];
= 100 for Dogs [151], Food101 [152], and SUN397 [153]; 𝑘 = 20 for

CUHK03 [154]; 𝑘 = 30 for Market [155] and Duke [156].
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Fig. 11. Distances distribution for two query images on Corel5k dataset before (left)
the execution of LHRR method.

2000 was used. Given a dataset, we applied the same parameters across
all methods and descriptors to ensure a fair and consistent comparison.

Both quantitative and visual results were reported for the similarity
learning approaches considering different datasets and features, which
were mentioned in this survey. For general-purpose datasets, all the
features were extracted considering deep learning models trained on
the ImageNet dataset. While, for Re-ID, they were trained on MSMT17,
a multi-scene multi-time person re-identification dataset. Since the
protocol is unsupervised, descriptors always perform transfer learning.

Table 8 presents the results for 5 general-purpose datasets. Along
with the MAP obtained, the relative gain is also reported for each
pair of method and descriptor considering the improvement over the
‘‘original’’ (i.e., without any approach) value. The relative gains are
highlighted in bold, and the best result in each row is shaded in gray.
Notice that, in most cases, the methods provided results significantly
higher than the standalone feature, with notorious gains. The LHRR
consistently achieved the best results across most cases, frequently
followed by the RFE. This is probably because they utilize hypergraph
models to exploit first and second-order neighborhoods of elements,
leveraging the relevant underlying structure of the dataset. Notably,
the Dogs [151] dataset is an exception where CPRR achieved superior
results. Unlike others, CPRR utilizes symmetrical similarities between
elements, which can be particularly advantageous for this dataset.

Similarly, Table 9 presents the results for the same set of methods on
3 Re-ID datasets. Once again, all methods presented a significant gain
over the original feature result. Notice that, for CUHK03 and Market,
RDPAC and BFSTREE achieved the best results, while LHRR was the
best for Duke. A hypothesis is that this is related to the Re-ID detector
used to crop the images in each dataset.

We also conducted a visual analysis. In Figs. 11 12, there are two
plots: one before the execution of LHRR (Fig. 11) and after (Fig. 12).
Each image in the dataset is represented by a different point. The values
on the axes correspond to the distances of each image when compared
to images 𝑖𝑚𝑔1 and 𝑖𝑚𝑔2. Elements belonging to the same class are
ighlighted in red. It is worth noting that distance learning has led
o a substantial enhancement, bringing elements within the same class
loser together.

Taking into account the two images, previously denoted as 𝑖𝑚𝑔1 and
𝑚𝑔2, Fig. 13 displays their ranked lists before and after the execution
f distance learning. The query images are marked with green borders,
hile the incorrect results are highlighted with red borders. The ap-
lication of LHRR successfully eliminated all incorrect results in both

cenarios.

https://github.com/UDLF/UDLF/releases/tag/v1.60


Computer Science Review 53 (2024) 100657V.H. Pereira-Ferrero et al.

a
o
a
p
a
n
2
e
a
a

5

g

Table 8
Mean Average Precision (MAP %) results for 5 general-purpose datasets considering different similarity learning approaches and descriptors [157–161].

General-Purpose Datasets

COREL5K [108] Dataset (5,000 images, 50 classes)
Descriptors↓ Methods→ ORIGINAL BFSTREE [138] CPRR [24] RFE [17] LHRR [19] RDPAC [149]

RESNET [157] 64.75% 84.76% 86.00% 87.51% 90.15% 86.21%
R. Gain +30.93% +32.81% +35.13% +39.19% +33.17%

DPNET [158] 65.11% 84.22% 85.19% 85.69% 87.40% 84.96%
R. Gain +29.33% +30.84% +31.63% +34.20% +30.48%

SENET [159] 56.71% 76.13% 77.19% 84.75% 88.90% 80.81%
R. Gain +34.22% +36.14% +49.46% +56.77% +42.53%

SWIN-TF [160] 74.21% 91.39% 92.20% 95.41% 96.98% 94.17%
R. Gain +23.12% +24.25% +28.57% +30.66% +26.89%

VIT [161] 75.19% 89.56% 90.21% 91.85% 92.75% 90.27%
R. Gain +19.08% +20.01% +22.18% +23.34% +20.07%

CUB200 [113] Dataset (11,788 images, 200 classes)
Descriptors↓ Methods→ ORIGINAL BFSTREE [138] CPRR [24] RFE [17] LHRR [19] RDPAC [149]

RESNET [157] 23.11% 35.32% 38.05% 36.20% 39.51% 36.89%
R. Gain +52.81% +64.71% +56.53% +70.75% +59.67%

DPNET [158] 26.47% 38.05% 39.06% 37.28% 40.36% 39.16%
R. Gain +43.78% +47.61% +40.84% +52.54% +47.89%

SENET [159] 18.75% 23.78% 23.89% 22.67% 24.72% 24.27%
R. Gain +26.83% +27.41% +20.91% +31.84% +29.44%

SWIN-TF [160] 58.37% 73.09% 75.54% 67.64% 74.09% 74.43%
R. Gain +25.25% +29.42% +15.86% +26.92% +27.52%

VIT [161] 60.79% 71.08% 71.92% 67.71% 71.65% 71.38%
R. Gain +16.89% +18.28% +11.35% +17.88% +17.40%

DOGS [151] Dataset (20,580 images, 120 classes)
Descriptors↓ Methods→ ORIGINAL BFSTREE [138] CPRR [24] RFE [17] LHRR [19] RDPAC [149]

RESNET [157] 64.16% 76.84% 81.28% 71.62% 79.18% 78.07%
R. Gain +19.76% +26.70% +11.63% +23.42% +21.70%

DPNET [158] 78.29% 85.87% 89.66% 77.57% 85.63% 85.68%
R. Gain +9.68% +14.53% -0.92% +9.36% +9.43%

SENET [159] 86.39% 88.05% 90.71% 80.67% 85.89% 87.05%
R. Gain +1.92% +4.99% -6.62% -0.58% +0.76%

SWIN-TF [160] 46.14% 57.78% 64.56% 48.79% 61.59% 59.07%
R. Gain +25.24% +39.95% +5.75% +33.47% +28.04%

VIT [161] 80.01% 83.21% 86.32% 76.20% 84.18% 82.67%
R. Gain +4.00% +7.89% -4.76% +5.21% +3.32%

FOOD101 [152] Dataset (101,000 images, 101 classes)
Descriptors↓ Methods→ ORIGINAL BFSTREE [138] CPRR [24] RFE [17] LHRR [19] RDPAC [149]

RESNET [157] 9.04% 11.64% 12.25% 15.84% 17.20% 11.75%
R. Gain +28.76% +35.51% +75.22% +89.82% +29.98%

SWIN-TF [160] 34.23% 40.40% 40.18% 42.10% 44.11% 41.17%
R. Gain +18.01% +17.38% +23.03% +28.90% +20.26%

VIT [161] 36.05% 40.10% 39.51% 41.20% 41.55% 40.63%
R. Gain +11.25% +9.62% +14.29% +15.25% +12.70%

SUN397 [153] Dataset (108,754 images, 397 classes)
Descriptors↓ Methods→ ORIGINAL BFSTREE [138] CPRR [24] RFE [17] LHRR [19] RDPAC [149]

RESNET [157] 18.16% 23.19% 24.24% 25.73% 28.18% 23.42%
R. Gain +27.63% +33.43% +41.69% +55.07% +28.90%

SWIN-TF [160] 37.05% 43.81% 44.89% 43.22% 47.46% 44.21%
R. Gain +18.23% +21.15% +16.66% +28.10% +19.32%

VIT [161] 39.42% 43.90% 44.68% 43.65% 45.87% 44.16%
R. Gain +11.36% +13.31% +10.74% +16.36% +12.04%
In future work, we intend to investigate other methods, descriptors,
nd parameter sensitivity; and analysis on even larger datasets. On the
ther hand, larger-scale datasets may provide challenges: user-tagged
nnotations, potentially introducing noise into data [165]; significant
re-processing, which increases computational costs [166]; and the
mplification of class imbalance [167], with impact on the effective-
ess [168]. In summary, considering both sets of analyses, there were
16 distinct MAP results and over 329,877 images analyzed. This
xploratory and combinatorial approach can assist in developing more
daptable and effective proposals capable of addressing the variability
nd complexity of real-world data.

. Conclusions

Despite the disruptive advances in visual data representation strate-
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ies supported by CNN and Transformer-based models, the similarity
assessment between images remains a challenging task. Represented
as points in high-dimensional spaces, images are commonly compared
based on pairwise measures, which neglect more global similarity re-
lationships. Unsupervised approaches capable of exploiting contextual
information encoded in the dataset manifold going beyond pairwise
analysis represent an effective way to obtain more effective similarity
measures and, therefore, more effective retrieval results.

In this work, we performed an organization of published research
of unsupervised methods focused on post-processing similarity mea-
surement on image retrieval tasks. It involved the diverse taxonomy
of the area, with terms like manifold learning, diffusion process,
distance/similarity/affinity learning, and re-ranking methods. A sys-
tematic review of the literature was conducted using well-established
searching tools (Web Of Science; Scopus), depicting the evolution of the

field over the years. A network analysis was also performed, involving
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Table 9
Mean Average Precision (MAP %) results for person Re-ID datasets considering different similarity learning approaches and descriptors [162–164].

Person Re-ID Datasets

CUHK03 [154] Dataset (14,097 images, 1,467 classes)
Descriptors↓ Methods→ ORIGINAL BFSTREE [138] CPRR [24] RFE [17] LHRR [19] RDPAC [149]

RESNET [157] 13.06% 21.48% 20.00% 19.89% 20.76% 21.44%
R. Gain +64.32% +53.14% +52.22% +58.88% +64.01%

HACNN [162] 9.65% 15.20% 13.92% 14.47% 14.85% 15.39%
R. Gain +57.51% +44.15% +49.84% +53.89% +59.48%

MLFN [163] 10.16% 16.04% 14.74% 15.43% 15.24% 16.02%
R. Gain +57.87% +45.08% +51.97% +50.20% +57.68%

OSNET-AIN [164] 26.99% 41.67% 38.47% 39.23% 39.67% 41.30%
R. Gain +54.38% +42.53% +45.35% +47.04% +53.01%

OSNET-IBN [164] 20.77% 34.01% 31.36% 32.27% 32.84% 34.54%
R. Gain +63.68% +51.01% +55.35% +58.21% +66.42%

Market [155] Dataset (32,217 images, 1,501 classes)
Descriptors↓ Methods→ ORIGINAL BFSTREE [138] CPRR [24] RFE [17] LHRR [19] RDPAC [149]

RESNET [157] 22.78% 35.67% 34.25% 35.41% 36.15% 36.02%
R. Gain +56.57% +50.35% +55.49% +58.61% +57.95%

HACNN [162] 23.26% 33.80% 31.05% 32.64% 32.76% 34.20%
R. Gain +45.34% +33.43% +40.29% +40.84% +46.99%

MLFN [163] 21.95% 32.06% 29.68% 31.06% 31.62% 32.45%
R. Gain +46.11% +35.22% +41.55% +44.06% +47.83%

OSNET-AIN [164] 43.27% 59.97% 57.74% 59.01% 60.12% 60.64%
R. Gain +38.61% +33.44% +36.42% +39.01% +40.15%

OSNET-IBN [164] 37.10% 54.14% 51.93% 53.41% 54.94% 55.59%
R. Gain +45.91% +39.95% +43.92% +48.12% +49.89%

Duke [156] Dataset (36,411 images, 1,812 classes)
Descriptors↓ Methods→ ORIGINAL BFSTREE [138] CPRR [24] RFE [17] LHRR [19] RDPAC [149]

RESNET [157] 31.97% 49.40% 48.91% 51.21% 51.69% 50.33%
R. Gain +54.56% +52.99% +60.12% +61.60% +57.45%

HACNN [162] 25.52% 40.38% 38.56% 40.90% 40.95% 40.67%
R. Gain +58.33% +51.14% +60.31% +60.47% +59.35%

MLFN [163] 28.94% 44.79% 43.59% 45.71% 46.27% 45.60%
R. Gain +54.76% +50.59% +57.91% +59.88% +57.63%

OSNET-AIN [164] 52.66% 68.32% 67.39% 68.77% 69.12% 68.48%
R. Gain +29.74% +27.95% +30.57% +31.23% +30.02%

OSNET-IBN [164] 45.49% 64.03% 62.84% 64.92% 65.96% 65.14%
R. Gain +40.75% +38.15% +42.67% +45.02% +43.25%
Fig. 12. Distances distribution for two query images on Corel5k dataset after (right)
the execution of LHRR method.

interesting keywords and the temporal weight of each collaboration.
To select the surveyed works, an ordination according to a Multiple
Criteria Decision Analysis Method Ordinatio was considered, splitting
conferences and journals types into different groups and years (once
recent works received fewer citations), defining eligibility, quantitative,
and qualitative criteria (through Prisma Flow). Such gathered strategies
made possible a final ranking with the most cited papers organized
19
by the most cited. The selected works were discussed and summarized
according to their predominant category and methodology employed
(Diffusion, Ranking, and Deep). It is worth noting that the diversity of
methodologies employed in the included works surpasses the catego-
rizations used for section organization. Nevertheless, these categories
serve as a practical means to facilitate accessibility, shedding light on
thematic focus and prevailing strategies within each study. In this way,
the survey provides a comprehensive organization and reference of
the research area, especially considering the absence of other surveys
focused on this theme. Finally, a brief experimental study demonstrated
the potential of effectiveness gains of recent approaches applied to
recent CNN and Transformer-based features.

As a broad perspective trend, it was possible to identify that over
the years’ diffusion methods were profoundly investigated, giving rise
to many different approaches followed by rank-based strategies. More
recently, deep learning-related strategies also have been applied. How-
ever, a promising research direction in the area points to new ways
of combining such mentioned and discussed approaches. In another
relevant direction, it is interesting to note that, despite the focus of this
survey being unsupervised affinity learning, there is a broad range of
applications associated with image retrieval. It is worth mentioning, for
example, the work of Iglesias et al. (2011) [169] that introduces a clas-
sification system for Alzheimer’s disease through similarity measures
enhanced by the Self-Smoothing Operator (SSO). Using the enhanced
metric in nearest neighborhood classification, they showed significantly
improved accuracy for Alzheimer’s Disease over Diffusion Maps. Person
Re-ID represents another relevant application. A representative work
is the re-ranking method proposed by Zhong et al. [26]. In addi-
tion, manifold learning strategies are not restricted to image retrieval
applications and have been successfully exploited in other machine
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Fig. 13. Ranked lists before and after the LHRR execution for SWIN-TF descriptor on Corel5k dataset.
learning scenarios, such as clustering [170] and weakly-supervised
classification [171].

Considering retrieval tasks, the recent strategies include: Struc-
tural Embedding Network (SENet), which captures the internal struc-
ture of the images and compresses them into dense self-similarity
descriptors [172]; Rank Flow Embedding (RFE) for unsupervised and
semi-supervised scenarios [30]; Universal and Compact Representation
Learning for Image Retrieval (Unicom), effective for universal and
compact feature embedding [173]; and Graph Convolution based Re-
ranking (GCR) for visual retrieval tasks via feature propagation [174].
It is worth mentioning recent trends in the area. Embeddings and
representation learning are common themes. Considering correlated
tasks, there is research involving semisupervised subspace learning
with adaptive pairwise graph embedding (APGE) [175]; and structure-
aware deep spectral embedding [176], which demonstrates the excel-
lent clustering performance. It is worth highlighting that traditional
approaches, such as clustering and diffusion, still have recent advances,
based on a fusion-and-diffusion strategy, in which multiple affinity
graphs are fused via a weight learning [177].
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