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a b s t r a c t 

Recent vision-brain physiological experiments [65] have demonstrated that contours, and in particular, 

contour junctions present in the 2D images are very informative for revealing the 3D structure of the 

object. Inspired by this observation, we take 2D sketches (or 2D views of 3D sketches) and edge maps 

of 2D views of 3D models as a unified domain to train the Convolutional Neural Network (CNN). The 

CNN features are then used for 3D object representation. We show that the CNN can successfully learn 

the object structure from different types of clues. The performance of the proposed method demonstrates 

that the semantic gap between the 2D/3D sketches and the 3D models can be bridged without any cross- 

domain similarity learning. Experiments show that our approach significantly outperforms the state-of- 

the-art 2D/3D sketch-based 3D retrieval methods. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The 3D sensors and imaging devices are developing rapidly

owadays. As a result, more and more 3D models have been con-

tructed and are accessible in our daily life. Thus, an efficient way

o manage the 3D content is very significant. In this context, re-

rieving 3D models that are similar to a query 2D/3D sketch or 3D

odel in a large 3D database has become an important research

rea. It will lead to many potential applications such as Virtual Re-

lity, 3D Printing/Manufacturing and Robotics. In recent years, sev-

ral large-scale 3D shape benchmarks, e.g., ModelNet [70] , Shape

etrieval Contest (SHREC) [41,51] , ShapeNet core55 [55] , have been

ublished. Many dedicated algorithms have been developed and

ested on three different 3D shape retrieval tasks: 

1. 2D sketch-based 3D shape retrieval [35,37,38] , 

2. 3D sketch-based 3D shape retrieval [34] , 

3. and 3D model-based 3D shape retrieval [36,55] . 

In these three retrieval tasks, the first problem to be investi-

ated is an appropriate representation for the 3D model. In these

asks, the 3D objects are often described via multi-view based or

olumetric models. And those exploiting the power of Deep Learn-
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ng techniques have shown outstanding performance in this do-

ain. However, when it comes to 2D/3D sketch-based retrieval,

he performance is still not good enough for applications in prac-

ice. To compare a hand-drawn 2D/3D sketch directly with a 3D

odel, most existing methods match 2D sketches or projections

f 3D sketches with a set of rendered views of 3D models. As

earning based representations often result in much better perfor-

ance than hand-crafted descriptors, many researchers, including

he main organizer [34] of SHREC 2D/3D sketch-based 3D shape

etrieval, believe that, “machine learning, especially deep learning,

hould be utilized instead of selecting and fixing the features be-

orehand”. More recently, different Convolutional Neural Networks

CNN) [66,75] have been developed to learn cross-domain image

epresentations for 2D sketches and 3D shapes. These methods im-

rove the performance of 2D sketch-based 3D retrieval at the cost

f expensive training. 

In this paper, we look for an unified representation in all

hree retrieval tasks. We propose a feasible solution using con-

ours/edges to represent the 2D views. Some of the generated

iews are demonstrated in Fig. 1 , where we examine three differ-

nt representations: (c, d) the edge maps of 2D views generated

rom a 3D model (edge maps from 3D models for short in this pa-

er), (f) the 2D views of a line-connected 3D sketch (2D views of

D sketches for short in this paper), and (g, h) 2D sketches. They

ook similar by intuition, and it is natural to use all of them as

lues to learn contour features for representing a 3D model. As we
twork from multi-domain contour images for 3D shape retrieval, 
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Fig. 1. Different representations for the views of a 3D object: (a) The rendered 

views of a 3D object at some viewpoint; (b) The rendered views of a 3D object at 

a different viewpoint; (c) The edge maps of the corresponding views in (a); (d) The 

edge maps of the corresponding views in (b); (e) The 3D sketches represented as 

point clouds; (f) The 2D views of corresponding 3D sketches in (e) (generated using 

[34] ); (g) The 2D sketches drawed by human beings; (h) The 2D sketches drawed 

by different people. It is intuitive to take images in (c), (d), (f), (g) and (h) as the 

same domain, namely, contours of multiple views for representing a 3D object. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. An evidence that CNN could learn contour pieces and contour junctions for 

image representation. We can see that most neurons are activated in the locations 

of contours or junctions. 
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will demonstrate, a CNN is able to capture the visual primitives on

the contours and junctions. This allows us to utilize deep learning

to bridge the gap between 2D/3D sketches and 3D models, which

help improve the performance of 2D/3D sketch-based 3D retrieval.

Besides, there is a solid physiological basis for representing 3D

models with contours/edges of 2D views. While the surface fea-

tures such as color and gradient orientations may help contour

detection and surface delineation [47] , they do not directly con-

tribute to the high-level representation for visual recognition. In

fact, visual recognition and categorization are possible once impor-

tant contours are present and their relations are determined [10] .

Meanwhile, contours and junctions in the 2D images are capable

of describing the 3D structural information, since they could imply

the arrangements and relations between surfaces in the 3D space

[9,24] . For instance, L-junctions indicate points of termination of

surfaces, T-junctions signify occlusion in depth, and Y-junctions

and arrow-junctions indicate corners facing toward or away from

the viewer [52] . 

The recent studies in [5,16] provide strong evidence that con-

tour junctions indeed play a significant role in human visual recog-

nition and categorization, due to the invariance of junctions to

changes in viewpoint. We have also found support for the role of

contour junctions in our CNN model built upon the three differ-

ent contour images: edge maps, 2D views of 3D sketches and 2D

sketches. We use the reconstruction method proposed in [46] to

find out what information is preserved in certain layer of a CNN.

In Fig. 2 , we can see that contour junctions are activated clearly in

the reconstruction output of the layer 4, which means it is learned

by CNN that the junctions are more informative to represent the

original image. 

From the above analysis, we can see that: 

1. Contours and junctions are informative enough for describing

all kinds of views and eventually the 3D objects due to their

physiological characteristics. 
Please cite this article as: Z. Zhu et al., Training convolutional neural ne
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2. It is intuitive to use edge maps from 3D models, 2D views of

3D sketches and 2D sketches as clues to learn contour features,

since they are visually similar thus can be regarded as images

in the same domain. 

In this paper, we first show that CNNs built upon edge maps

rom 3D models can work as well as those methods based on

ulti-view representations in the 3D shape retrieval task. Then,

dge maps from 3D models, 2D views of 3D sketches and 2D

iews are used as clues to learn the CNN model, so as to im-

rove the shape retrieval performance in three different tasks. The

est of this paper is organized as follows. Section 2 reviews re-

ated works; Section 3 describes the proposed framework and im-

lementation details; Section 4 discusses the experimental results,

nd Section 5 concludes the proposed method. 

. Related works 

In this section, we introduce related research of 3D shape re-

rieval over the last three years. Several 3D shape benchmarks play

mportant roles in bringing and comparing new retrieval methods.

e summarize these benchmarks and methods in Table 1 , where

e can find that the related methods are mainly divided into three

ategories: 

1. Non-learning based approach, e.g., Handcraft local/global fea-

ture with direct feature matching, Bag-of-Words framework,

and Shape Context matching. 

2. Distance learning based approach, e.g., Manifold learning and

Cross-domain manifold learning. 

3. Deep learning based approach, e.g., CNN-based representation,

Cross-domain CNN and Indiscriminate-domain CNN. 

The research in all three 3D shape retrieval tasks started with

on-learning based approaches, such as handcrafted local/global

eatures and direct feature matching, shape context matching or

he Bag-of-Words (BoW) framework. Since then, more and more

esearchers turned to use learning based representations [5,7] in-

luding manifold learning and deep learning to develop higher

evel knowledge-based 3D retrieval algorithms. As shown in rows

MR” and row “2D SC” of Table 1 , for tasks such as 3D model-

ased retrieval and 2D sketch classification, handcrafted features

nd non-learning based approaches have been gradually replaced

y deep learning based approaches in the recent three years. 

When it comes to the cross-domain retrieval tasks, it is com-

only believed that there exists a semantic gap between the

D/3D sketches and the 3D models in the database. To bridge this
twork from multi-domain contour images for 3D shape retrieval, 
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Table 1 

A review of the related works on the three 3D shape retrieval tasks. In the table, “MR” stands for Model-based 3D shape retrieval, “2D SC” stands for 2D Sketch classification 

and “2D/3D SR” stands for 2D/3D sketch-based 3D shape retrieval. 

Tasks Dataset Content Main methods applied on this benchmark 

MR SHREC’14 LSGTB [36] 8987 models (171 classes) Geometry-based Model [2,49] , View-based Model [1,27] , 

Hybrid Model [3,13,15] , Direct Feature Matching [74] , 

Bag-of-Words [21] , Manifold Learning [48] 

ModelNet40 [70] 12,311 models (40 classes) Multi-view based Representation [4,28,61] , Volumetric 

Representation [25,58] , VRN Ensemble [12] , 3D-GAN [69] 

SHREC’16 [55] 51,300 models (55 classes) Multi-view based Representation [4,61] , Volumetric 

Representation [23] 

SHREC’17 [56] 51,162 models (55 classes) CNN based on Point Set [23] ; 3D Shape Descriptor [33] 

2D SC TU-Berlin [18] 20,0 0 0 shapes (250 classes) HOG with SVM [18] , Structured Ensemble Matching [40] , 

Multi-kernel SVM [39] , Fisher Vector Spatial pooling [57] , 

Sketch-A-Net [72] , Deepsketch [59] , GoogLenet [62] , 

Triplet Network [54] , Indiscriminate-domain CNN [67] 

2D SR SHREC’13 STB [35] 7200 shapes and 1258 models (90 classes) DSIFT [21] , LD-SIFT [17] , HOG [11] , Local Features [20] , 

Global Features [8] , Direct Feature Matching, 

Bag-of-Words [19] , Shape Context [6] 

SHREC’14 LSSTB [37] 13,680 shapes and 8987 models (171 classes) Cross-Domain Manifold Ranking [22,73] , PCDNN [75] , 

Siamese Network [66] 

3D SR SHREC’16 3DSTB [34] 300 shapes (30 classes) and 1258 models (90 classes) Cross-Domain Manifold Ranking [34] , Siamese Network 

[66] , Multi-view Representation [71] 
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m  
ap, cross-domain manifold learning schemes and cross-domain

eural networks [75] are used to learn domain invariant distance

etrics. Recently, cross-domain CNNs such as Siamese Network

66] and Triplet Network [54] offer several solutions to this task.

hey improve the performance of 2D sketch-based 3D shape re-

rieval with a more expensive cost of the training process. The re-

ated works are summarized in rows “the 2D/3D SR” of Table 1 . 

Unlike cross-domain CNNs which focus on using different CNN

odels to process data from different domains, indiscriminate-

omain CNNs try to use a single model to handle different types

f data. Wang et al. [67] trained a model which can accommodate

oth images and sketches for sketch-based image retrieval tasks.

his model is able to classify both the images and sketches. In this

aper, we demonstrate that 2D sketches, 2D views of 3D sketches

nd edge maps from 3D models can be also used alongside each

ther. The learned indiscriminate-domain CNN model is able to

epresent 2D/3D sketches and 3D models with higher retrieval ac-

uracy than the current cross-domain CNNs. 

For non-rigid shape retrieval tasks [32,43] , point matching

44,76] and point set registration [45] are typically used. So we

o not focus on this domain and compare to related methods in

his paper. For rigid shape retrieval tasks, previously Su and co-

orkers [34,61,67] have proposed similar works for each individ-

al task. But in [61] , the edge features are used for sketch-based

etrieval only, while they are utilized for 3D model-based retrieval

n our method; In [67] , the same edge views are used for train-

ng and testing, while we use different edge views for training and

esting in all three tasks; In [34] , the CNN is trained upon images

f a single domain, namely the projections of 3D sketches, and la-

el matching is applied to achieve the best results. In comparison,

ur paper is the first one that proposes a single but efficient frame-

ork for the three retrieval tasks with outstanding performance on

our different benchmarks. The advantage of the proposed frame-

ork lies in the clean training and testing strategies and the high

ersatility. Our framework is much simpler and faster than other

roposed frameworks. It provides a practical way of training CNN

or cross-domain 3D shape retrieval. 

. Approach 

For all the three retrieval tasks described below, we use a

ulti-view based model to represent the 3D objects and each

iew is described by the contour features extracted via the intro-

uced CNN architecture. Contours are able to describe several vi-
Please cite this article as: Z. Zhu et al., Training convolutional neural ne

Pattern Recognition Letters (2017), http://dx.doi.org/10.1016/j.patrec.201
ual properties explicitly, which are not accessible in fully textured

olor photographs, such as contour orientation, length, curvature,

nd junctions [65] . Such kind of visual information allows human

eings to effectively perceive semantic meanings of scenes [30,31] .

n overview of the proposed method can be found in Fig. 3 

.1. Generating views for 2D sketch-based 3D shape retrieval 

As 2D sketching seems to be the only mechanism for most peo-

le to depict a visual object, many algorithms have been developed

n this domain (see Section 2 ) for 2D sketch-based 3D shape re-

rieval. The state-of-the-art results come from cross-domain neural

etworks [75] and the Siamese Network [66] . In contrast to using

ifferent CNNs for modeling and 2D views of 3D models separately,

e consider these images as a single domain. We use a set of edge

aps of 2D views (see Section 3.3 ) to represent the correspond-

ng 3D model. From Fig. 1 we can see that 2D sketches and edge

aps from 3D models look similar, as both of them are collections

f main contours and fine details. For 2D sketch-based 3D shape

etrieval, we use edge maps from 3D models and 2D sketches for

raining and testing. 

.2. Generating views for 3D sketch-based 3D shape retrieval 

For 3D sketch-based 3D shape retrieval, Li et al. [34] uses

andcrafted features, such as localized statistical features or his-

ograms of oriented distances, to compute the distance between

D sketches or models. Meanwhile, Ye [71] shows better perfor-

ances via automatically learning the CNN features. We take both

D views of 3D sketches and edge maps from 3D models for rep-

esenting 3D sketches or models, and train a CNN with these two

ypes of images without discrimination. As a 3D sketch is stored in

he form of a point cloud, we first connect consecutive points with

ines to construct a line-connected 3D sketch. Then we project this

D sketch to generate a set of 2D views. Still, a set of edge maps of

D views (see Section 3.3 ) is extracted from each 3D model. From

he examples in Fig. 1 (c), (d) and (f), we can see that these images

hare very similar textures. For 3D sketch-based 3D shape retrieval,

e use edge maps from 3D models and 2D views of 3D sketches

or training and testing. 

.3. Generating views for 3D model-based 3D shape retrieval 

For 3D model-based 3D shape retrieval, most state-of-the-art

ethods rely on CNNs to attack the problem. Two kinds of CNNs
twork from multi-domain contour images for 3D shape retrieval, 
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Fig. 3. An overview of the proposed 3D shape retrieval framework. 
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are mainly considered in this scenario: CNN based upon volumetric

representations and CNN based upon multi-view representations.

As volumetric representations can not be directly used in 2D/3D

sketch based 3D shape retrieval tasks, we leave it as an open ques-

tion in the future. Multi-view based CNN methods have shown

outstanding performance in the 3D shape retrieval tasks. For ex-

ample, MVCNN [61] aggregates multiple views through a view-

pooling layer followed by fully-connected layers. The view pooling

layer can combine all streams of views, and the final representa-

tion is more informative for retrieval than using the full collection

of view-based descriptors of the 3D object. Besides, GIFT [4] sam-

ples 64 views uniformly on a view sphere and measures the object

similarity by comparing two sets of CNN features of views. These

two methods obtain the best results on the normal dataset and

the perturbed dataset in SHREC’16 [55] respectively. Unlike these

state-of-the-art methods using sophisticated architectures, our 3D

model-based retrieval framework is more concise and efficient. Fol-

lowing the first camera setup in MVCNN [61] , we assume that the

input 3D shapes are upright oriented along a consistent axis, and

create 12 rendered views around the axis every 30 degrees. Unlike

existing methods using RGB images or depth images as input to

the CNN, we take the Canny edge maps of 2D views to train the

CNN model. For 3D model-based 3D shape retrieval, we only use

edge maps from 3D models for training and testing. 

3.4. View representation via deep contour features 

For object retrieval, many researchers have found that the re-

trieval results can be improved if the class distribution predicted

by CNN is directly used as the object descriptor. For example, Su

et al. [61] use the classification probabilities as the 3D model sig-

nature, and obtain the best retrieval results in the normal test

of SHREC’16 track [55] . In our experiment, we also find that the

retrieval results can be improved significantly when a soft-max

layer is appended to the GoogLeNet [62] or Deepsketch [59] model,

where the output of the soft-max layer is used as the descriptor of

the input 2D view. The comparison of the retrieval results with or

without the soft-max layer in the GoogLeNet model can be found

in Fig. 4 . 

3.5. View selection based multi-view matching 

All three 3D shape retrieval tasks involve a multi-view match-

ing stage to establish the correspondence between two sets of 2D
Please cite this article as: Z. Zhu et al., Training convolutional neural ne

Pattern Recognition Letters (2017), http://dx.doi.org/10.1016/j.patrec.201
iews of two given 3D objects. The traditional way is to use cer-

ain kind of Hausdorff distance. For example, MVCNN [61] averages

airwise distances between two sets of 2D views. GIFT [4] adopts a

obust version of Hausdorff distance [26] . In our method, we first

etermine the dominant class of a set of views by majority vot-

ng, and then remove the views belonging to the minority classes.

his pre-processing can improve the time efficiency in the multi-

iew matching process as well as the retrieval accuracy. A pair of

ell matched 2D views will indicate a good match of two objects,

nd here we apply the minimum Hausdorff distance to capture

he overall dissimilarity of two objects, as defined in the follow-

ng Eq. (1) . 

 (x q , x p ) = min 

q i ∈ ν(x q ) 
min 

p j ∈ ν(x p ) 
d(q i , p j ) , (1)

here d ( q i , p j ) measures the cosine distance between 2D

iew/sketch CNN descriptor q i and p j , ν( x q ) is the set of view de-
twork from multi-domain contour images for 3D shape retrieval, 
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Fig. 5. Precision-recall plots for 3D sketch-based 3D shape retrieval. 
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Fig. 6. Precision-recall plots for 2D sketch-based 3D shape retrieval. 
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Table 2 

The detailed CNN architecture for Deepsketch. 

Index Type Filter Filter Stride Pad 

1 Conv 7 × 7 64 2 0 

2 ReLU – – – –

3 Maxpool 3 × 3 – 2 0 

4 Conv 5 × 5 128 2 2 

5 ReLU – – – –

6 Maxpool 3 × 3 – 2 0 

7 Conv 7 × 7 256 1 1 

8 ReLU – – – –

9 Conv 7 × 7 256 1 1 

10 ReLU – – – –

11 Maxpool 3 × 3 – 2 0 

12 Conv 5 × 5 4096 1 1 

13 ReLU – – – –

14 Dropout – – – –

15 Conv 1 × 1 250 1 1 
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criptors from the query sketch/model x q , and ν( x p ) is the set of

he view descriptors from some 3D object x p in the database. Note

hat if x q represents a 2D sketch, then the set ν( x q ) contains only

ne view descriptor. 
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.6. The choice of CNN architecture 

Our main criterion for selecting the CNN architecture is the per-

ormance for sketch classification. Three models, including Sketch-

-Net [72] , GoogLeNet [62] and Deepsketch [59] , are evaluated on

he TU-Berlin benchmark [18] . In this paper, we employ the Deeps-

etch model since it is much simpler than GoogLeNet and Sketch-

-Net, and the objective function also converges much faster than

he other two. The detailed CNN architecture of Deepsketch is de-

cribed in Table 2 . 

. Experiments 

The goal of our research is to show that using contour fea-

ures to represent views can provide sufficient information to infer

he characteristics of the whole 3D objects, and succeed in achiev-

ng the state-of-the-art performance in different 3D shape retrieval

asks. Besides, these 2D view images from different sources can be

sed along side each other in training and testing. We first evalu-

te our method on the 2D sketch-based retrieval task, then extend

t to the 3D sketch-based retrieval task and finally the 3D model-

ased retrieval task ( Table 3 ). 
twork from multi-domain contour images for 3D shape retrieval, 

7.08.028 

http://dx.doi.org/10.1016/j.patrec.2017.08.028


6 Z. Zhu et al. / Pattern Recognition Letters 0 0 0 (2017) 1–8 

ARTICLE IN PRESS 

JID: PATREC [m5G; September 9, 2017;2:3 ] 

Table 3 

3D model-based retrieval performance on the normal dataset of SHREC2016. Best results are marked in bold, the second best are in italic. 

Method micro macro 

P@N R@N F1@N mAP NDCG@N P@N R@N F1@N mAP NDCG@N 

Su [61] 0.770 0.770 0.764 0.873 0.899 0.571 0.625 0.575 0.817 0.880 

Bai [4] 0.706 0.695 0.689 0.825 0.896 0.4 4 4 0.531 0.454 0.740 0.850 

Li [55] 0.508 0.868 0.582 0.829 0.904 0.147 0.813 0.201 0.711 0.846 

Wang [68] 0.718 0.350 0.391 0.823 0.886 0.313 0.536 0.286 0.661 0.820 

Tastuma [64] 0.427 0.689 0.472 0.728 0.875 0.154 0.730 0.203 0.596 0.806 

Ours 0.755 0.731 0.726 0.865 0.899 0.492 0.596 0.503 0.790 0.874 

Table 4 

3D model-based retrieval performance on perturbed dataset of SHREC2017. Best results are marked in bold, the second best are in italic. 

Method micro macro 

P@N R@N F1@N mAP NDCG@N P@N R@N F1@N mAP NDCG@N 

Furuya [23] 0.814 0.683 0.706 0.656 0.754 0.607 0.539 0.503 0.476 0.560 

Tastsuma [63] 0.705 0.769 0.719 0.696 0.783 0.424 0.563 0.434 0.418 0.479 

Zhou [4] 0.660 0.650 0.643 0.567 0.701 0.443 0.508 0.437 0.406 0.513 

Kanezaki [29] 0.655 0.652 0.636 0.606 0.702 0.372 0.393 0.333 0.327 0.407 

Deng [42,60] 0.412 0.706 0.472 0.524 0.642 0.120 0.659 0.164 0.329 0.395 

Li [33] 0.496 0.234 0.258 0.172 0.303 0.199 0.373 0.179 0.215 0.336 

Mk [50] 0.690 0.012 0.020 0.009 0.043 0.546 0.052 0.052 0.047 0.109 

Ours 0.681 0.681 0.673 0.638 0.733 0.453 0.503 0.448 0.435 0.519 

Table 5 

Comparison of 3D sketch-based retrieval performance on the SHREC’16 benchmark 

(all results except ours are taken from [34] ). 

SHREC’16 Comparison 

Method NN FT ST E DCG mAP 

3DSH 0.029 0.021 0.038 0.021 0.254 0.029 

LSFMR 0.033 0.020 0.033 0.018 0.248 0.032 

C-Point 0.124 0.044 0.075 0.046 0.294 0.060 

C-Edge 0.114 0.056 0.084 0.051 0.302 0.063 

Tabia 0.067 0.031 0.057 0.032 0.272 0.044 

CNN-S 0.222 0.251 0.320 0.186 0.471 0.314 

CNN-M 0.0 0 0 0.031 0.108 0.048 0.293 0.072 

OursA 0.413 0.471 0.527 0.302 0.617 0.508 

OursB 0.286 0.293 0.393 0.214 0.514 0.352 

Table 6 

Comparison of 2D sketch-based retrieval performance on the SHREC’13 and 

SHREC’14 datasets. 

Method NN FT ST E DCG mAP 

SHREC’13 Comparison 

Wang [66] 0.405 0.403 0.548 0.287 0.607 0.469 

Furuya [22] 0.279 0.203 0.296 0.166 0.458 0.250 

Li [37] 0.164 0.097 0.149 0.085 0.348 0.116 

Saavedra [53] 0.110 0.069 0.107 0.061 0.307 0.086 

OursA 0.678 0.705 0.774 0.373 0.800 0.736 

OursB 0.469 0.521 0.653 0.301 0.681 0.548 

SHREC’14 Comparison 

Wang [66] 0.239 0.212 0.316 0.140 0.486 0.228 

Tatsuma [63] 0.160 0.115 0.170 0.079 0.376 0.131 

Furuya [22] 0.109 0.057 0.089 0.041 0.329 0.055 

Li [37] 0.095 0.050 0.081 0.037 0.319 0.050 

OursA 0.642 0.681 0.736 0.351 0.794 0.712 

OursB 0.498 0.494 0.625 0.284 0.695 0.520 
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4.1. 2D Sketch-based 3D shape retrieval 

We use the SHREC’13 [35] and SHREC’14 [37] benchmarks to

test our method for 2D sketch based 3D shape retrieval. Please

see Table 1 and [35,37] for more details of these two benchmarks.

For the each 3D model, we use 12 views for training. The views

are captured at fixed viewpoints with elevation = 90, azimuth ∈ {-

150, -120, -90, -60, -30, 0, 30, 60, 90, 120, 150, 180}, and the re-
Please cite this article as: Z. Zhu et al., Training convolutional neural ne
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rieval result is denoted by ‘OursA’. The other completely different

2 views are used for testing, and they are captured at fixed view-

oints with azimuth = 45, elevation ∈ {-75, -60, -45, -30, -15, 0, 15,

0, 45, 60, 75, 90}. The corresponding retrieval result is denoted

OursB’. These views are then mixed with 2D sketches to train or

est the CNN model. From Fig. 6 and Table 6 , it is shown that

ur contour based representation achieves better performance than

ll the other approaches on the SHREC’13 and SHREC’14 dataset.

eanwhile, in 2D sketch-based retrieval, the sketches for train-

ng and testing are drawn by human. They are more consistent

o human perception thus relatively easier to identify. However, in

D sketches and models, we generate the 2D projections by uni-

ormly sampling the viewpoints on a sphere. Some of the projec-

ions may be ambiguous and hard to recognize even for humans.

esides, these 3D object models are not necessarily well aligned,

hich may also affect the performance of the retrieval results.

e will see how this issue affects our method in the next two

ections. 

.2. 3D Sketch-based 3D shape retrieval 

We evaluate our method for 3D sketch-based 3D shape retrieval

n the SHREC’16 benchmark [34] against all participants in this

rack. Please see Table 1 and [34] for the details of this benchmark.

ollowing the practice in previous methods, all the target 3D mod-

ls are the same in both training and testing. In our experiment,

e use 12 2D views for learning the CNN model, and they are

aptured at viewpoints with elevation = 90, azimuth ∈ { −150, −120,

90, −60, −30, 0, 30, 60, 90, 120, 150, 180}, and the correspond-

ng retrieval result is denoted as ‘OursA’. The other completely 12

ifferent views are used for testing, which are captured at view-

oints with azimuth = 45, elevation ∈ { −75, −60, −45, −30, −15,

, 15, 30, 45, 60, 75, 90}, and the retrieval result is denoted as

OursB’. The views in the two groups are very different, and if the

ontour features such as the junction types and angles are invari-

nt to changes in viewpoint, we would expect reasonable retrieval

esults in both “OursA” and “OursB’. From Fig. 5 and Table 5 , it is

bserved that our contour features of views achieve better perfor-

ances than all other non-learning and learning based approaches.

he experiment also demonstrates that the contour features in the
twork from multi-domain contour images for 3D shape retrieval, 
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D projections are capable of describing the structure of a 3D ob-

ect. 

.3. 3D Model-based 3D shape retrieval 

We validate our method for 3D model-based 3D shape retrieval

n the ShapeNet Core55 benchmark [14] , against all five partici-

ants in the SHREC’16 Track [55] and SHREC’17 Track. Please see

able 1 and [14,55] for more details of these benchmarks. The 3D

odels in the ShapeNet benchmark are converted to the “obj” for-

at with only geometric information, and the model dimensions

re normalized within a cube of unit length. In addition, since the

hapeNet benchmark provides consistent upright and front orien-

ation annotations, all models are consistently aligned. This dataset

s called the ’normal” dataset. There is also a ’perturbed’ version

f the dataset, where each model has been randomly rotated. The

recision, Recall, F-score and NDGG are calculated to compare our

ethod with the other methods. These metrics are referred to as

@N, R@N, F1@N and NDGG@N in the table, where N is the to-

al retrieval list length chosen by the method. The organizer also

rovides two evaluation metrics to combine the retrieval results of

ifferent categories: (1) the macro-averaged version is used to give

n unweighted average over the entire dataset, and (2) the micro-

veraged version assigns equal weights to each query and retrieved

hapes. In 3D object retrieval, the F measure, mAP and NDCG in-

icate the overall performance thus we compare mainly based on

hese metrics. On the normal dataset of SHREC2016, it is observed

hat our retrieval mAP is only 0.8% behind the best result of Su

61] , while our CNN architecture is much simpler and more effi-

ient than theirs. In Table 4 , our mAP is 5.8% lower than the best

esult of Tastsuma [63] and 1.8% behind the second result from Fu-

uya [23] . Tastsuma et al. translate the center of the 3D model to

he origin and then normalize the size and the rotation of the 3D

odel. They use an improved version of Neighbor Set Similarity

63] for ranking the retrieved shapes. Furuya et al. convert each

D model into a 3D oriented point set by sampling the surfaces of

he 3D model, which is more expressive than the edge maps from

D models. All these techniques could be used to improve our re-

rieval results. 

. Conclusion 

Among various methods for 3D shape retrieval, the deep learn-

ng based representations tend to gradually replace traditional

earning or non-learning based approaches. In this paper, we ad-

ress the problem by developing a uniform representation for dif-

erent 3D shape retrieval tasks, namely 2D/3D sketch-based and 3D

odel-based 3D shape retrieval. We propose to represent 3D ob-

ects with multi-view based description, where each view is de-

cribed by the contour features extracted by the learned CNN.

e demonstrate that the proposed contour-based representation is

uccessful in 3D model-based 3D shape retrieval task and achieves

he state-of-the-art performance. As it is an uniform representation

or edge maps from 3D models, 2D views of 3D sketches and 2D

ketches, we train the CNN model with these images as the same

omain. It is showed in our experiments that the performance of

D/3D sketch-based 3D shape retrieval tasks are significantly im-

roved compared to existing methods. 
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