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ABSTRACT
In modern dentistry, teeth localization and segmentation from
dental cone-beam CT (CBCT) images are crucial for improv-
ing dental diagnostics, treatment planning, and population-
based studies on oral health. However, creating automated
algorithms for teeth analysis is a challenging task due to the
limited availability of accessible data for training. This work
extends the self-supervised learning framework of the masked
autoencoder (MAE) transformer. While the MAE loss mea-
sures the quality of reconstructed masked patches, we propose
to instead measure the closeness of the predicted deep embed-
dings of masked patches to their originals. This yields a bet-
ter generalization ability on a very limited number of CBCT
images, as documented by our results on teeth segmentation
of CBCT images. We call our approach DEMAE for deep
embedding MAE. Our results show that masking-based un-
supervised learning methods may, for the first time, provide
convincing transfer learning improvements on CBCT images,
increasing the overall accuracy over both MAE and prior self-
supervised pre-training.

Index Terms— Self-supervised learning, Masked autoen-
coders, Tooth segmentation, Transformer, Deep embeddings

1. INTRODUCTION
In the last decade, digital dentistry has rapidly evolved, em-
phasizing the acquisition and division of complete three-
dimensional (3D) tooth models. These models are crucial for
defining the intended arrangement and movements of individ-
ual teeth, particularly for orthodontic diagnosis and treatment
planning. Obtaining these comprehensive 3D tooth models
presents a challenge. Currently, two main technologies for
acquiring these models are intraoral or desktop scanning and
cone beam computed tomography (CBCT) [1]. Intraoral or
desktop scanning is convenient for capturing the surface ge-
ometry of tooth crowns but lacks information about tooth
roots, essential for precise diagnoses and treatments. Con-
versely, CBCT provides comprehensive 3D volumetric data
for all oral tissues, including teeth, and due to its high spatial
resolution, it is widely used in oral surgery and digital or-
thodontics. This paper focuses on 3D tooth segmentation and
identification from CBCT images, which crucial for digital
orthodontics applications.

Segmenting teeth from CBCT images presents significant
challenges due to several reasons. Firstly, in natural occlusion
conditions where upper and lower teeth touch, it is difficult to
differentiate and separate lower teeth from the opposing up-
per teeth along their occlusal surface due to a lack of vari-
ations in gray values [2, 3]. Similarly, distinguishing teeth
from their surrounding alveolar bone is challenging due to
their similar densities. Additionally, adjacent teeth with sim-
ilar appearances pose confusion in identifying different teeth.
Consequently, relying solely on the intensity variation of CT
images, as attempted in previous tooth segmentation methods,
has proven insufficient.

Prior attempts to address these issues involved using ei-
ther the level-set method [2, 3, 4, 5] or template-based fit-
ting methods [6] for tooth segmentation. The former methods
necessitate a suitable initialization, often requiring laborious
user annotations and yielding unsatisfactory results in natu-
ral occlusion conditions. The latter methods lack robustness
when confronted with significant shape variations among dif-
ferent patients. While deep learning methods for medical im-
age analysis [7, 8, 9] have shown promise in various tasks,
their application to tooth segmentation has been limited.

Recent advancements in self-supervised learning have
demonstrated the effectiveness of masked image modeling
(MIM) [10, 11, 12] as a pre-training strategy for the Vision
Transformer (ViT) [13] and the hierarchical Vision Trans-
former using shifted windows (Swin) [14, 15, 16]. MIM
involves the masking and subsequent reconstruction of image
patches, allowing the network to infer the masked regions by
leveraging contextual information. We believe that the ability
to aggregate contextual information is crucial in the context
of CBCT image analysis. Among various MIM frameworks,
the Masked Autoencoder (MAE) [11] stands out as a simple
yet effective approach. MAE employs an encoder-decoder
architecture, with a ViT encoder that receives only visible to-
kens and a lightweight decoder that reconstructs the masked
patches using the encoder’s patchwise output and trainable
mask tokens.

We propose to use self pre-training since it is particu-
larly advantageous in scenarios where acquiring suitable pre-
training data is challenging. Additionally, self pre-training
eliminates the domain discrepancy between the pre-training
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and fine-tuning stages by unifying the training data. Our ex-
periments focus on teeth segmentation in 3D CT scans [17].
As our base model, we use UNEt TRansformer (UNTER)
introduced in [18] for 3D CT scan analysis. Therefore, we
call the proposed method UNETR+DEMAE. We apply UN-
ETR+DEMAE pre-training on the same dataset that is used
for the downstream task, i.e., to the training dataset.

Specifically, we propose to extend the self-supervised
learning framework of the masked autoencoder (MAE) trans-
former [11]. While the MAE loss measures the quality of
reconstructed masked patches, the loss of the proposed UN-
ETR+DEMAE evaluates the predicted deep embeddings of
masked patches. After pre-training, the decoder is discarded,
and the encoder is applied to the downstream task, i.e., teeth
segmentation. We compare three ViT Transformer initializa-
tions, including our proposed UNETR+DEMAE, MAE [11],
and a transformer without any self-pre-training. The exper-
imental results demonstrate that UNETR+DEMAE self-pre-
training significantly enhances CBCT segmentation perfor-
mance compared to the baselines. Our main contributions are
threefold:

• We utilize self-supervised learning with masked autoen-
coders to alleviate the problem of small data for 3D CT
scans.

• We replace the MAE reconstruction of masked patches
with the reconstruction of patch embeddings. Hence, our
loss is simply the L2 distance between the predicted and
computed embeddings over the masked patches.

• Our proposed method leads to a significant performance
improvement. UNETR+DEMAE outperforms all state-
of-the-art methods on the tooth segmentation task.

2. METHODS
2.1. Vision Transformer
Our framework utilizes the Vision Transformer (ViT) as the
foundational architecture for both pre-training and subsequent
tasks. The ViT comprises a patch embedding layer, position
embedding, and Transformer blocks.

Patch Embedding: The patch embedding layer within
the ViT is responsible for transforming data into sequences.
Initially, 3D volumes x ∈ RH×W×D×C are reshaped into a
sequence of flattened 3D patches xp ∈ RN×(P 3·C). The pa-
rameters (H,W,D) represent the image resolution, (P, P, P )
denotes the patch resolution, C signifies the input channel,
and N = HWD/P 3 stands for the number of patches or the
sequence length fed into the Transformer. These patches are
then mapped to patch embeddings via a trainable linear pro-
jection.

Position Embedding: To retain positional information,
the patch embeddings are supplemented with position em-
beddings. While the standard ViT utilizes 1D learnable
position embeddings, our experiments led us to employ sine-
cosine [11, 19] position embeddings during the pre-training
stage. Sine-cosine functions provide a fixed pattern that is

Fig. 1. Segmentation Pipeline with MAE Self Pre-training.
Left: A ViT encoder is first pre-trained with MAE. A random
subset of patches is input to the encoder and a transformer de-
coder reconstructs the full image. Right: The pre-trained ViT
weights are transferred to initialize the segmentation encoder.
Then the whole segmentation network, e.g., UNETR [18], is
finetuned for segmentation.

not learned during training. This can be advantageous to the
model to learn more generalizable features and avoid overfit-
ting to the specifics of the training data, which is very scarce.
Subsequently, for downstream tasks, we initialize the learn-
able position embeddings with the sine-cosine embedding
values.

Transformer Block: The ViT architecture involves lay-
ers comprising multiheaded self-attention (MSA) [20] and
MLP blocks.

2.2. Self-Supervised Pre-training with Masked Autoen-
coders
This section delineates the constituents of the Masked Au-
toencoder (MAE): the encoder, the decoder, and the associ-
ated loss function.

Encoder. As illustrated in Fig. 1(Left), the ViT encoder
is responsible for reconstructing the complete input data from
partially masked patches. The input undergoes partitioning
into non-overlapping patches, which are then randomly di-
vided into visible and masked groups. The MAE encoder
operates solely on visible patches, incorporating position em-
beddings to retain positional information. The resulting rep-
resentation serves the purpose of reconstructing the masked
input, urging the encoder to derive a comprehensive represen-
tation from partial observations.

Decoder. The MAE decoder is fed with a complete set
of tokens, encompassing patch-wise representations from the
encoder, alongside learnable mask tokens placed in the po-
sitions of masked patches. By integrating positional embed-
dings with all input tokens, the decoder aims to restore each
specific patch within its masked position. It’s noteworthy that
the decoder serves as an auxiliary module exclusively for pre-
training and is not utilized in downstream tasks.

Masked Sequence Generation. Patch embeddings are



represented by a set E. Following the MAE approach, we
randomly mask a subset of patches, represented as Em, while
unmasked embeddings are denoted as Eum. We replace the
masked embeddings Em with a shared learnable mask em-
bedding Emask without altering their positional embeddings.
Finally, the corrupted embeddings Ec are formed by combin-
ing Eum with the sum of Emask and a set of positional em-
beddings p. These corrupted embeddings are then inputted
into the encoder for further processing.

Prediction. MAE [11] reconstructs the input by predict-
ing the pixel values for each masked patch. Its loss function
computes the mean squared error (MSE) between the recon-
structed and original images in the pixel space. In contrast,
We propose to compute the L2 loss between the original and
predicted embeddings of the mask patches. As our experi-
mental results in Sec. 3.3 demonstrate, this leads to a perfor-
mance increase.

2.3. Architectures for Downstream Tasks
Following MAE self-pre-training, we append task-specific
head for the downstream task, i.e., tooth segmentation.

We employ the UNETR [18] built upon the pre-trained
ViT encoder via MAE, in conjunction with a convolutional
decoder initialized randomly. UNETR, designed for 3D im-
age segmentation tasks, mirrors the concept of U-Net [21].
It involves skip connections between features from various
encoder resolutions and the decoder. The input to the UN-
ETR decoder constitutes a sequence of representations from
the encoder. Each representation is reshaped to restore spatial
dimensions, followed by iterative upsampling and concatena-
tion with shallower features to enhance segmentation resolu-
tion.

3. EXPERIMENTS AND RESULTS
3.1. Datasets and Implementation Details
Tooth segmentation on CBCT images. We use the public
dataset 3D CT scans [17]. There are a total of 150 CBCT
images with a resolution varied from 0.25 mm to 0.35 mm.
We randomly split the dataset into 80% for training and 20
for validation. The task is tooth segmentation from the 3D CT
scans. Next, we normalize the intensity of the CBCT image
to fit within the range of [0, 1]. For the creation of training
data, we randomly extract 150 sub-volumes measuring 128×
128 × 128 around the alveolar bone ridge in the CT scan,
resulting in approximately 18,000 sub-volumes for training.
The dataset’s ground truth includes annotations with tooth-
level bounding boxes, masks, and labels.

During the testing phase, we employ the overlapped slid-
ing window method to crop sub-volumes of size 128× 128×
128 with a stride of 32×32×32. Subsequently, in the scenario
where two teeth segments overlap, we select the one with the
highest value of Pcls × Pid as the final tooth prediction if
the Intersection over Union (IoU) of their teeth segmenta-
tion results is greater than 0.2. Here, Pcls and Pid represent

the probabilities for tooth classification and identification, re-
spectively.

We conduct our experiments using PyTorch [22] and
MONAI [23]. ViT-B/16 serves as the backbone, and we uti-
lize AdamW as the optimizer across all experiments. The
patch size for 3D volumes is set at 16× 16× 16.

3.2. Evaluation metric
We use Dice similarity coefficient (DSC) to evaluate the per-
formance of our model as follows:

DSC =
2× |Y ∩ Z|
|Y |+ |Z|

, (1)

where Y and Z represent the voxelized predicted outcomes
and the ground truth masks, respectively.

Additionally, we establish the accuracy of detection and
identification as follows: assuming G represents the entirety
of teeth within the ground truth data, and D indicates the set
of teeth detected by our network, where within D there are
L correctly labeled teeth. The detection accuracy (DA) and
identification accuracy (FA) are determined through the fol-
lowing calculations:

DA =
|D|

|D ∪G|
and FA =

|L|
|D ∪G|

(2)

UNETR+DEMAE Self Pre-training. The starting learn-
ing rate (lr) remains at 1.5e-3, and the weight decay is set at
0.05. The learning rate decays to zero using a cosine sched-
ule that includes warm-up periods. The pre-training for UN-
ETR+DEMAE lasts for 100 epochs, utilizing training batch
sizes of 256.

Finetuning for Teeth Segmentation. We apply a layer-
wise learning rate decay (with a layer decay ratio of 0.75)
to ensure the stability of UNETR training, along with imple-
menting random DropPath with a 10% probability. The learn-
ing rate is set at 8e-3, and the training batch size is maintained
at 256. Additionally, the learning rate during the fine-tuning
phase also follows a cosine decay schedule.

3.3. Results
Teeth segmentation on CBCT images. Table 1 presents the
quantitative results of tooth segmentation using various meth-
ods, and it clearly shows that UNETR+DEMAE outperforms
other state-of-the-art methods.

Comparing the scores of DSC, PA and FA of UNETR with
the other methods, it is evident that it achieves the highest per-
formance, indicating its effectiveness in accurately segment-
ing tooth structures. This demonstrates the capability of the
Transformers to capture relevant features and contextual in-
formation, leading to improved segmentation results.

The result of UNETR+MAE is superior to the standard
UNETR, indicating further improvements. It also outper-
forms the ImageNet pre-training paradigm (UNETR+ImageNet).
The combination of UNETR and MAE enhances the segmen-
tation accuracy and ensures more precise delineation of tooth
boundaries.



Our method, UNETR+DEMAE, surpasses the other
methods and the standalone UNETR and its enhanced version
MAE. Our method consistently achieves the highest results,
highlighting the effectiveness of incorporating the loss on
mask patch embeddings for tooth structure reconstruction.

Table 1. Tooth Segmentation on CBCT scans. UN-
ETR+DEMAE self pre-training improves upon the UNETR
baseline, ImageNet supervised pre-training, and MAE self-
supervised learning.

Framework DSC DA FA

U-Net(R50) [21] 84.18 82.84 79.19
AttnUNet(R50) [24] 85.92 63.91 79.20

TransUNet [25] 87.23 83.13 81.87

DSTUNet [26] 88.16 87.40 87.46
nnFormer [27] 86.07 80.17 86.57
nnUNet [28] 88.92 81.77 85.57

UNETR 89.46 90.88 88.03
UNETR+ImageNet 92.04 94.29 93.44

UNETR+MAE 93.01 95.25 94.37

UNETR+DEMAE 94.20 99.65 97.57

Parameter Setting. We perform experiments involv-
ing various UNETR+DEMAE pre-training epochs and mask
ratios, as detailed in Table 2. Firstly, we note that the per-
formance of UNETR+DEMAE does not improve with longer
training periods. Secondly, unlike the high mask ratio com-
monly used in natural images [11], the segmentation task
demonstrates varied preferences for different mask ratios.
The most optimal segmentation outcomes are attained with a
mask ratio of 25%.

Table 2. The influence of Mask Ratios and Pre-training
Epochs on teeth segmentation of our UNETR+DEMAE.

Mask ratio Pre-training Epochs DSC DA FA

85% 100 91.32 96.43 95.59

75% 100 91.73 97.85 95.74
75% 800 90.14 97.32 94.89

50% 100 93.56 98.93 95.98
25% 100 94.20 99.65 97.57
10% 100 93.10 97.82 97.09

Qualitative results. Figure 2 presents qualitative ex-
amples that showcase the enhanced performance achieved
on teeth segmentation through our UNETR+DEMAE pre-
training in comparison to UNETR+MAE. The observed
improvements in segmentation align with the quantitative
findings shown in Table 1.

Fig. 2. Comparison of teeth segmentation of UN-
ETR+DEMAE and baseline.

4. CONCLUSIONS
We have demonstrated that UNETR+DEMAE pre-training
improves SOTA segmentation performance on 3D dental
CT scan analysis. Importantly, UNETR+DEMAE self-pre-
training outperforms existing methods on a small dataset,
something that has not previously been explored. Our re-
sults also suggest that parameters, including mask ratio and
strategy, should be tailored when applying masked autoen-
coders pre-training to the 3D dental scan domain. Together,
these observations suggest that UNETR+DEMAE can fur-
ther improve the already impressive performance of ViTs in
CBCT scan analysis. In future work, we will test the efficacy
of UNETR+DEMAE pretraining in prognosis and outcome
prediction tasks.
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