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ABSTRACT
Image stitching aims to align a pair of images in the same view.
Generating precise alignment with natural structures is challeng-
ing for image stitching, as there is no wider field-of-view image
as a reference, especially in non-coplanar practical scenarios. In
this paper, we propose an unsupervised image stitching frame-
work, breaking through the coplanar constraints in homography
estimation, yielding accurate pixel-wise alignment under limited
overlapping regions. First, we generate a global transformation by
an iterative dense feature matching combined with an error control
strategy to alleviate the difference introduced by large parallax. Sec-
ond, we propose a pixel-wise warping network embedded within a
large-scale feature extractor and a correlative feature enhancement
module to explicitly learn correspondences between the inputs,
and generate accurate pixel-level offsets upon novel constraints
on both overlapping and non-overlapping regions. Notably, we
leverage the pixel-level offsets in the overlapping area to guide the
adjustment in the non-overlapping area upon content and structure
consistency constraints, rendering a natural transition between two
regions and distortions suppression over the entire stitched image.
The proposed method achieves state-of-the-art performance that
surpasses both traditional and deep learning approaches by a large
margin. It also achieves the shortest execution time and has the
best generalization ability on the traditional dataset.
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Figure 1: Global alignment vs. Pixel-wise alignment. (a) Il-
lustration of the difference between global and pixel-wise
alignment in principle. Global alignment applies a direct
linear transformation (DLT) to approximate the offset for
all the pixels, while our pixel-wise alignment executes un-
uniform transformations for each pixel. (b) and (c) compare
two kinds of stitching results. Pixel-wise alignment achieves
superior results in image and artifact suppression compared
to global alignment, as shown in the zoomed-in regions.
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1 INTRODUCTION
Image stitching aims to estimate an accurate transformation be-
tween a pair of images and align them in the same view. It has
been a well-studied topic with widespread applications [38] such
as panorama on smartphones [42], robot navigation [7], and virtual
reality [1, 18]. However, generating high-quality stitched images
in various practical scenarios is still challenging, especially when
there is no wider field-of-view image as a reference.

Homography transformation [5, 9, 44] is the most widely used
image stitching model, that leverages the feature correlation in
overlapping regions as constraints to estimate a global homogra-
phy matrix [30], and transform the whole target image to the view
of the reference image (see the global warping part in Fig. 1 (a)).
Most existing methods estimate the global homography by assum-
ing the whole scene is coplanar, leading to severe misalignment
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and artifacts in the stitching result [30], as shown in the zoomed-in
region of Fig. 1 (b). However, in theory, homography transforma-
tion only holds for the coplanar scenario, whereas hardly exists in
practice. Therefore, both conventional [3, 12, 20, 21, 25] and deep
learning methods [6, 28, 45] are devoted to finding an approximate
solution to obtain an accurate alignment. To reduce the impact of
non-coplanarity on homography estimation, some works divide
the image into multiple uniform patches as approximate coplanar
regions to calculate multiple homography transformations, such
as conventional dual-homography warp (DHW) [12], and multi-
homography method as-projection-as-possible (APAP) [43]. How-
ever, there are at least three main limitations for existing homog-
raphy estimation based methods: (1) the global or divided image
patches have no coplanar guarantee, which is only an approximate
solution; (2) the global alignment estimates a single or limited num-
ber of homography transformations for the whole image, which is
insufficient to achieve pixel-wise accurate alignment, as shown in
Fig. 1 (a); (3) there are no real stitched results as a reference, which
is a challenge for training deep learning methods. Consequently, it
is crucial to achieve a nonuniform alignment per pixel.

In contrast, existing pixel-level alignmentmethods are only appli-
cable to almost complete overlapping image pairs, such as medical
image registration [46] or registration between consecutive video
frames [13]. They estimate the pixel-level offsets of the whole image
in a low resolution by searching for feature correlation between
image pairs from the whole image. Unlike image registration, im-
age stitching has limited overlapping regions and large parallax,
lacking constraints for non-overlapping regions in an unsupervised
framework. Consequently, existing image registration methods are
unable to produce correct offsets for non-overlapping regions, and
fail to output the whole image stitching result. Moreover, image
registration employs a global feature-matching strategy, which is
prone to induce mismatched features in limited overlapping regions
of image stitching.

In this paper, we propose a coarse-to-fine unsupervised image
stitching network to achieve pixel-wise alignment. First, we esti-
mate a global homography to handle large-scale viewpoint varia-
tions, rendering a uniform alignment for input image pairs. Second,
we explore both texture and geometric consistency constraints to
achieve non-uniform pixel-wise alignment in the overlapping area.
Moreover, we leverage overlapping regions to guide the consistency
of non-overlapping regions in content and structure to adjust the
alignment for the whole stitched image. Our method demonstrates
promising performance on stitched images, rendering fewer arti-
facts and misalignment as presented in the zoomed-in regions of
Fig. 1 (c). Numerous qualitative and quantitative results validate
the effectiveness of the proposed method. Our contributions are
three-fold:

• We propose a coarse-to-fine unsupervised image stitching
framework to align pixels starting from a uniform transfor-
mation and moving to anisotropic pixel-wise offsets, which
breaks through the coplanar constraints of a single homog-
raphy for the first time.

• We design an overlapping region-guided pixel-wise warping
network with a large-scale feature extractor and a correl-
ative feature enhancement module to capture pixel-level

correspondences, invoking accurate alignment with high-
resolution offsets.

• We leverage pixel-wise alignment of overlapping regions
to guide the adjustment of non-overlapping regions in an
unsupervised manner, preserving consistent structure and
content for the whole stitched images under the condition
of a limited extent of overlapping regions.

Our method outperforms both traditional and deep learning
state-of-the-art approaches by a large margin and has the shortest
execution time on all challenging datasets with visually superior
stitching results. In particular, it has 34.42% lower alignment errors
on average than that of the existing best method [21]. Sections 3
and 4 elaborate on our contributions.

2 RELATEDWORK
Traditional image stitching methods. Traditional image stitch-
ing methods usually estimate an optimal global transformation by
matching anchors. SIFT [26] and SURF [2] are widely used to detect
and match feature points, followed by RANdom SAmple Consen-
sus (RANSAC) [10] to estimate a homography for image pairs. As
the single homography transformation only works well for ideal
coplanar scenarios, some methods try to provide adaptive warping
schemes for different non-coplanar regions [3, 12, 20, 25]. However,
undesired distortion still occurs for large parallax images. To reduce
the distortions and artifacts introduced by limited homography es-
timation, APAP [43] estimates homography for multiple patches to
cover the warping of different regions. Subsequently, Liao et al. [24]
propose single-perspectivewarping (SPW) that leverages both point
and line pairs as anchors. Jia et al. [17] consider the local coplanar
relations of line-point pairs (LPC) that leverage the coplanarity of
matching line-point pairs to align images while suppressing distor-
tion in non-overlapping regions. In addition, Du et al. [8] propose a
geometric structure-preserving stitching method (GES-GSP). How-
ever, parameter setting has a serious impact on such traditional
methods, making them sensitive to parallax changes. Particularly,
traditional methods require high computation complexity to detect
and matching features, while they fail easily when a limited number
of matched features are present.
Deep learning-based image stitching methods. Deep learning
methods are more adaptive than traditional methods on homogra-
phy estimation, as the powerful representation learning of convolu-
tional neural networks can yield dense matching features [14, 35],
even in low-texture images. In addition, deep learning-based ho-
mography estimation yields favorable outcomes on synthetic im-
ages [6, 29, 31] or small parallax datasets [45]. Nevertheless, syn-
thetic images still assume that the whole scenario is coplanar, which
hardly exists in reality.

As there are no real stitched images as ground truth, some meth-
ods employ inner or outer constraints to reduce distortion and arti-
facts in real scenes with large parallax. The outer constraints are
related to the fixed relative positions of cameras, which are widely
used in autonomous driving [19, 40] and video surveillance [22].
The inner constraints refer to the feature correlation between image
pairs. Based on this, an unsupervised image stitching framework
(UDIS) is proposed [30] that employs DLT to produce the global ho-
mography, however, these existing methods still operate under the
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Figure 2: Pipeline of the proposed unsupervised pixel-wise image stitching framework. In the uniform pre-alignment phase,
we warp the target image 𝐼𝑡 to the view of the reference image 𝐼𝑟 by a homography transformation 𝐻 . Then, pre-aligned image
pairs are fed into the non-uniform alignment network to generate pixel-wise alignment image 𝐼𝐻𝑡 . We use different constraints
to align the overlapping regions and non-overlapping regions. Finally, we leverage a seamless image blending module to reduce
the difference in brightness.
coplanar hypothesis, which leads to artifacts and distortions due to
uniform alignment. Unlike them, our proposed unsupervised image
alignment framework solves the problem by estimating the pixel-wise
offsets, rendering anisotropic accurate alignment for non-coplanar
scenarios in reality.
Image registration. Image registration is mainly applied to a non-
rigid alignment for two images with large overlapping areas. The
image deformation is considered as the motion of the object, and
the displacement field of the registration is estimated by computing
the instantaneous speed field of each pixel [15]. In [13, 34, 39, 46],
optical flow is proposed to align the video adjacent frames in a
supervised manner. However, the estimation of the dense displace-
ment field is vulnerable to failure in the case of large parallax [37].
Consequently, it is impossible to apply a dense flow field to image
stitching, due to a huge difference in the overlapping region, and
the lack of constraints in non-overlapping regions. In contrast to
previous approaches, we leverage the alignment of the overlapping
region to guide the alignment of non-overlapping regions, rendering
consistent structure and texture for the entire stitched image.

3 PIXEL-WISE IMAGE STITCHING
The proposed image stitching pipeline is illustrated in Fig. 2. Firstly,
given a pair of target image 𝐼𝑡 and reference image 𝐼𝑟 , we conduct
a uniform pre-alignment by estimating a global homography 𝐻

in an iterative manner to reduce the impact of large parallax (Sec-
tion 3.1). On top of the pre-aligned image 𝐼𝐻𝑟 and 𝐼𝐻𝑡 , we design
a non-uniform alignment network that explores the correlation
of image features and generates the pixel-wise alignment image
¯
𝐼𝐻𝑡 (Section 3.2). To achieve the structure and texture consistency
of the whole stitching image, we propose a series of constraints
for overlapping and non-overlapping regions by weighted masks
(Section 3.3). Finally, we introduce spatial and channel attentions
successively [11] on a U-Net structure as a blending module to ad-
just the brightness and color of images from different viewpoints.

3.1 Uniform Pre-alignment by Homography
We leverage the pre-trained VGG model [36] to extract and match
dense features in different layers [9] and define an error evaluation

index combined with RANSAC to iteratively perform feature match-
ing and global homography estimation, as illustrated in the uniform
alignment of Fig 2. To preserve the linear and textural structure of
the original image, we employ a similarity transformation matrix to
control the distortion during the homography transformation. We
estimate the similarity matrix 𝐻𝑠 by the four corresponding corner
points of the target image before and after warping. We measure
the distortion by computing how homography transformation 𝐻𝑖

deviates from its best-fitting similarity transformation 𝐻𝑠 . Let 𝑃𝑙
be the four corner points of the target image, 𝑙 = 1, 2, 3, 4. The
error-index 𝐸𝑖 is calculated by:

𝐸𝑖 = arg min
𝐻𝑖

4∑︁
𝑙=1

𝐻𝑠𝑃
𝑙 − 𝐻𝑖𝑃

𝑙
2
, (1)

where 𝐻𝑖 is the estimated homography matrix in the 𝑖-th iteration.
When 𝐸𝑖 is smaller than a threshold (0.01 in our paper), the iteration
is terminated, which usually stops within three iterations for most
image pairs. Pre-alignment is an efficient process to reduce the
parallax of image pairs, such that the following pixel-wise warping
can be more accurate.

3.2 Non-uniform Alignment for Pixel-wise
Offset

Based on Section 3.1, the anisotropic alignment network is designed
to refine the pixel-wise offsets of the whole image, as illustrated
in Fig. 3. Our input images include the whole pre-aligned image
𝐼𝐻𝑟 , 𝐼𝐻𝑡 , and image of overlapping regions 𝐼𝐻𝑡 ∩ 𝐼𝐻𝑟 . Firstly, we em-
ploy a feature extractor F to obtain the features of input images.
Subsequently, a correlative feature enhancement module CF𝐸 is
employed to increase the weight of overlapping regions, and the
enhanced features are fed into the correlation computation module
CC to compute the feature correlation. Finally, the pixel-wise offset
estimation module outputs the final alignment results. Below, we
elaborate the design of each module.
Feature extractor. To obtain high-resolution pixel-level offsets,
we design three cascaded convolution layers to output large-scale
feature maps. We employ residual blocks and 7 × 7 convolution
kernel to increase the receptive field [34] in the convolution process.
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Figure 3: The architecture of non-uniform pixel-wise alignment network. The input of the network includes the pre-aligned
reference image 𝐼𝐻𝑟 , target image 𝐼𝐻𝑡 , and overlapping regions 𝐼𝐻𝑟 ∩ 𝐼𝐻𝑡 , where 𝑓 𝑟𝑤 , 𝑓 𝑡𝑤 , and 𝑓 𝑡𝑟𝑜𝑟 indicate their feature maps extracted
by feature extractor F . The correlative features enhancement module CF𝐸 consolidates the features in overlapping regions to
achieve accurate matching in the correlation computation module CC. 𝐶1, 𝐶2, ... 𝐶𝑤×ℎ represent the pixel similarity tensor in
CC. L𝑜𝑟 and L𝑛𝑜𝑟 represent the constraints of overlapping regions and non-overlapping regions, respectively.

The size of extracted feature 𝑓 𝑟𝑤 , 𝑓 𝑡𝑤 , and 𝑓 𝑡𝑟𝑜 are 𝐻/2×𝑊 /2, where
𝐻 and𝑊 are the initial dimensions of the inputs.
Correlative feature enhancement (CF𝐸). This module aims to
enhance the features in overlapping regions, as matching features
only exist in overlapping regions and thematching accuracy directly
affects the precision of offset estimation. The top right of Fig. 3
demonstrates the structure of CF𝐸. The process is attention-guided
to increase interest in overlapping regions. Firstly, the overlapping
feature 𝑓 𝑡𝑟𝑜 is converted to probability maps via max pooling, con-
volution, batch normalization, and the sigmoid layer. Then, the
probability map strengthens the overlapping regions of the whole
image feature 𝑓 𝑡𝑤 by dot product. Finally, the enhanced features
combine the original feature 𝑓 𝑡𝑤 by pixel-wise addition to restore
non-overlapping features. Eq. 2 illustrates the whole process.

𝐹𝑟 = 𝑓 𝑟𝑤 ⊕ (S(𝑓 𝑡𝑟𝑜 ) ⊙ 𝑓 𝑟𝑤), (2)

whereS(·) represents features after sigmoid layer, ⊙ indicates pixel
multiplication, and ⊕ is pixel-wise addition. 𝑓 𝑡𝑟𝑜 and 𝑓 𝑡𝑤 also follow
the same process to produce correlative enhanced features 𝐹 𝑡 .
Correlation computation (CC). The enhanced features 𝐹 𝑡 and
𝐹𝑟 are fed into the correlation computation module to capture the
similarities of features, as illustrated at the bottom right corner of
Fig. 3. To reduce the impact of mismatched features, we employ
𝐿2-normalization on extracted features to yield better distinctions
on matching features. Each pixel in 𝐹𝑟 is compared to pixels in a
𝑘 × 𝑘 , 𝑘 = 7 square neighborhood in the 𝐹 𝑡 to generate similarity
tensor 𝐶𝑖 , 𝑖 ∈ 𝑤 × ℎ by cosine similarity [33]. The cosine similarity
𝑠 is defined as:

𝑠 < (𝑚,𝑛), (𝑢, 𝑣) >= 𝐹𝑟 (𝑚,𝑛) · 𝐹 𝑡 (𝑢, 𝑣)
∥𝐹𝑟 (𝑚,𝑛)∥ ∥𝐹 𝑡 (𝑢, 𝑣)∥ , (3)

where 𝐹𝑟 (𝑚,𝑛) and 𝐹 𝑡 (𝑢, 𝑣) represent the pixel on feature map of
𝐹𝑟 and 𝐹 𝑡 at positions (𝑚,𝑛) and (𝑢, 𝑣), respectively. In this way,
we obtain a final ℎ ×𝑤 × 𝑘2 similarity tensor for all pixels in 𝐹𝑟

and 𝐹 𝑡 , and𝑤,ℎ represent the size of the feature map.
Pixel-wise offset estimation and blending. We concatenate the
similarity tensor and the feature 𝑓 𝑡𝑤 of the target image as input
to estimate the pixel-wise offset. We employ Conv+BN+ReLU con-
volutional blocks and upsampling operation to generate a dense

displacement field F𝑡→𝑟 of the same size as the input image. The
pixel-level offset F𝑡→𝑟 transforms 𝐼𝐻𝑡 to produce pixel-wise align-
ment image 𝐼𝐻𝑡 .

To preserve the consistency of brightness and color in overlap-
ping and non-overlapping regions, we employ a blending module
to generate clear and natural stitching images. As image blending is
related to both local and global features of the entire stitched image,
we develop the U-Net structure by introducing spatial and channel
attention mechanisms in the convolutional layers to integrate both
local and global features. As image blending is outside our main
contributions, we outline the module in our manuscript.

3.3 Loss Function
Our goal is to design constraints that align overlapping regions
accurately, while smoothly transiting the overlapping regions to the
non-overlapping regions. The total loss function for jointly training
overlapping L𝑜𝑟 and non-overlapping regions L𝑛𝑜𝑟 is designed as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑜𝑟 + L𝑛𝑜𝑟 . (4)

Objective loss for overlapping regions. For ideal alignment, the
overlapping regions are supposed to fit perfectly. The loss for over-
lapping regions L𝑜𝑟 is composed of three constraints: a matching
consistency L𝑚𝑎𝑡𝑐ℎ , a texture consistency L𝑠𝑠𝑖𝑚 and a geometric
cyclic consistency L𝑔𝑒𝑜𝑐 , which is defined as:

L𝑜𝑟 = _𝑜𝑟L𝑚𝑎𝑡𝑐ℎ + L𝑠𝑠𝑖𝑚 + `𝑜𝑟L𝑔𝑒𝑜𝑐 , (5)

where _𝑜𝑟 and `𝑜𝑟 are hyper-parameters, indicating the weights of
different losses. Each loss term is defined at the pixel level and is de-
scribed in detail belowwith the pixel 𝑣𝑖 in 𝐼𝐻𝑡 and the corresponding
pixel 𝑣 ′

𝑖
in 𝐼𝐻𝑟 .

Matching consistency constraint. To obtain robust matching features,
we generate matching probability maps by performing sigmoid
regression on the correlation computation block. M (𝑣𝑖 )

𝑡→𝑟 is the pre-
dicted matching probability from 𝐼𝐻𝑡 (𝑣𝑖 ) to 𝐼𝐻𝑟 (𝑣 ′

𝑖
), and M (𝑣′𝑖 )

𝑟→𝑡 is

the reverse. Ideally, the matching probability of M (𝑣𝑖 )
𝑡→𝑟 and M (𝑣′𝑖 )

𝑟→𝑡

are consistent for matching pixel pairs. Therefore, we encourage
this cycle-consistent matching to be close to 1, and the L𝑚𝑎𝑡𝑐ℎ is
defined as:
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L𝑚𝑎𝑡𝑐ℎ =
∑︁
𝑣𝑖 ∈𝐼𝐻𝑡

���M𝑣𝑖
𝑡→𝑟 ⊙ M𝑣′𝑖

𝑟→𝑡 − 1
��� , (6)

where ⊙ indicates pixel-wise multiplication. As pixels in the over-
lapping regions have different contributions to the alignment, we
apply M𝑐𝑦𝑐 = 𝑀𝑡→𝑟 ⊙ 𝑀𝑟→𝑡 as the pixel-level weights for both
L𝑠𝑠𝑖𝑚 and L𝑔𝑒𝑜𝑐 .
Texture consistency constraint. During warping, the target image is
supposed to be close to the pre-aligned reference image 𝐼𝐻𝑟 . There-
fore, we introduce the structural similarity (SSIM) constraint [34, 41]
to comprehensively evaluate the texture similarity of the overlap-
ping regions w.r.t the brightness, contrast, and structure. We define
the loss as:

L𝑠𝑠𝑖𝑚 =
∑︁
𝑣𝑖 ∈𝐼𝐻𝑡

M𝑣𝑖
𝑐𝑦𝑐 (1 − 𝑆𝑆𝐼𝑀 (F𝑣𝑖𝑡→𝑟 w○𝐼𝐻𝑡 (𝑣𝑖 ), 𝐼𝐻𝑟 (𝑣 ′𝑖 ))), (7)

where w○ indicates warping operation, F𝑡→𝑟 represents the esti-
mated pixel offset from 𝐼𝐻𝑡 to 𝐼𝐻𝑟 . We sum over all pixels and take
the average as the loss.
Geometric cyclic consistency constraint. To restrain the dense dis-
placement between 𝐼𝐻𝑟 and 𝐼𝐻𝑡 , we can also get the offset field F𝑟→𝑡

from reference to the target image by exchanging their position in
the input. Then, we use F𝑟→𝑡 to warp pixel 𝑣 ′

𝑖
in 𝐼𝐻𝑟 to target the

image viewpoint. Ideally, F𝑣
′
𝑖

𝑟→𝑡 w○𝑣 ′
𝑖
is supposed to coincide with

𝑣𝑖 in 𝐼𝐻𝑡 if the estimated pixel offset is accurate, with the formula
below:

L𝑔𝑒𝑜𝑐 =
∑︁
𝑣𝑖 ∈𝐼𝐻𝑡

M𝑣𝑖
𝑐𝑦𝑐 ⊙

𝑣𝑖 , F𝑣′𝑖𝑟→𝑡 w○𝑣 ′𝑖


2
. (8)

Objective loss for non-overlapping regions. Overlapping re-
gions have inherent constraints between image pairs, while there
is no reference for the non-overlapping regions. To this end, we
propose to leverage the offset field of overlapping regions to guide
non-overlapping regions for smooth transiting. In addition, we
employ content consistency to preserve the naturalness of the non-
overlapping regions during warping. The total loss is defined as:

L𝑛𝑜𝑟 = L𝑠𝑡𝑟 + L𝑐𝑜𝑛, (9)

where L𝑠𝑡𝑟 and L𝑐𝑜𝑛 represent structure and content constraints,
respectively.
Structural consistency constraint.We design structural consistency
constraints to control the pixel offset in non-overlapping regions.
As the pixel-by-pixel offset is within a certain range, the offset in
the same plane should be relatively smooth. As illustrated in Fig. 4,
the offsets for non-overlapping regions are disordered compared
to the overlapping region, which leads to a local unnatural stretch-
ing or compression of the warped image. Therefore, we encourage
neighboring blocks to have similar motion trends to suppress dis-
tortions. Since the maximum pixel offset of our network is within
𝑑 = 24 pixels, we divide the pixel offset field into𝑊 /𝑑 blocks, and
the loss is defined as:

L𝑠𝑡𝑟 =
1
𝑇

𝑊 /𝑑∑︁
𝑖=1

®𝑏𝑖−1 + ®𝑏𝑖+1 − 2®𝑏𝑖


2
, (10)

where ®𝑏𝑖−1, ®𝑏𝑖 , ®𝑏𝑖+1 represent average offsets in three successive
blocks respectively, and 𝑇 =𝑊 /𝑑 − 2 is the total number of com-
puted successive blocks offset tuples.
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Figure 4: Diagram of the structural consistency constraint,
w/o L𝑠𝑡𝑟 on the left and w/ L𝑠𝑡𝑟 on the right. The arrows
indicate the directions of pixel movement, and the length
indicates the size of the displacement. The offsets converge
gradually from the left figure to the right one due to the
structural consistency constraint. ®𝑏𝑖−1, ®𝑏𝑖 , ®𝑏𝑖+1 represent av-
erage offsets in three consecutive blocks along x-axis.

Content consistency constraint.We also use content consistency con-
straints to suppress the distortion that occurs in non-overlapping
regions during warping. As all the pixels in the non-overlapping
region follow the same protocol, we use a binary mask M𝑛𝑜𝑟 to
select non-overlapping regions features. Based on the output of
pre-alignment,M𝑛𝑜𝑟 = M𝑡 ⊕ (M𝑟 ∩M𝑡 ), whereM𝑟 andM𝑡 are
transformed image regions, and ⊕ means exclusive OR. We use 𝐿2
norm to constrain the content:

L𝑐𝑜𝑛 =

𝐼𝐻𝑡 ⊙ M𝑛𝑜𝑟 , 𝐼
𝐻
𝑡 ⊙ M𝑛𝑜𝑟


2
, (11)

where 𝐼𝐻𝑡 represents the pixel-wise warped target image, and 𝐼𝐻𝑡
represents the pre-aligned target image.

4 EXPERIMENTS
4.1 Implementation details
Datasets.We trained our network on a natural image dataset (UDIS-
D) [30], which contains 10440 training images and 1106 test images
with a size of 512 × 512. In addition, we also collect a challenging
traditional dataset (Tra dataset) with a severe change of views as a
cross-dataset to validate the generalization ability of our method.
The Tra dataset consists of 100 images collected from SUA [25] ,
APAP [43], SPHP [3] , DHW [12] , DFW [23], REW [20], GSP [4].
In general, the stitching of the Tra dataset is more challenging as
they have a larger parallax than the UDIS-D dataset, and we have
no training on this dataset.
Details.We resize the pre-aligned images to 224× 224 for the pixel-
wise warping network during the training phase, but there is no size
limit for our test images. We train our pixel-wise warping networks
for 100 epochs using Adam optimizer [27] with the learning rate
of 2 × 10−4. We set _𝑜𝑟 = 0.01 and `𝑜𝑟 = 1 for the constrain
of overlapping regions. The whole framework is implemented in
PyTorch framework [32] with an NVIDIA RTX 3090 GPU.
Evaluation metrics. We employ RMSE [43], PSNR [16], and SSIM
[41] to evaluate the performance and follow the same evaluation
protocol with other image stitching methods [17, 30]. RMSE indi-
cates the matching error between the matched points. PSNR and
SSIM are utilized to measure the feature similarity between the
warped target and reference images in the overlapping region. We
compare the overlapping regions of the stitching domain instead of



MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Qi Jia et al.

Table 1: Comparison on the UDIS-D dataset. The results show the average performance on the test set measured with PSNR,
SSIM, and RMSE. The first and second-best solutions are marked in red and in blue, respectively.

Methods
PSNR ↑ SSIM ↑ RMSE ↓

Easy Moderate Hard Average Easy Moderate Hard Average Easy Moderate Hard Average
APAP [43] 28.31 24.38 20.66 23.77 0.950 0.923 0.793 0.866 0.891 1.488 4.455 2.669
SPW [24] 26.61 23.03 20.00 23.07 0.932 0.867 0.760 0.849 1.209 1.986 4.478 2.645
ELA [21] 29.38 25.91 21.53 24.84 0.960 0.933 0.853 0.904 0.574 0.928 2.383 1.496
LPC [17] 27.84 23.75 20.45 23.39 0.945 0.890 0.780 0.855 1.166 1.725 4.753 2.934

CA-UDHN [45] 18.05 13.62 11.11 14.22 0.719 0.523 0.354 0.530 4.347 15.564 33.542 17.998
UDIS [30] 27.22 23.13 19.93 22.78 0.935 0.860 0.720 0.816 2.529 3.238 6.148 4.377

Ours 31.31 27.18 23.49 26.61 0.972 0.950 0.906 0.936 0.458 0.630 1.250 0.868

the original domain for all methods as our pixel-wise alignment is
working on the whole stitching domain image. Besides, we resize
all the warped images to the same size to compare for fairness.

4.2 Comparison with Existing Methods
Compared methods. We compare the proposed method with two
categories of existing stitching methods: 1) Traditional methods
including the classical method APAP [43], and three recent methods
SPW [24], LPC [17], and ELA [21]. 2) Unsupervised deep learning-
based methods, including CA-UDHN [45], UDIS [30]. We perform
qualitative and quantitative comparisons with these methods on the
testing set from UDIS-D and Tra datasets, covering diverse types
of camera motion, scene, and field of view.

Table 2: The average PSNR, SSIM, and RMSE of ourmethod to
SOTA methods on the Tra dataset. The first and second-best
solutions are marked in red and blue, respectively.

Methods APAP SPW ELA LPC UDIS Ours

PSNR ↑ 25.85 24.39 25.39 24.70 21.73 26.68
SSIM ↑ 0.931 0.904 0.924 0.910 0.848 0.949
RMSE ↓ 2.570 4.357 1.961 4.531 37.218 1.286

Quantitative comparison. We report the performance of our
method and the six most related state-of-the-art (SOTA) methods
on the UDIS-D dataset in Table 1, where the first four rows are
the classical multi-homography method (APAP [43]) and mesh
optimization methods (SPW [24], ELA [21], LPC [17]), and the last
two rows are deep learning methods. We divide the testing results
into three levels, including ‘Easy’ (Top 0-30%), ‘Moderate’ (Top
30-60%), and ‘Hard’ (Top 60-100%). The average performance for
each method is demonstrated in the last column of each metric.
Table 1 demonstrates that our method outperforms all the other
methods by a large margin on all metrics. Our method achieves
the best RMSE of 0.868, which is 41.98% lower than that of the
second-best method ELA, indicating the advantage of our pixel-
level alignment over multi-homography estimation. Our method
also achieves the best average PSNR of 26.61 dB, which is 1.77
dB higher than ELA. For the deep learning-based methods, CA-
UDHN [45] is a global homography estimation method, which
is only applicable to small parallax images, so it has the lowest
values on the feature-based evaluation metrics PSNR and SSIM.
Our method outperforms UDIS [30] by 16.81%, 14.71%, and 80.17%
on average on PSNR, SSIM, and RMSE, respectively. It indicates the

Figure 5: The matching error RMSE of different methods on
the Tra dataset. The horizontal axis indicates the average
matching error and the vertical axis indicates the percentage
of images with RMSE value less than the value of the hori-
zontal axis.
superiority of our pixel-wise warping in image alignment.

Validation on Cross-dataset. To test the generalization ability of
the proposed method, we test our trained model on the collected
cross-dataset of the Tra dataset, which exhibits a larger parallax
than the UDIS-D dataset. Table 2 demonstrates our method achieves
SOTA performance on all metrics. Our performance on RMSE is
1.286, reducing 34.42% compared with the second-best method ELA.

In addition, we demonstrate the overall RMSE distribution of
different methods on the Tra dataset in Fig. 5. Take our perfor-
mance marked by red points as an example, the value 100 on
the x-coordinate with a corresponding value beyond 0.6 on the
y-coordinate indicates more than 60% image pairs in the test set
exhibit RMSE value less than 1, while the second best ELA method
has only about 40%. The curve of our method distributes at the left-
most with a big margin over other methods, indicating our method
holds the absolute predominance on the cross dataset.
Qualitative comparison. In Fig. 6, we demonstrate qualitative
comparisons of different methods on four image pairs, in which
the first two rows are test images on the UDIS-D dataset and the
last two rows from the Tra dataset. Our method surpasses all the
other methods in the alignment quality with visually artifacts-free
stitched images. The first two rows show challenging complex-
texture and low-texture image pairs, respectively. The zoomed-in
areas in the bottom show that the traditional methods APAP [43],
SPW [24], ELA [21], and LPC [17] exhibit severe misalignment
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APAP [43] SPW [24] ELA [21] LPC [17] UDIS [30] OursInput

Figure 6: Comparison of different stitching methods on the UDIS-D dataset (rows 1 and 2) and the Tra dataset (rows 3 and 4),
where the zoomed-in results are located below the stitched images and marked with red squares.

APAP [43] ELA [21]Input Ours

Figure 7: Comparison of the top three stitching methods on
the UDIS-D dataset, where the zoomed-in regions in overlap-
ping and non-overlapping regions are marked in blue and
green squares, respectively.

in the tree trunk and antenna, due to their limitation in feature
detection and matching. The deep learning method UDIS exhibits
better performance than traditional methods but still suffers from
artifacts as demonstrated in the zoomed-in areas. Image pairs in the
last two rows have a large parallax, and objects in the overlapping
regions exhibit different degrees of artifacts due to misalignment.
The clear and natural stitching results of the proposed method
demonstrate the benefits of our pixel-level warping, which enables
us to handle the alignment of large parallax images with high
accuracy.

Figure 7 compares the distortion of non-overlapping regions
among the top three methods, including APAP and ELA. Differ-
ent from the single homography transformation, APAP and ELA
also adjust the non-overlapping regions. The green box marks

Table 3: Comparison of elapsed time(s) for different resolu-
tions. The bold type indicates the best performance.

Resolution 1000 × 750 975 × 583 640 × 480 600 × 400

APAP [43] 19.417 6.408 20.291 5.534
SPW [24] 4.479 11.813 6.228 2.773
ELA [21] 4.067 3.192 1.938 2.106
LPC [17] 3.230 47.265 12.748 8.397
UDIS [30] 4.035 3.992 3.671 3.642

Ours 2.689 2.653 1.370 1.168

non-overlapping regions and the blue box marks the overlapping
regions. The zoomed-in regions at the bottom corners demonstrate
our method surpasses the other two methods with the overlapping
region being visually artifacts-free. At the same time, the inherent
texture and structure in the non-overlapping regions are preserved.
In contrast, the other two methods suffer from severe distortions,
such as bent antenna and deformed walls in the green box. Conse-
quently, our method not only aligns overlapping regions accurately
but also suppresses the distortion of non-overlapping regions, indi-
cating the effectiveness of the proposed content consistency and
structural consistency constraints.
Computational efficiency comparison.We randomly select four
images in the Tra dataset with different image resolutions. Table 3
demonstrates the average time of running each method five times
under the same hardware configurations. Our elapsed time includes
both pre-alignment and pixel-wise alignment stages, rendering the
least execution time over all instances. Generally, the time cost
reduces as the resolution decreases for most methods. There are
exceptions when the number of matching features is independent
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Global alignment Ours

Uniform alignmentInput Pixel-wise alignment

Figure 8: The comparison of coarse uniform pre-alignment
and fine pixel-wise alignment. The green and blue squares
indicate zoomed-in regions captured in overlapping regions.

of the image resolution, which mainly affects the computation
times of traditional methods. Our average run time is only 49.36%
of UDIS [30] over all resolutions, as our model size is only 18.5M
compared with 2.1G of UDIS. In addition, the pre-alignment stage
also cost very little time, as we use a pre-trained model for feature
extraction.
Table 4: Ablation studies of different scale features on the
UDIS-D dataset.

Variants PSNR ↑ SSIM ↑ RMSE ↓
1/8 𝑠𝑐𝑎𝑙𝑒 24.80 0.886 2.669
1/4 𝑠𝑐𝑎𝑙𝑒 25.81 0.915 1.151
1/2 𝑠𝑐𝑎𝑙𝑒 26.32 0.921 0.987

Table 5: Ablation studies of correlative feature enhancement
(CF𝐸) module on the UDIS-D dataset.

Variants PSNR ↑ SSIM ↑ RMSE ↓
S(𝑓 𝑡𝑟𝑜 ) ⊙ 𝑓 𝑟𝑤 26.22 0.927 1.026
𝑓 𝑡𝑟𝑜 ⊕ 𝑓 𝑟𝑤 26.56 0.928 0.921

S(𝑓 𝑡𝑟𝑜 ) ⊙ 𝑓 𝑟𝑤 ⊕ 𝑓 𝑟𝑤 26.61 0.936 0.868

4.3 Ablation Studies and Analysis
Performance of two-stage alignment. We conduct two align-
ment stages in our coarse-to-fine framework: uniform alignment in
the pre-alignment stage and the non-uniform pixel-wise alignment
stage. Fig. 8 illustrates the difference between the pre-alignment
and our pixel-wise alignment for the image pair on the Tra dataset.
Pre-alignment suffers from severe misalignment and artifacts, as
shown in the zoomed-in green and blue boxes, respectively. In
contrast, we obtain precisely aligned images when adding the sec-
ond stage of non-uniform alignment, validating the necessity of
pixel-wise alignment in non-coplanar scenes.
Effectiveness of large-scale features. To validate the effective-
ness of large-scale feature maps, we change the feature extractor to
extract different scale feature maps including 1/8 𝑠𝑐𝑎𝑙𝑒 , 1/4 𝑠𝑐𝑎𝑙𝑒 ,
and 1/2 𝑠𝑐𝑎𝑙𝑒 of the input image. Table 4 demonstrates that the
PSNR and SSIM increase when using larger sizes of feature maps.
We obtain 26.32 dB on PSNR with 𝐻/2 ×𝑊 /2 size feature maps,
which is significantly higher than 24.80 dB with 𝐻/8 ×𝑊 /8 size. It
clearly shows that large-scale feature maps are beneficial for our
pixel-wise alignment.
Effectiveness of correlative feature enhancement module
(CF𝐸). To explore the best feature fusion manner for overlap-
ping feature 𝑓 𝑡𝑟𝑜 and the entire image features 𝑓 𝑟𝑤 and 𝑓 𝑡𝑤 , we use
attention-guided fusion (S(𝑓 𝑡𝑟𝑜 ) ⊙ 𝑓 𝑟𝑤 ) and direct addition (𝑓 𝑟𝑤 ⊕ 𝑓 𝑡𝑟𝑜 )

Figure 9: The visualization of different constraints on distor-
tion suppression for the non-overlapping regions, which are
marked with red boxes and shown in zoomed-in areas.

for comparison. As shown in Table 5, the attention-guided fusion
(S(𝑓 𝑡𝑟𝑜 ) ⊙ 𝑓 𝑟𝑤 ) with 26.22 dB is inferior to 𝑓 𝑟𝑤 ⊕ 𝑓 𝑡𝑟𝑜 with 26.56 dB
due to it neglecting the non-overlapping features. Therefore, we
use the combined S(𝑓 𝑡𝑟𝑜 ) ⊙ 𝑓 𝑟𝑤 ⊕ 𝑓 𝑟𝑤 fusion to fully consider both
regions and achieve the best performance on all metrics compared
with the other variants.
Effectiveness of constraints for non-overlapping regions. To
validate the effectiveness of our constraints on content L𝑐𝑜𝑛 and
structure L𝑠𝑡𝑟 for non-overlapping regions, Fig. 9 compares four
image stitching results with and without corresponding constraints
by the zoomed-in patches on the right. The upper left figure shows
that the building texture and structure in the non-overlapping
region are severely distorted without both losses. The quality of the
following two stitching images significantly improves when adding
either loss. The final result with both constraints exhibits the best
visual quality with appealing well-organized structure and texture,
rendering the effectiveness of the proposed loss terms, which do
not require any supervision.

5 CONCLUSION
The proposed approach eliminates the coplanar limitations of a sin-
gle homography by pixel-wise alignment. The proposed pixel-wise
image stitching network employs a large-scale feature extractor
and attention-guided modules to enhance the impact of the over-
lapping region to obtain high-resolution and accurate pixel-level
offsets. A series of constraints is proposed for overlapping and non-
overlapping regions to enforce consistency of features, contents,
and structures between image pairs and in the stitched image. These
novel constraints coupled with a specially designed network enable
us to achieve precise alignment in an unsupervised manner. In com-
parison experiments, our model achieves the SOTA performance
on the UDIS-D dataset and exhibits the best generalization ability
on the Tra dataset compared with existing methods. In our future
work, we will try to integrate global pre-alignment and pixel-wise
stitching in an end-to-end network.
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