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Zusammenfassung

Die vorliegende Arbeit behandelt die autonome Erstellung einer Représentation
rdumlicher Information durch mobile Roboter. Die Raumreprasentation, haufig
schlicht Karte genannt, ist die zentrale Informationsquelle des Roboters fiir die
Planung rdumlicher Aufgaben, wie etwa Wegplanung in der Navigation. Eine
zuverldssige Karte ist unabdingbar fiir intelligente, zielgerichtete Bewiltigung
von Navigationsaufgaben. Die Fahigkeit eines Roboters, diese Karte autonom
erstellen zu konnen, ist ein wichtiger Schritt zur Entwicklung weitgehend au-
tonomer Roboter, denn diese miissen sich auch in neuen, ihnen zuvor nicht
bekannten oder verénderlichen Umgebungen zurechtfinden kénnen.

Die autonome Kartenerstellung ist jedoch ein in vielfacher Hinsicht schwie-
riges Problem, das vielfiltige Fragen aufwirft. Im Rahmen dieser Arbeit widme
ich mich der Analyse und Weiterentwicklung der einer Karte zugrundeliegenden
Raumreprisentation und der darauf operierenden Schluifolgerungsmechanis-
men. Ein zusétzliches Augenmerk bei der Weiterentwicklung ist die prinzipielle
FEignung der Techniken, die interne Raumreprisentation zu externen Karten
(etwa Raumplénen) in Bezug setzen zu kénnen und so dem Roboter eine Kom-
munikation mit Menschen oder anderen Robotern mit Hilfe einer Karte als
Medium zu ermoglichen.

Die in den Disziplinen Raumkognition, Robotik und visueller Objekterken-
nung entwickelten Ansétze zur Reprisentation und Verarbeitung rdumlicher
Information werden durch diese Arbeit auf der Ebene von Forminformation
verbunden. Es wird gezeigt, dal Forminformation ein wichtiges Bindeglied dar-
stellt. Im Rahmen der visuellen Objekterkennung wurde ein umfangreiches
und zugleich leistungsfihiges Repertoire an Techniken zur Verarbeitung von
Forminformation entwickelt, insbesondere in Bezug auf Erkennungsaufgaben.
Ich leite eine Raumreprisentation auf der Basis von Forminformation her; Re-
prasentations- und Schlufifolgerungstechniken, insbesondere fiir Erkennungspro-
bleme, werden aus den Bereichen der Raumkognition und der visuellen Objekt-
erkennung iibertragen und weiterentwickelt.

Ein wesentlicher Schlufolgerunsprozel in der Kartenerstellung ist die Be-
stimmung von Korrespondenzen zwischen verschiedenen Beobachtungen oder
zwischen Beobachtung und Karte. Die Korrespondenzbestimmung dient der
Identifikation beobachteter Objekte und der Positionsbestimmung des Robo-
ters. Auf der Basis der entworfenen Raumreprisentation entwickle ich Tech-
niken, die eine robuste Bewiltigung des Korrespondenzproblems ermdoglichen.
Hierzu werden Methoden der Formerkennung, des qualitativen rdumlichen Schlie-
Bens und mathematische Ansétze zu Korrespondenzproblemen entwickelt und
kombiniert. Ich entwickle eine graphentheoretische Charakterisierung des Pro-
blems auf der Basis von Hypergraphen und formuliere ein sogenanntes ,, Mat-
ching“-Problem. Zur Loésung des Matching-Problems wird ein fiir den Anwen-
dungsfall relevantes Teilproblem identifiziert, dessen Komplexitat polynomial in
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Bezug auf die Anzahl der zu korrelierenden Objekte und zugleich handhabbar
ist; der gefithrte Beweis stellt eine Verbindung zu Verfahren der kombinatori-
schen Optimierung her und erlaubt die Ableitung eines Algorithmus.

Die entwickelte Korrespondenzbestimmung bildet die zentrale Komponente
in einem Ansatz zur inkrementellen Kartierung, der beschrieben und algorith-
misch umgesetzt wird. Abschliefend widme ich mich einer Evaluation des An-
satzes durch praktische Untersuchungen und zeige auf, welche Verbesserungen
sich durch den neuen, in dieser Arbeit entwickelten Ansatz zur Kartierung er-
zielen lassen. In einem Ausblick zeige ich auf, wie sich die erzielten Ergebnisse
in reale Systeme umsetzen lassen und welche weiteren Fragestellungen dabei
aufgeworfen werden.



Abstract

This thesis addresses spatial representations and reasoning techniques for mo-
bile robot mapping. It provides an analysis of fundamental representations
and processes involved. A spatial representation based on shape information
is proposed and appropriate shape analysis techniques are developed. Robot
mapping’s core problem of determining correspondences between observation
and map is tackled on the basis of shape similarity. An improved matching
technique is described by a generalized mathematical formulation. Specifically,
it addresses the matching of configurations of extended geometric primitives’
configurations.

Robot mapping describes the process of a robot autonomously acquiring an
internal spatial representation of its environment. This internal representation,
commonly termed “map”, provides the basis for planning future actions. A
reliable map is essential for intelligent navigation. Henceforth, autonomous
map acquisition is one of the most fundamental tasks for autonomous robots.
Unfortunately, it is among the most challenging tasks as well.

To build a map, robots rely on observations, typically obtained from their
own sensors, but sometimes information can also be obtained by communi-
cation. The map is constructed by integrating multiple views on the same
spatial environment into a coherent whole. This requires the correlation of
observations, i.e. to determine which observations refer to the same physical
entity—this is the objective addressed by the so-called correspondence problem.
Additionally, multiple, corresponding observations need to be integrated into a
single model; this task is termed the merging problem.

There are several aspects contributing to the difficulty of robot mapping.
Among them, first of all, is the development of a robust and efficient solu-
tion to the correspondence problem. Another aspect is the necessity to handle
uncertain information; virtually all information available to the robot must
be considered uncertain. For example, sensor readings suffer from noise and
undetermined failure which results in uncertain information by interpretation.
Besides the effects of uncertainty to observations, the environment may simply
change between observations, complicating recognition. Despite the high com-
plexity faced in the robot mapping problem, a real-time solution is indispensable
in many applications.

My work is dedicated to improving spatial representation and reasoning
techniques underlying the robot mapping task. I argue for utilizing a shape
representation originating in the field of object recognition; a strong, yet un-
derexploited connection between the research fields of shape recognition and
robot mapping is explored. Distinctive shape similarity information facilitates
an efficient and robust approach to the correspondence problem. The goal is
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to design a representation that mediates between metric sensor data and an
abstract level of object-centered information. By doing so, a solid basis for an
analytical approach to the correspondence problem is formed. In a mathemati-
cal framework of generalized bipartite graph matching, I develop an analytical
solution to the correspondence problem.

Notably, mapping is no self-contained application. Maps are acquired to be
used for navigational tasks. So approaches to mapping must be discussed in
the context of intended navigational tasks. Most approaches to robot mapping
aim at providing the most accurate map given a set of sensor readings, whilst
deliberating about the trade-off between accuracy and computational effort.
My work also looks at navigational tasks which include external, map-based
information.

In an experimental section, the applicability of my approach to real-world
mapping tasks is evaluated. Additionally, exploitation of coarse map informa-
tion in localization tasks is examined.
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Chapter 1

Introduction

Autonomous mobile robots are a highly important field of interest, not only
for science, but also for industry or developers of household appliances. First
consumer products like autonomous lawn mowers or vacuum cleaners are al-
ready available and are likely to mark the beginning of an era of many robot
applications yet to come. Within the near future, our world may be populated
by service robots which could be capable of fulfilling surveillance or rescue tasks
in dangerous environments or which simply assist us in our everyday life. Re-
alizing such applications requires answers to several research topics. Devising
sensible means to handle spatial information is among the most fundamental
research questions to answer, since robots need to interact with space. In ad-
dition to raising research questions, mobile robots also provide a powerful tool
to evaluate theories of spatial information processing under real-world condi-
tions. Many technical challenges in building mobile robots have been mastered
to a degree that reliable robot platforms suitable for indoor environments are
available off-the-shelf. Prototypical realization of an indoor robot application
is no longer in first matter an engineering task, but a challenge to intelligent
information processing. In this sense, my work addresses the research area of
spatial cognition rather than robotics, although dealing with mobile robots in
terms of experimental evaluation. In particular, I investigate questions of spa-
tial representation, reasoning, and mathematical modeling of matching tasks.

Central for any agent acting in the world—may it be a human or a robot
—is the model of the world, i.e. the representation, that the agent employs.
This representation covers universal, environment-independent knowledge such
as geometric principles and specific, environment-dependent knowledge such as
positions of specific objects. Most importantly, this representation serves as the
basis for reasoning about future actions. Its quality and comprehensiveness are
key to planning purposive actions. From all the various modalities of informa-
tion the world displays, spatial information is of special importance: Intelligent
use of spatial knowledge is indispensable to purposive navigation. Navigational
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tasks can be solved only and yet purely in consideration of spatial knowledge.
My work investigates spatial knowledge in the form of representation and rea-
soning techniques for mobile robot navigation, in particular the autonomous
acquisition of spatial information.

1.1 Robot mapping

Intelligent navigational behavior of a robot requires a representation of the sur-
rounding that adequately resembles the spatial properties of the environment.
This representation is termed a map in the literature on robot navigation. The
term map potentially stands for any kind of representation of spatial informa-
tion.

The autonomy of a mobile robot is an integral part of intelligent behavior.
Robots must be enabled to find their way unaided in any environment encoun-
tered, including environments that are a priori unknown. Therefore, robots
must be able to acquire a coherent representation—an overview map—of their
surrounding. This task is referred to as robot mapping.

Typical robots of today employ a wheeled drive and sensors to scan their
surroundings. The drive suits indoor environments and comprises two or more
independently powered wheels that allow the robot to travel on planar ground
and, depending on the type of drive at hand, even to turn on the spot. To
learn about their environment, robots obtain and interpret sensor readings.
The kind of information that can be derived from this depends on the type
of sensor at hand. Among the variety of sensors developed, devices scanning
for obstacles in the robot’s surrounding are most valuable and are commonly
employed. Range sensors such as sonars and laser range finders provide this
functionality by sensing reflections of obstacles; ultrasonic sound or laser light,
respectively, is emitted and the time of flight for the reflection to arrive is
measured. Knowledge about distance to obstacles easily allows for collision-
free motion. Range sensors provide purely spatial information, they capture
relative positions to obstacles and, depending on the sensor’s accuracy and
resolution, size or shape information. Additionally, most robots also employ an
odometer, i.e. a sensor measuring the motion with respect to the ground; these
sensors are said to provide odometry information.

Often, the only source of information regarded in robot mapping is sensor
data obtained from the robot’s own sensors. Yet, there are other ways to learn
about an environment. A robot could communicate about the environment with
fellow agents, may they be humans or robots. In the case of multiple, distributed
robots jointly gathering spatial knowledge about their environment, the task
is referred to as multi-robot mapping. To learn about its surrounding, a robot
could also refer to an external map providing—maybe coarse—overview knowl-
edge. The ability to exploit external maps is one interesting option to learn
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about an environment, since floor plans are widely available, e.g. emergency
escape plans are mandatory in public buildings. These maps could provide
overview knowledge to robots as well as to humans. From a slightly abstracted
point of view, the three variants, single robot mapping, multi-robot mapping,
and single robot reading maps can all be gathered by the term robot mapping.
Communication can be regarded as to provide abstract sensor information and
maps serve as a medium in (single-ended) communication. In the following, I
subsume the different flavors of mapping tasks simply by the term robot map-
ping. The main focus throughout this work will be put on single-robot mapping,
though.

In most situations, the complete environment cannot be perceived at once.
To obtain a complete view on the environment, several observations at differ-
ent perspectives are required. To construct a complete map, the individual
observations need to be combined. Most sensors provide information in an
agent-centered manner, i.e. in a local frame of reference. For example, this is
the case for range sensors. Maps abstract from individual observations and
represent in an absolute frame of reference, i.e. they provide survey knowledge.
To obtain a map, sensor information needs to be collected while the robot trav-
els through the environment and it needs to be transformed to the absolute
frame of reference employed by the map. In other words, integration of local
knowledge to survey knowledge is the central objective of robot mapping. Thus,
robot mapping is a task of data integration.

A key to integrating observations is the ability to correlate them, i.e. to infer
that two observations correspond to the same physical entity. The literature
refers to this correlation as the correspondence problem or as data association,
although usually not the sensor data itself is correlated, but first interpreted into
more abstract information. Therefore, the term correspondence problem seems
more appropriate to me and I will adhere to it in the following. When referring
to the process of solving an instance of the correspondence problem, I use the
term matching—matching establishes a correspondence. Beyond correlation
of individual observations, the correspondence problem addresses correlation
between observation and the robot’s map; in my generalized understanding of
robot mapping, the correspondence problem also covers the task of relating the
robot’s observation to communicated information. The correspondence problem
has substantial impact on robot navigation, in particular on the ability of a
robot to localize itself with respect to its map. Recognizing observed entities
in the map would allow the robot to infer its location by aligning observation
and map. Unfortunately, a sensible solution to the correspondence problem
is among the hardest problems in robot navigation (for example, see Leonard
et al., 2001; Thrun, 2002).

Clearly, a robot’s perceptual capabilities dictate the applicability of specific
approaches to tackling the correspondence problem. For example, the ability
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to unequivocally recognize unique landmarks would render recognition a trivial
task. Sometimes, industrial applications rely on artificial aids to accomplish
this, e.g. by attaching unique tags to objects (for example, see Hihnel et al.,
2004). However, the requirement to carefully prepare an environment would
be a serious threat to achieving popularity of service robots. Service robots
for home use are required to master unprepared and changing environments.
Environmental features that are already present must be exploited here.

Besides identification of correspondences, mapping comprises another task
of integration. Having identified distinct observations that present the same
physical entity, these observations then need to be combined into a single piece
of information, i.e. they are merged; I refer to this task as merging. Observing
a scene from different perspectives and combining corresponding observations
yields the complete map desired. Merging multiple observations of the same
object can improve the representation of the object, as for example measure-
ment noise can be canceled out. Merging reduces the degree of redundant
information introduced by repeatedly observing the same physical entity. As
new sensor data continuously arrives and aggregates, it is essential to eliminate
redundant information in order not to let the map representation grow unlim-
itedly. Merging is a non-trivial task in its own right, inescapable uncertainty in
sensor data (e.g. measurement noise) essentially shaping its difficulty. Multiple
observations of the same entity can differ and resolving these differences can be
ambiguous.

To sum up, robot mapping is a comprehensive task of integration: integra-
tion of local to survey knowledge by discovering correspondences in observations
and merging them into a coherent whole. Before detailing difficulties faced in
this enterprise and drawing motivation of challenges, I interrelate mapping and
self-localization. These are both fundamental tasks for autonomous navigation
and their interrelationship essentially characterizes robot mapping.

1.1.1 Localization, mapping, and the correspondence problem

Besides characterizing robot mapping as comprehensive task of integrating
spatial knowledge, mapping can described by its relation to the task of self-
localization. This is a widely adopted view and it highlights the central role of
the correspondence problem in robot mapping.

Self-localization is the task of answering the question “Where am 17”. Knowl-
edge of one’s location is a prerequisite to intelligent navigation, making self-
localization a fundamental problem in navigation. Any answer to the stated
question “Where am I?7” must employ a reference system of some kind. In
the following, some single global reference system is assumed to ease the de-
scription. Assume a robot capable of observing non-moving objects of some
sort. Observations provide information about positions of objects in an agent-
centered frame of reference, i.e. the robot’s current position and orientation
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(jointly referred to as pose) defines the origin and orientation of this reference
system.

Self-localization can be performed in relation to the robot’s starting pose by
keeping track of the robot’s movements (dead reckoning). This can be performed
by the robot in an indirect manner by observing the relative displacement of
static objects while it is moving. Objects are tracked by correlating successive
observations; this procedure is termed pose tracking. An alternative approach
to self-localization, applicable if a map of the surrounding is available, is to
directly correlate the current observation with the map and to infer the robot’s
pose by congruently aligning local observations and absolute map. In both
approaches outlined, determination of correspondences is the central objective.

By determining the robot’s pose with respect to the absolute reference sys-
tem of the map, self-localization induces a transformation from the local ref-
erence system of the robot to the global one. Positions of observed objects
are transformed, too. This renders mapping a simple task, if self-localization
is provided: observed objects sharing the same position in the global frame of
reference are identical, so mapping can be performed by repeatedly perform-
ing self-localization and registering new objects in the global reference system.
Roughly speaking, mapping is just little more than self-localization.

Analogously, self-localization can also be regarded a side-effect of mapping:
If mapping is provided, the robot can construct an absolute map comprising
all its observations, i.e. any observed object is registered in the map using the
map’s absolute frame of reference. This includes objects currently observed by
the robot, and, considering where the mapping procedure registered them in
the map, the robot can infer its location by reversing this registration.

The question which of these, self-localization or mapping, is the more fun-
damental task, resembles the chicken-and-egg paradox (cf. Thrun, 2002). Their
inherent connection have given rise to the term SLAM, simultaneous localiza-
tion and mapping (Dissanayake et al., 2001), or CML, concurrent mapping and
localization (Leonard et al., 2001), how the robot mapping problem is often
referred to. However, it is possible to break through this interdependency by
focusing on the correspondence problem. In any of the two perspectives, the
role of correlating information is central.

To conclude, the two central navigational objectives self-localization and
mapping are intimately connected. Both tasks depend on a solution to the
correspondence problem. The difficulty to achieve a sensible solution to the
correspondence problem significantly contributes to the difficulty of robot map-
ping. Although researched for many years, robot mapping has raised research
questions yet unanswered. In the following, I elaborate in detail on the dimen-
sions that make robot mapping as challenging as it is.
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1.1.2 Challenges in robot mapping

On a first note, one must acknowledge that mapping has no end in itself,
but that map information is acquired exclusively for the purpose of mastering
other—mainly navigational—tasks. Therefore, mapping needs to be regarded
in the context of the tasks eventually faced. These tasks pose additional de-
mands on the mapping procedure. In the context of mobile robots, navigation
can be regarded as an umbrella term for any task involved with letting the
robot move from one place to another; this includes path-planning, obstacle
avoidance, exploration, etc. Suitable properties for a map need to be deter-
mined that supports all facets of mapping and navigation. Balancing desired
properties and realizing suitable techniques to accomplish them is challenging,
but robot mapping already presents challenges per se.

1. Design of a compact spatial representation

The spatial representation employed for the map builds the basis for all pro-
cesses involved in mapping and navigation, thereby essentially shaping all navi-
gational procedures (including mapping) in terms of efficiency and effectiveness.
Compactness of a representation supports efficient information processing. Re-
garding navigation, path-planning is of special importance. Path-planning aims
to compute the shortest collision-free path between two locations; path-planning
operates directly on the map representation and its efficiency is determined by
the underlying map representation.

A great variety of spatial representations have been suggested for use in
robot navigation. They are extensively reviewed in Chapter 2. Yet alone the
diversity of existing and actively pursued approaches demonstrates that design
and selection of a representation formalism is far from being trivial.

2. Efficiently process large amounts of sensor data, possibly in real-
time

Ideally, robots should be able to cope with environments of arbitrary size and
complexity. When traveling, a robot must continuously observe its surround-
ings to check for obstacles and to localize itself. Thus, new observations are
frequently available and may need to be integrated into the map. This requires
the processing of a large amount of sensor data.

The more objects are registered in the map, the more potential correspon-
dence partners need to be regarded for each object observed. Computational
resources required to solve the correspondence problem depend on the size and
complexity of an environment. To handle large environments, efficient algo-
rithms are required that present good scaling characteristics.

Providing up-to-date map information allows a robot to immediately re-
spond to new information. This is important to exploration, i.e. the navigation
strategy that enables a robot to learn its surrounding. An exploration strategy
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determines places, such that the entire surrounding is covered by observations.
To determine previously unseen parts of the environment, exploration needs to
repeatedly refer to a map comprising all previous observations. This requires
fast execution of the mapping procedure.

3. Cope with changing & dynamic environments

In an environment subject to changes, the appearance of a place may vary. To
recognize that place, potential changes need to be taken into account. This
adds another dimension to the aspects that require consideration in the corre-
spondence problem. The difficulty is to balance between judging an observation
to correspond to a place (by interpreting potential mismatches as change) and
judging the observation to mot correspond to that place, because it appears
differently.

Dynamic environments display continuous changes, for example people mov-
ing by. The robot must account for dynamics of objects when relating to their
position, but deciding which objects are moving and which are static can be
difficult. Mapping in dynamic environments requires to add temporal reasoning
to the time-invariant mapping in static environments.

4. Handle uncertainty

If observed independently, the same physical object may appear differently due
to reasons unknown. For example, an unnoticed alteration of environmental
factors influencing the observation can cause inexplainable differences. These
factors include misalignment of the sensor, accidental change of view point, or
perhaps changes to the object. Even if environmental factors do not vary, any
observation is subject to measurement noise. No measurement can objectively
reflect physical reality. Therefore, any information obtained by sensors must be
considered uncertain.

Unfortunately, uncertainty cannot be engineered away thoroughly, e.g. by
improving on sensors and interpretation techniques, etc. However, the existence
of uncertainty, alone, does not constitute the true problem. If a model for
uncertainty was known, knowledge about this model could be exploited to cancel
out the effects caused by uncertainty. The difficulty lies in designing such a
model and finding computationally tractable means to exploit it. Many authors
(for an overview, see Thrun, 2002) believe in handling uncertainty to be at the
core of challenges in robot mapping; I elaborate on this view in little more detail
in the next section when motivating my approach.

To put in a nutshell, the importance assigned to handling uncertainty is
documented in the multitude of literature on (mainly probabilistic) approaches,
indicating that managing uncertainty is a very hard problem.
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5. Define plausibility of data integration and determine the most
plausible map given the observations available

Many applications rely on a sufficiently detailed, coherent map. Often it cannot
be specified in advance what sufficient detail and coherency exactly means in
terms of a decidable criterion. So, mapping should aim to produce the best
map possible. Unfortunately, potential changes in the environment and uncer-
tainty in sensor data introduce ambiguity when interpreting observations, e.g.
detecting the same object in multiple observations at different positions can be
explained by changes of object location or by distortions of the measurement.
In other words, there exists no canonical interpretation of the computational
goal in robot mapping. However, any approach to mapping must define its
computational aim. I refer to this definition as the model of plausibility in
data integration. Different approaches have been taken to capture plausibil-
ity in a computational model. For instance, an interpretation in the style of
Occam’s Razor has been suggested to determine the minimal map consistent
with the observations made (cf. Remolina & Kuipers, 2004). Plausibility has
also been addressed in terms of probability theory; the most plausible map in
dependence of observation has been described as the most probable map under
side conditions of the observations made (cf. Smith et al., 1990). I explicitly
address the definition of plausibility as a challenge. Computational modeling
of what constitutes plausibility is the very point at which spatial understand-
ing of the world gets introduced. We, the ones engaged in the robot mapping
endeavor, model what appears to be a sensitive map and what appears not
to be one. Plausibility of data integration is addressed in more detail in my
review of state-of-the-art approaches to robot mapping and I explicitly discuss
my interpretation for the approach suggested in this work.

6. Support communication about the environment

In many robot applications (e.g. service robots), robots are no self-enclosed sys-
tems that operate purely autonomously. To become useful, they need to interact
with their fellow inhabitants. Human instructors must be enabled to adequately
interact with the robot. Even though it may be a desirable long-term goal to
set up communication of humans with robots in natural language, this is a
research topic in its own right, going well beyond pure natural language under-
standing. Communication by means of maps provides an alternative that may
be realizable with less effort. External maps like floor plans could be employed
to instruct a robot, e.g. by indicating a location on the map. Furthermore,
a robot could refer to an external map to learn about an environment. To
make use of an external map, the robot needs to relate the map to its internal
representation. Maps commonly employed for providing overview knowledge
present information on a comparatively coarse level of granularity and abstract
from small obstacles. To make use of such maps, techniques are required to
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interrelate spatial information across different levels of granularity. In general,
enabling robots to communicate about their environment is a very tough prob-
lem. For example, multi-robot mapping is considered an open research issue
(cf. Thrun, 2002), although it only handles the restricted case of communicating
(homogenous) robots. This flavor should be particularly easy, since communi-
cation partners can be designed to utilize the same computational models and
the same sensors.

To sum up, challenges in robot mapping can be inherent to the task itself
such as design of an adequate spatial representation and efficient techniques
for integration of new information. Handling environments that change over
time adds another dimension of aspects to take into account in the mapping
procedure—in the presence uncertainty, ambiguities may arise. This makes
it essential to devise a sensible model of plausibility in data integration and
to determine appropriate means to compute the most plausible map. In the
following, I elaborate in little more detail on models of plausible data integration
and give an example of the facets fostered in my dissertation.

1.2 The spatial cognition perspective—motivation

Robot mapping is a complex problem, with many aspects contributing to its
difficulty. Depending on which aspects are focused upon, different perspectives
on robot mapping present themselves. In the following, I develop the view taken
in my dissertation and illustrate key questions that are central to my work.
First, I examine the most popular perspective taken on robot mapping; it is
to focus on handling uncertain information. One can argue that uncertainty in
sensor data is the source of difficulties faced in robot mapping. If all information
available was certain, it could be interpreted in a straight-forward manner. If
further this information was sufficiently detailed and extensive, mapping could
be easily realized. Assume the robot’s initial pose was known and assume the
robot had the ability to exactly sense its movement. Then, the robot could easily
infer its location or, put differently, it could easily perform self-localization. As
discussed, mapping is no longer difficult, given that self-localization is provided.
In typical robots, odometry information is available to learn about the robot’s
movements. Odometry information is widely derived from shaft encoders that
count the revolutions of the wheels. As these are real sensors, they suffer
from distortions, for example caused by slipping wheels. Uninterpreted use of
sensor information is not possible, since errors accumulate and have a gradually
increasing prejorative effect on the mapping process. To make direct use of this
information, techniques need to be devised that shift the information to a level
of sufficient detail and reliability. As of today, statistical approaches dominate
this task. Statistical methods are employed to model, to “explain”, and to
correct for sensor data—I present these techniques in more detail in Section
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3.1.1. Put differently, aiming to engineer away uncertainty in sensor information
would allow conquering robot mapping in a straight-forward manner, given
that sufficiently detailed and extensive sensor information is available. In the
context of reviewing robot mapping, I discuss this perspective in more detail
(see Chapter 3).

An alternative perspective to robot mapping presents itself when focusing
on the problems of spatial information processing faced in robot mapping. I
argue that determining sophisticated techniques to process spatial information
is also beneficial to mastering uncertainty. Returning to the aforementioned ex-
ample of odometry sensors, I pose the following contemplation: suppose, robot
mapping can be performed without the use of odometry information at all.
In this case, no techniques are required to correct for sensor readings obtained
from odometry sensors in the first place, saving computational effort. Failure of
odometry sensors cannot disturb the mapping process. Furthermore, if odom-
etry information is available it can be exploited in terms of an independent
source of information that could also be used to check the mapping process.
Suppose further, one can abstract from details in the robot’s observation that
are likely subject to measurement errors. The ability to abstract from such
details adds to the robustness of mapping. As Freksa (2004) notes, uncertainty
in spatio-temporal domains is almost always a function of a spatio-temporal
vicinity. Thus, a suitable spatial abstraction can overcome uncertainty in spa-
tial domains. Generally speaking, relaxing the requirements on the sensor data
by abstracting from metric details yields an approach that is robust to uncer-
tainty in the sensor information. Sensible spatial reasoning attacks the core of
uncertainty, whereas stochastic frameworks address the effects of uninterpreted
use of uncertain information.

The two outlined perspectives are not conflicting, though. Advances in
handling of uncertain information and advances in sensible processing of spatial
information are beneficial to each other. Allowing to relax the requirements on
sensor data requires less sophisticated (and computationally expensive) means
to correct for it. Analogously, improving means to correct for sensor data
provides more reliable information to the processing of spatial information.

In this dissertation I argue that sensor information available from widely
employed laser range finders is very rich information that allows reliable robot
navigation solely employing this source of information. Abstracting from raw
sensor information to a level of shape information provides a solid basis to devise
techniques for robot mapping that are per se robust to uncertain information.
I will illustrate this in the following example.

In this example, I consider a robot equipped with a laser range finder—an
illustration of such a robot is presented in Fig. 1.1 (a). Laser range finders
provide today’s richest range information by densely scanning the surrounding
using time-of-flight measurements of a laser beam. In the case of the SICK
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(a) | (v)

Figure 1.1: (a) Mobile robot sensing the environment. (b) Sensor information
from the laser range finder, the cross demarks the robot’s position.

LMS-200 laser range finder mounted to the robot presented in Fig. 1.1 (a), the
sensor provides a field of view of 180° and is capable of sensing objects as far
as 80 meters away with an error of +15mm according to the technical data
sheet. The sensor combines 361 individual range measurements to sense the
180° field of view. An exemplary sensor reading is depicted in Fig. 1.1 (b);
it presents the view of the robot depicted in Fig. 1.1 (a). In an experimental
setup, a robot is positioned in a hall at four different poses and sensor readings
are obtained. In Fig. 1.3 (a) the robot is depicted in this environment, Fig.
1.2 (a) — (d) presents the four range scans obtained in the local perspective of
the robot. In robot mapping, the task is to assemble individual observations
to a coherent whole. As the reader may verify, humans are easily able to
solve the task of congruently assembling the four range scans; the solution
obtained by overlaying the four images is depicted in Fig. 1.3 (b). Note that
humans may not have a detailed knowledge about the sensor, nor does he or
she require any additional information, e.g. the relative position of the four
view poses. Naturally, the question arises: what makes it possible to solve
this task? In this example, one factor may be seen in identifying the salient
object in the center of each of the range scans'. Recognizing this object provides
sufficient information to congruently assemble the scans. Based on the identified
correspondence, the scans can be easily aligned and the solution depicted in Fig.
1.3 (b) is obtained. This suggests that the sensor information is abstracted to
an appropriate level that allows the identification of individual objects which
can robustly be recognized.

In this dissertation, I tackle the question of which techniques of representing

!Grouping is required to identify an object based on individual range measurements that
provide distinct points on the object boundary. In the context of human vision, these aspects
are addressed by research on the so-called Gestalt laws (Wertheimer, 1925). However, in this
example I abstract from the actual grouping
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Figure 1.2: (a) — (d) Sensor readings of a laser range finder in a local coordi-
nate system. The robot’s view position is indicated by crosshairs, grids denote
distances of 1 meter. The salient arc-shaped object in the middle of each of the
scan makes it easy for humans to congruently assemble the scans.
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Figure 1.3: (a) Image of the robot in the test environment (b) The laser scans
depicted in Fig. 1.2 are manually assembled to an overview map.

and of reasoning about spatial information provide such functionality, and of
how this can be realized in robot mapping. To accomplish this, I aim at bringing
together techniques originating in the fields of robotics, spatial cognition, and
shape analysis as considered in visual object recognition. I argue that shape
analysis provides a solid basis to tackle the outlined recognition task.

1.3 Shape analysis for robot mapping

Shape information, its representation, and, most importantly, recognition pro-
cesses are of high importance to the field of computer vision, especially to
object recognition. Shape is often considered the most important property of
an object visually perceivable (for example, refer to Palmer (1999, p. 363)).
Recognizing the shape of an object is often sufficient to recognize the object
itself, as shape offers characteristic information. Shape information is rich and
contributes more to recognition of objects than other object properties like color
or texture. It is regarded to be the most relevant aspect to consider in object
recognition and has been studied intensively.

Besides the great expressiveness of shape information, there are more as-
pects that contribute to the relevance of shape. First of all, shape information
can be considered on various levels of abstraction. An illustration for this, fol-
lowing an example stated by Siddiqi et al. (1999b), is the ability to recognize
a dog by briefly seeing its silhouette passing by. We may not have recognized
the dog’s specific breed on a glimpse, though.

To accomplish recognition across different levels in granularity, methods
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for changing that level have been developed, for example by means of shape
simplification. Simplification can also allow for representing shape information
in a compact manner by abstracting from irrelevant details.

Recognition processes examine shape similarity by means of a shape distance
measure, a function which, given two shapes, determines a non-negative shape
difference value. For example, shape distance measures allow for “retrieval by
example” database queries (see Gottfried, 2005; Latecki & Lakadmper, 2006a).
Robustness and distinctiveness in recognition by means of shape similarity has
been achieved to a comparative high level and is, for example, documented in
the studies on MPEG-7 shape descriptors (Bober et al., 1999; Latecki et al.,
2000b). Availability of sophisticated shape distance measures significantly con-
tributes to the importance of shape information in object recognition. The key
role of shape distance measures suggests a typical interpretation of a shape rep-
resentation to comprehend the actual representation technique and the shape
distance measure; this resembles the understanding of abstract data types in
informatics where data representation and functions operating on the represen-
tation are coupled analogously.

In view of robot mapping, shape information offers an interesting perspec-
tive: shape information represents spatial information in the context of a com-
plete object, it provides rich information and links to sophisticated recognition
techniques originating in the research field of object recognition. These tech-
niques could contribute to improving techniques addressing the correspondence
problem in robot mapping. Representing a robot’s internal map based on shape
information, shape retrieval techniques may be applied to recognize places reg-
istered in the map. The ability to handle shapes on various levels of granularity
gives rise to the expectation that sources of pictorial information such as exter-
nal overview maps can also be integrated in the robot mapping or localization
task.

The interrelation of robot mapping and object recognition, and shape rep-
resentation in particular, has not been investigated deeply yet, though the link
between the fields of robot mapping and computer vision is stated in the lit-
erature; Thrun (2002) claimed the connection between the two fields to be
underexploited. One reason for this deficient exploitation may be the great
advances in statistical frameworks for robot mapping that can even make up
for shortcomings of the underlying spatial representation to a certain degree;
much work conducted in robot mapping aims at improving statistical frame-
works. In contrast, my work presents a different, somewhat cognitively moti-
vated approach by focussing on the recognition of environmental features and
their spatial configuration; I explicitly aim at bringing the research fields of
robotics, spatial cognition, and objective recognition together to jointly attack
the robot mapping problem.
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1.4 Research question & thesis

My work approaches the challenges characterizing the robot mapping prob-
lem by developing techniques for spatial information processing. My research
questions are as follows:

e What is an adequate map representation for robot mapping?

e How can a solution to the correspondence problem robustly yet efficiently
be determined?

e Which properties allow a map representation to be related to (potentially
coarse) external maps?

My aim is to develop a suitable spatial representation for robot maps that
facilitates a robust solution to the correspondence problem. I pursue the de-
velopment of an approach to the correspondence problem that is efficient and
robust against uncertainty inherent to sensor information. My central thesis is:
shape analysis provides a solid basis to accomplish this aim. Shape information
provides means to mediate between metric sensor data and a more abstract
object-centered representation.

To tackle the correspondence problem, I pursue to combine reasoning on
the metric level (shape similarity) and on the object-centered level (qualitative
reasoning about configuration of objects). My thesis is: improving on spa-
tial representation and reasoning is a valuable contribution to robot mapping.
First, by improving general robustness of matching techniques addressing the
correspondence problem, less demanding means of tackling remaining uncer-
tainty are required, as less alternative interpretations appear plausible from the
suitably abstract point a shape-based map representation offers. Second, by
relaxing the requirements for obtaining a sensible solution to the correspon-
dence problem, the capabilities of mapping are advanced towards utilization of
external, maybe coarse, map information or towards multi-robot mapping.

My work has been motivated by the assumption that there exists an un-
derexploited interrelation between processing small-scale spatial information in
vision applications and medium-scale spatial information in robot mapping.
Additional motivation has been drawn from the observation that spatial rea-
soning available for object-centered representations could be exploited in ap-
proaches to the correspondence problem. These techniques enable adequate
and yet computationally tractable modeling of plausible data integration in the
mapping process. To substantiate the thesis:

1. A connection exists between mapping using range information and visual
object recognition on the level of shape information.

2. A spatial representation based on shape information is well-suited to robot
mapping and navigation and it allows utilizing external maps.
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3. Sophisticated shape analysis originating from the field of computer vision
can be transferred to the robot mapping domain.

4. An analytical, efficient, and robust approach to the correspondence prob-
lem can be designed on the basis of spatial reasoning and shape analysis.

5. Sophisticated matching strategies substantially attack the correspondence
problem and allow for robust self-localization in context of relaxed require-
ments on input data. In particular, the absence of odometry information
can be mastered.

1.5 Contribution of this dissertation

My dissertation contributes to current research questions in the field of spa-
tial information processing as follows. I demonstrate that there exists a close
connection of robotics, computer vision, and spatial cognition; all disciplines
contribute to mastering robot mapping. In particular, visual object recognition
is shown to be tightly linked to spatial information processing in robot mapping,
allowing advances to be shared. I demonstrate that shape information, bridg-
ing the gap between low-level metric information and abstract object-centered
knowledge, provides a solid basis to robot mapping. I adopt shape analysis
techniques, tailor them to the robot mapping domain, and develop a new shape
distance measure that is particularly suited to recognize polylines lacking of
rich shape information in the presence of uncertainty. The advances achieved
in the context of robot mapping are also beneficial to visual object recognition.

I introduce an efficient approach to correspondence problem that regards
n-to-m-correspondences of objects. A graph-theoretic formulation is presented
and a polynomial-time matching algorithm is derived. This technique is a well-
suited theoretical foundation for tackling the correspondence problem. Besides
application in robot mapping, the matching technique is a contribution to gen-
eral matching tasks.

With respect to robot mapping, the developed matching technique provides
means to base the map representation on extended geometric primitives, and
to autonomously construct such map representation. Such object-centered rep-
resentations are compact and appear to be a necessary foundation for abstract
reasoning processes. On the basis of universal shape features, an incremen-
tal approach to robot mapping is developed. The developed spatial reasoning
techniques are robust and capable of abstaining from odometry information in
localization and mapping. The shape-based representation is capable of medi-
ating between fine-grained sensor information and coarser information, such as
represented in external maps commonly employed by humans. The developed
techniques are a step towards more intelligent robots, which are able to commu-
nicate with humans or fellow robots, using a map as medium in communication.
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1.6 Application scenario

To address my research questions, I regard typical wheeled robots equipped
with a single laser range finder. Detailed knowledge about specific physical
characteristics of the robot is not presumed, e.g. knowledge about motion char-
acteristics such as accuracy of performed motion commands or reliability of
odometry. The mapping procedure shall not require availability of odometry
information, let alone assume a specific quality thereof.

The robot is assumed to sense its surrounding in a plane parallel to the
ground using the laser range finder; the mapping process aims to acquire this
two-dimensional perspective. No precise knowledge on the characteristics of the
range sensor shall be required. In this work I assume a detailed range image to
be available, abstracting from technical means to obtain it (e.g. choice of sen-
sor, preprocessing of sensor data). In principle, other means than laser range
measurements could be employed to obtain a detailed range image. Misalign-
ment of the scanning device (for example caused by rough underground) is not
explicitly addressed, but regarded in terms of general robustness. Generally,
a robot with a statically mounted laser range finder meets these conditions if
it operates in an environment with a planar ground surface. My work regards
indoor environments to easily obtain suitable range images.

Different indoor environments are considered to foster a broad range of po-
tential applications; preparation of the environment (e.g. by installing beacons)
is not considered. Changing environments are considered in terms of robustness
in recognition. The mapping procedure shall identify a local surrounding also
if it is subject to moderate changes. Dynamic environments are not addressed.
No specially tailored strategy for exploration or navigation shall be required for
a robot to utilize the developed representation and reasoning techniques.

1.7 Research methodology

This work focuses on techniques to represent and reason about spatial infor-
mation. In particular, literature from the research fields of robotics, shape
analysis, object recognition, and qualitative spatial reasoning is investigated.
My research proceeds on a theoretical level, on a computational modeling level,
and on an experimental level.

On the theoretical level, a mathematical approach to the correspondence
problem is formulated, using the techniques of graph-theory. I investigate
graph-theoretic matching problems and adapt Dynamic Programming tech-
niques connected to the field of operations research.

On the computational modeling level, I develop techniques for shape anal-
ysis. Besides their application to robot mapping, these techniques are strongly
connected to the field of visual object recognition.
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On the experimental level, I evaluate shape-based mapping. Using real as
well as simulated sensor data, I examine my approach to robot mapping and
relate it to other approaches developed in the field of robotics.

1.8 Structure of this dissertation

My dissertation is structured as follows: the second chapter is dedicated to a re-
view of relevant approaches to representing spatial information in robot maps.
I propose a classification for map representations and interrelate approaches
from the field of robotics and shape representation. Approaches to represent-
ing spatial information are examined as regards their potential contribution
to achieving my research aim. Finally, I select an appropriate representation.
Clearly, the utility of a representation is determined in context of the processes
that operate on it. In context of Chapter 2, I consider navigation and mapping
processes on an abstract level.

In Chapter 3, mapping processes operating on the map representation are
reviewed in detail. I approach robot mapping from an algorithmic perspective
and investigate into the manifold techniques suggested for map construction.
Means to tackle uncertainty and to process spatial information are analyzed. To
structure robot mapping, I propose a decomposition into functional components
which can be examined individually. Techniques for the interpretation of sensor
information, for tackling the correspondence problem, for localization, for map
update, and mapping architectures are discussed.

In Chapter 4, I elaborate on a mathematical foundation of matching to
seize matching techniques theoretically. I devise a mathematical framework to
approach the correspondence problem that suits the demands concluded from
the reviews in Chapters 2 and 3. I formulate my approach to the correspon-
dence problem in a framework of graph-theoretic matching problems. Finally,
I propose an algorithm to solve such problems in the context of Dynamic Pro-
gramming techniques and prove its correctness.

In Chapter 5, the computational modeling of my approach to robot mapping
is presented. First, I specify the aim in computational terms, i.e. I present
my interpretation of a plausible data integration. Then, the components of
the computational model and their interrelationship are presented. Finally,
components are presented in detail. I describe extraction of shape information
from laser range scans, detail matching of observation and map on basis of the
theoretical framework developed in Chapter 4, alignment of observation and
map, and merging of corresponding shape information.

Chapter 6 is dedicated to an experimental evaluation of my approach. I eval-
uate the computational model in localization and mapping experiments. Exam-
ining self-localization, I investigate the capability of the developed techniques
by comparing results obtained by my approach to state-of-the-art techniques
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employed in self-localization. In one experiment, the capability of utilizing ex-
ternal map information is investigated. In mapping experiments, I evaluate my
approach using simulated and real-world sensor data.

My thesis concludes by summarizing the results with respect to the research
questions and by giving an outlook. I present research questions raised through
this work and discuss relevant research questions that benefit from the results

achieved in this work.






35

Chapter 2

Spatial representations for
mapping

This Chapter provides an overview of the multitude of spatial representations
suggested for application in robot mapping. The goal is to outline a representa-
tion technique well-suited to my research goal. To accomplish this, a scheme for
analyzing spatial representations in robot mapping is introduced which aims at
deriving characteristic properties for classes of representations. Three aspects
of a map representation are individually examined:

e Feature representation
e Configuration representation
e Map organization

On the level of feature representation, I discuss the selection of environ-
mental features that can be registered in the map. On this level, a link to
shape representation is established. After reviewing the robotics literature, I
turn to shape representations employed in visual object recognition and discuss
parallels in order to obtain an integrated view. With respect to the mapping
task, I elaborate on the potential merits or implied complications of individual
approaches to feature representation.

Configurations define the spatial relationship of features in the map. I out-
line which information is relevant to the mapping task and how it can adequately
be represented.

Map organization finally specifies how representation techniques for feature
and configuration knowledge can be composed to constitute the map represen-
tation. Possible combinations range from uniform coordinate-based configu-
rations of landmarks to maps incorporating hierarchically organized, distinct
layers of feature and configuration representations; implications on mapping
and navigation processes are detailed.
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To evaluate the approaches, I consider my research questions as regards de-
sign of the underlying spatial representation: Which representation is adequate
for the mapping task and assists the involved reasoning? Which representa-
tion supports reasoning for intelligent navigation? Which properties of spatial
representations support solving the correspondence problem robustly and effi-
ciently? Which representations can be related to external map information? In
the context of the three individual aspects, I will develop precise criteria.

2.1 Feature representation

Sensor data is interpreted in terms of environmental features. Features can
range from hardly interpreted sensor patterns to complex objects that require
sophisticated interpretation techniques for detection. To start with, a first
distinction of map features is to differentiate between spatial properties (e.g.
position, size, shape) and non-spatial properties (e.g. color, object category).
My dissertation aims at advancing spatial representation and reasoning for map
acquisition and therefore my review is restricted to spatial features. I concen-
trate on features suitable to describe unprepared environments that can be
perceived by robots as well as by humans. Indeed, recognition processes could
also benefit from exploitation of non-spatial properties that complement spatial
information, e.g. regarding color to disambiguate objects. However, intelligent
processing of spatial information is one fundamental and indispensable ingredi-
ent to successful self-localization, mapping, and navigation.

Several factors need to be regarded for feature selection. By exploring these
factors, the adequacy of a specific approach to map feature representation can
be evaluated with respect to my research aim. In detail, I examine the following
questions:

e How many map features are required to model an environment?
e Are individual features distinguishable?

e Is the feature representation universal, i.e. are the features detectable in
any potential working environment?

e How is partial visibility (occlusion) handled and what are the effects of
view-point variations to feature appearance?

e Can the features also be extracted from external maps?

e (Can the features be related to knowledge on differing levels of granularity?

By considering the effects implied by specific answers to these questions,
desired properties for map features can be derived. Unfortunately, some desired
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properties can be conflicting. Therefore, advantages and disadvantages need to
be carefully balanced.

Particularly a small amount of features and distinctiveness of features ease
mastering the correspondence problem. Decreasing the number of features in-
volved, decreases the search space of potential correspondences. This can be
achieved by favoring a representation using few features over a representation
using many features. However, reducing the number of features in a map also
increases the adverse effect a single erroneously matched feature can cause.

Distinctive features allow correspondence search to restrict consideration
to—typically few—similar features. Therefore, complex features that comprise
rich attributes support a robust and efficient solution to the correspondence
problem. Optimally, unequivocal feature recognition would allow for a straight-
forward assignment of corresponding features. Engineering away feature ambi-
guity is prominent amongst industrial applications, but relies on installation of
artificial unambiguous features in form of tags in the environment (for example,
see Djugash et al., 2005; Hahnel et al., 2004; Rafflin & Fournier, 1996).

By employing a universal feature representation, any environment can ad-
equately be modeled. This ensures a wide range of applications. However,
less universal but more specific features can be valuable, too. Features tailored
to specific environments provide means to compactly represent these environ-
ments by grouping comprehensive observations to compact feature representa-
tions. Examples include ellipses in range images to model profiles of trees in
parks (Forsman & Halme, 2004) or lines to represent straight walls in indoor
office scenarios (e.g. Rofer, 2002). In both cases, points detected by a laser
range finder (LRF) are grouped to few geometric primitives, allowing disregard
for the comparatively large amount of points detected initially. Specific fea-
ture representations provide a compact approach for specific environments, but
their application is limited to environments that present the specific features
considered. So, universality vs. specificity of geometric primitives needs to be
considered in the context of domain restrictions and compactness of the feature
representation.

In any observation, parts of the environment are occluded; objects may
appear differently depending on the view point. Therefore, it is important
to regard partial occlusion and different appearances of features. This can
be achieved by means of a representation that retains capability of feature
recognition under varying conditions of observation.

With regards to integration of externally supplied map information that
provides information on a different level of granularity than employed by the
robot, granularity-invariant or granularity-adaptive feature representations are
helpful for interrelating information.

To conclude, the criteria for feature selection can be competing and require
careful balancing. In the following, I discuss specific approaches in detail. From
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the in-depth examination, I derive an adequately balanced approach.

2.1.1 Raw sensor patterns

Approaches memorizing sensor patterns are often biologically inspired (e.g.
Bachelder & Waxman, 1994; Franz et al., 1998; Mallot et al., 1995), since there
exists some evidence that animals memorize specific views (Cheng, 1986; Her-
mer, 1997; Margules & Gallistel, 1988; Scholkopf & Mallot, 1995) on the envi-
ronment. In robot implementations, sensor patterns are transformed to views
with hardly any interpretation. Approaches constructing a map by registering
views have been termed view-based approaches! or are referred to as approaches
constructing robot-centric maps (Thrun, 2002, p. 2).

In view-based approaches, sensor snapshots are stored for different discrete
locations of the robot; a new location is encountered whenever the current view
differs from the view obtained at the previous location by more than a fixed
threshold with respect to some difference measure for views. For example, Franz
et al. (1998) handle linear panoramic images acquired by a camera. Vector
distance of a greyscale image vector serves as difference measure. Similarly,
Matsumoto et al. (1999) memorize images from an omnidirectional camera.

2.1.2 Landmarks

In general context, landmarks are salient objects in space that are easy to
identify. They can be represented by their position and, optionally, landmark
signatures. Human navigation typically utilizes landmarks as environmental
features for localization, particular with respect to route directions (see e.g.
Denis, 1997). Humans employ a rich repertoire of landmarks, e.g. “the hardware
store”, “the lighthouse”, etc.

In robotics, different kinds of landmarks have been employed. Forsman et
al. proposed a tree detection that has been tailored to a park scenario (Forsman,
2001a,b; Forsman & Halme, 2004). Corners in an indoor environment have been
suggested as landmarks and detection based on range data has been developed
(Altermatt et al., 2004); Jefferies et al. (2004b) utilize salient object corners
and regions of relatively constant color and texture as landmarks and present
techniques to extract these landmarks from stereo vision.

In computer vision, approaches to 3D object recognition that utilize collections of 2D
views are also referred to as view-based approaches (Koenderink & van Doorn, 1979); similarly,
approaches to object recognition utilizing separate views—for example, as obtained by wavelet
transforms (e.g. Shokoufandeh et al., 1999)—are also regarded as view-based. This is an
analogy to the interpretation of “view-based” in robotics where separate views on the same
environment are jointly, yet independently represented.
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2.1.3 Knowledge about navigability of space

Knowing which part of the environment is navigable is a key point in path plan-
ning. Consequently, many approaches represent knowledge about navigability
of space, e.g. by representing the boundary of navigable space or by geometric
features derived from it. Information about navigable space can also be ob-
tained from maps that are used by humans. Floor plans, for instance, depict
walls and outlines of rooms which restrict movements. Sensors like laser range
finders or sonars measure the boundary of navigable space by sensing for ob-
stacles. Thus, range sensors make information accessible that is required for
navigation. In principle, information about navigability of space can also be de-
rived from other sensors, e.g. vision. However, extracting this information from
vision is a demanding and not yet fully understood problem. In the following,
I will detail approaches for representing knowledge about navigable space in
greater detail.

Cell occupancy

In cell occupancy representations, space is decomposed into discrete cells. For
each of the cells, a degree of occupancy is represented. Thus, occupancy values
constitute the map features. The gradual approach to represent occupancy
responds to an property of cell decomposition—cells can be partially occupied;
this is reflected in the degree of occupancy. Alternatively, occupancy values
can be interpreted in a probabilistic manner: they are regarded to represent
the probability that the cell is occupied by an obstacle (Hahnel et al., 2002;
Thrun, 2002), or the probability distribution for gradual occupancy (Stachniss
& Burgard, 2003a,b,c).

Usually, the spatial domain is partitioned into square-shaped cells of fixed
size (e.g. 10cm x 10cm). The obtained map representation is an array of oc-
cupancy values, the so-called occupancy grid (Elfes, 1989; Moravec & Elfes,
1985).

Occupancy grids are a particularly popular representation when using range
sensors (for example, see Baker et al., 2004; Fox et al., 1999; Thrun et al.,
2000a). To interpret a single sensor reading in terms of an occupancy grid, cells
are marked unoccupied, if they correspond to a distance smaller than the range
measurement; cells indicated by the measurement are marked occupied. If cell
occupancy is interpreted in terms of probability and potential sensor noise is
taken into account, a non-zero probability of occupancy is assigned to cells in
the surrounding of the cell indicated by the measurement (Thrun et al., 2005).

Boundary of navigable space

Points measured by a range finder coincide with the boundary of navigable
space. To represent this boundary and to capture a wider context than single
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points, measured points can be grouped to geometric primitives. This allows
abstraction from the raw measurements and reduces the amount of data to be
handled.

In indoor environments, in particular in office-like environments, navigable
space is often limited by obstacles that present a straight outline, e.g. a wall.
For such environments grouping into line segments is especially popular (see for
example Cox, 1990; Forsberg et al., 1995; Gutmann, 2000; Lu & Milios, 1997;
Pfister et al., 2003; Rofer, 2002).

Besides representing the boundary of navigable space by individual line
segments, polygonal lines (shortly: polylines) have been suggested. Utilizing
polylines to constitute a geometrical model of the world is by no means new, but
dates back to work such as (Chatila & Laumond, 1985; Laumond, 1983). How-
ever, these approaches address an application where the world model is known
in advance and can be modeled manually. More recently, Veeck & Burgard
(2004) and Latecki & Lakadmper (2006b) proposed algorithms to autonomously
extract polygonal line models from a map defined by a set of points. The input
maps considered in their approaches can be obtained by accurately aligning
range scans. Gonzdlez-Bafios et al. fit polygonal lines to grouped clusters of
range finder data to model regions in an exploration strategy (Gonzélez-Banos
& Latombe, 2001; Gonzélez-Banos et al., 1999). However, the mapping task
itself is not addressed here.

Similarly to modeling the boundary of navigable space by means of poly-
lines, Austin & McCarragher (2001) suggest a fixed set of universal geometric
primitives to model constraints that obstacles pose upon the robot’s movement.
In their work, the robot is assumed to be capable of following obstacle bound-
aries in constant distance, and of localizing itself in a global coordinate system
with a bound error. The geometric primitives are identified by observing the
trajectory of the robot traveling along the obstacles. Mapping is considered
only with respect to detection and registration of geometric primitives, since
localization is assumed to be provided.

Traversable routes

Representations focusing on routes in the environment are often referred to
as roadmap approaches (cf. Choset et al., 2000, 2005; Wallgriin, 2005) or as
topological maps. To computationally characterize routes, typically a variant
of the Generalized Voronoi Diagram (GVD) (Lee & Drysdale, 1981) is utilized.
The GVD represents the medial axis of free space (“skeleton”), the set of all
points equally and maximally apart from the nearest obstacles. Each point of
the GVD is the center of a circle inscribed in free space that touches at least
two points of the obstacle outline (see Fig. 2.1 for illustration). A graph, the
so-called Generalized Voronoi Graph (GVG), is then derived from the GVD;
meet points and end points of the GVD constitute the nodes in the GVG. Nodes
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belonging to a GVG are identified by their degree. Roughly speaking, the degree
corresponds to the number of different Voronoi paths emanating from a given
point on the GVD.

GVGs offer abstract and compact means for representation (Thrun, 1998).
Furthermore, routes that follow the GVD are maximally safe as they maintain
maximum distance to obstacles. Approaches representing route information are
especially popular for indoor office scenarios which provide a clear structure of
routes (see e.g. Werner et al., 2000).

2.1.4 Discussion

For reviewing the variety of map features, I distinguished three main categories
of map information: sensor patterns in robot-centric observations, landmarks,
and the representation of knowledge about navigable space. In the following, I
discuss characteristic properties of these categories.

Raw sensor patterns

Memorization of raw sensor patterns is possible in any environment; thus, view-
based approaches to feature representation provide a universal approach. More-
over, maps can be built in a straightforward manner by memorizing views and
interrelating them with, e.g. robot commands taking the robot from one place
to another (Matsumoto et al., 1999) or directional knowledge (Franz et al.,
1998). However, there are severe limitations which Thrun (2002) regards as
the reasons why today’s dominant approaches utilize different map representa-
tions. The main deficit of view-based approaches is that memorized views lack
of a spatial interpretation, but are atomic representations. This has the effect
that it not possible to extrapolate the appearance of a view obtained from one
place to views at places nearby. Therefore, the robot might not be able to
detect crossing a previously traversed route. This inhibits, for example, path-
planning beyond previously taken routes as required for planning short cuts.
Similarly, if two robots observe the same local surrounding from nearby posi-
tions, they might not be able to relate their observations. This makes it hard
to relate robot-centric maps to external information supplied by fellow robots
or external maps. Lacking knowledge of local spatial properties can hinder the
recognition in environments that are affected by changes: changes locally alter
the appearance which can cause undeterminable effects to a view that is in-
terpreted atomically. Localization on the basis of views requires congruency of
views in order to identify a specific view associated with a specific pose. Alto-
gether, the lack of spatial interpretation complicates or even thoroughly hinders
interrelating views taken under different observation conditions or by different
robots. Furthermore, uninterpreted views are inextricably linked to the robot’s
perceptual apparatus and do not allow for integration of external information
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on a potentially different level of granularity.

To conclude, robot-centric maps provide no adequate means to tackle my
research questions. In particular, they neither allow a robot to relate its internal
map to external information, nor do they enable intelligent navigation.

Landmarks

Information about landmarks is important to human navigation (Denis, 1997)
and could also provide a basis for robot maps. Robots utilizing similar kinds
of landmarks as employed by humans would certainly ease the interaction be-
tween robots and humans. To accomplish this interaction, a rich repertoire of
landmark types is required. Techniques to identify the variety of landmarks
used in route directions in human communication are yet unknown. I regard
the gap between today’s capabilities of landmark detection and the sophisti-
cated techniques required to allow for interaction with humans as yet too wide
to bridge.

In general, landmark representations expose the difficulty of determining
a universally applicable and robustly detectable set of landmark types. To
obtain a universal approach, a set of landmark types needs to be identified such
that landmarks can be observed in any environment. Furthermore, navigation
planning by pure consideration of landmarks is not possible, but any landmark-
based representation would need to be complemented by a representation of
knowledge about navigable space.

To put it in a nutshell, the utilization of landmarks is promising to support
human-robot interaction, as it accords to human cognition, but unfortunately
landmark detection depends on sophisticated object recognition beyond reach.
Since landmarks alone provide no means to represent information required for
navigation, I argue for a representation of navigable space.

Navigable space

Of the approaches representing knowledge about navigable space, GVGs present
the most compact representation, as only distinct routes through an environ-
ment are represented. This makes roadmaps in general a popular basis for path
planning, providing a straight-forward interface of continuous path-planning
and discrete, efficient graph search. Roadmaps have been intensively studied
in this regard (for an overview, see Latombe, 1991). Unfortunately, the graph
structure of GVGs is susceptible to noise in input data, especially if the environ-
ment contains open places rather than a clear structure of routes; the problem of
robust map acquisition on the basis of GVGs has not yet been solved—mainly,
since sophisticated recognition techniques to correlate differing roadmaps are
required (see also Section 2.2.3). It is not yet understood how to address ro-
bust recognition in context of changing environments (e.g. closing of a door).
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Figure 2.1: (a) Exemplary indoor environment and its corresponding GVD. (b)
The resulting GVD after applying a change to the environment. Figures are
taken from Wallgriin (2002).

FEmerging of new objects or the disappearance of objects can result in signifi-
cant differences in the GVG. For example, if a freestanding obstacle is located
in a room, the GVD contains distinct routes passing by the obstacle, one at
each side (see Fig. 2.1 (a)). If the obstacle is removed, the different routes are
replaced by a single one (see Fig. 2.1 (b)). These changes of the graph structure
complicate relating GVGs obtained in changing environments. The difficulty
is anticipating the fundamental changes in the graph structure resulting from
potential changes in the environment. As a complicating fact, even relatively
small changes in the environment can imply fundamental changes in the graph
structure. This effect can be caused by measurement noise, too. The applica-
bility of GVGs to mastering the correspondence problem, to localization, and
therefore to robot mapping in general, depends on improvements in handling
skeleton-based recognition. These topics are currently under investigation (see
Wallgriin, 2005).

There are two remaining general alternatives to consider, namely occupancy
grids and representations of the boundary of navigable space. A clear strength
of occupancy grids is their universality. They can be applied to arbitrary en-
vironments and have been applied to wide range of applications, for example
mapping in static indoor environments (e.g. Thrun et al., 2000a), localization
in dynamic indoor environments (Fox et al., 1999), and mapping in abandoned
mines (Baker et al., 2004). Another advantage of occupancy grids is implied
by the small spatial extent of single grid cells that makes it possible to avoid
considering partial visibility.

The pleasant simplicity of occupancy grids entails severe limitations though.
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Occupancy grids are basically bitmap images that, if related to externally pro-
vided maps, would require complex image processing techniques for correla-
tion. Communication on the basis of occupancy grids is limited to strongly
constrained settings like multi-robot mapping involving identical robots and
known start poses of all robots (see for example Fox et al., 1999; Thrun, 2001).
Moreover, occupancy grids provide no compact means of representation. An
environment requires the same amount of occupancy values to be represented,
independent of its complexity. The large amount of data to be processed re-
quires scan registration to rely on additional assumptions (pose estimates) to
efficiently achieve solutions (cf. Section 3.5.3).

Representing the boundary of navigable space is based on extended geomet-
ric primitives, e.g. lines or polylines. Dealing with extended objects requires
to address occlusion, since virtually all observations provide partial views on
the features. Perceived line segments are sometimes interpreted as parts of in-
finite lines (Cox, 1990; Gutmann, 2000; Lu & Milios, 1997) to avoid explicitly
handling occlusion. For example, line segments are regarded to be congruently
aligned, if the induced infinite lines are aligned. However, this interpretation
is not consistent with physical reality and, thus, can introduce artifacts. Erro-
neous results occur when aligning sets of nearly parallel lines as is illustrated
in Fig. 2.2. In this example, a robot is assumed to perceive a pair of lines in
two observations (Fig. 2.2 (a) thick solid and thick dashed line segments). Due
to measurement noise, the lines can appear slightly rotated and at slightly dif-
ferent positions, although an identical set of parallel lines is observed and the
robot has not moved between the observations. Robots can align consecutive
observations to infer their movement, assuming the world is static. Interpreting
the lines in the example as infinite lines, the robot finds a congruent alignment,
i.e. a transformation moving one set of lines to minimize the distance of corre-
sponding lines (Fig. 2.2 (b)). This congruent alignment erroneously indicates a
movement of the robot.

Applicability of grouping into line segments is confined to environments
whose boundaries present mostly straight obstacle outlines (Hahnel et al., 2003;
Veeck & Burgard, 2004). Moreover, if many short line segments at nearby
positions are observed, a robust line identification may not be possible. Mixups
in determining the correspondence of lines can easily occur and derange the
mapping process.

Polygonal line models provide means to overcome drawbacks of line-based
models by (a) linking individual line segments to a more comprehensive spatial
context, and (b) by allowing for good approximation of arbitrary (e.g. curved)
contours. By linking contour segments, more complex obstacles can be modeled,
e.g. corners or colums, using a single feature. Hence, less features need to be
registered in the map and individual features bear more information, which
facilitates an efficient solution of the correspondence problem.
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Figure 2.2: Aligning pairs of observed line segments which are nearly parallel
leads to artefacts if the line segments are interpreted as infinite lines. (a) Two
sets of nearly parallel line segments as can be detected by robots traversing
hallways (solid and dashed thick lines). (b) Congruent alignment of the solid

and dashed line segments if line segments are interpreted as parts of infinite
lines.

Unfortunately, techniques developed so far address only the modeling of
known environments (e.g. Chatila & Laumond, 1985), or the extraction of
polylines from maps that have already been constructed by registering points
(e.g. Latecki & Lakadmper, 2006b). Techniques to construct maps from sensor
data need yet to be devised.

To adopt the level of granularity of polygonal lines, simplification tech-
niques have been developed (see Stein (2003) for an overview on generalization
techniques). Such techniques can be helpful in relating fine-grained informa-
tion to coarse information as is, for instance, represented in schematic maps
(Barkowsky et al., 2000).

Despite a lack of techniques for obtaining polygonal maps from sensor infor-
mation without constructing intermediate maps, polygonal line models appear
to be an adequate basis for map representations. Polylines are also important
to the field of shape representation in computer vision as detailed in Section
2.2.

Notably, approaches representing the boundary of navigable space by means
of geometric primitives, or, in other words, the boundary of obstacles, can be
related to landmark representations. Individual geometric primitives may be
interpreted as landmarks. Thrun (2002), for example, subsumes both categories
using the term object maps. He acknowledges four advantages of object maps
over grid maps (cf. Thrun, 2002, p. 19):
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1. Object maps are more compact than occupancy grids.

2. Object maps can be more accurate, if the objects in the approach are
adequate to model the environment.

3. Object maps appear necessary to address dynamics, i.e. model objects
which change position over time.

4. Object maps can closer resemble people’s perception than occupancy
grids.

In the following, I discuss these claims in more detail. Object maps achieve
compactness by (a) grouping individual measurements to objects, and (b) by
purely representing existent objects—occupancy grids represent cells regardless
of their occupancy. In object maps, representations grow with the complexity
of the environment, i.e. the number of objects and the amount of parameters
required to represent them. In contrast, occupancy grids grow with the size
of an environment. Additionally, grids are a discretization of space which are
often significantly coarser than information initially provided by the sensor,
e.g. grid cells of 5 or 10 cm length as opposed to LRFs with a resolution of
approx. £15 mm. Grid sizes are a tradeoff between accuracy, efficiency, and
compactness. In the case of an environment of 40 x 40 meter and a grid size
of 10 cm, 160,000 cells (640,000 cells for 5cm resolution, respectively) need to
be maintained. Assuming the degree of occupancy represented as real-valued
probability value by means of a 32 Bit floating point number, this results in
about 0.6 MB of data (2.4 MB respectively). By mainly representing positions
and compact object signatures in object maps, these representations can be
significantly smaller. For instance, if representing line segments using floating
point values for coordinates, 0.6 MB correspond to 40,000 line segments (2.4
MB to 160,000, respectively)—many environments of the size 40 x 40 meter
can likely be represented using significantly less lines. So, no need arises to
coarsen the sensor data in object map approaches. Handling dynamics can also
benefit from object maps, if moving objects in the physical world correspond
to objects in the map. In this case it is possible to associate knowledge about
movement to the map objects and thereby predict the future appearance of
the environment. In contrast, when using a grid map, the knowledge about
correspondence to real-world objects cannot be easily introduced and respected
in map operations. Furthermore, if map objects correspond to the human
interpretation of objects in the real world, the robot’s internal map may even
resemble a human’s understanding of the represented environment.

The major disadvantage of object maps according to Thrun is that these
approaches are confined to environments presenting the same geometric primi-
tives as modeled by the specific approach at hand. This claim is illustrated by
comparing line models and occupancy grids in Fig. 2.3. Scans obtained from a
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Figure 2.3: Feature extraction for exemplary environments. (a) Indoor office
environment (MZH building at Universitdt Bremen), (b) corresponding occu-
pancy grid, and (c) detectable line models. (d) Exemplary home environment
(the robot is located in the doorway facing a living room), (e) corresponding
occupancy grid, and (f) detectable line models. The depicted grid denotes 1 m
distance; the robot is located as demarcated by the cross.
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LRF in two different environments are interpreted to occupancy grids and line
models, respectively. To obtain the occupancy grids, a cell size of 10 c¢m is cho-
sen; the lines are extracted using the split algorithm (for example see Gutmann,
2000) with a setting of at least 3 points per line, maximal standard deviation of
grouped lines of o = 20, and unit size of 1 cm. As can be observed, line models
provide no adequate means to represent the living room environment as most
obstacles do not display straight boundaries. To restate Thrun’s conclusion: if
a universal approach to object maps existed, object maps would provide the
superior approach to map representation for robots. My thesis addresses the
development of such an approach employing universal shapes?.

2.2 Shape features in computer vision

Representation of areas like, for instance, navigable space is not exclusively
considered in the domain of robotics. Approaches to computer vision also rep-
resent areas, usually extracted from camera images. Examples include areas of
similar color or similar texture. Representation of an area—or its boundary,
respectively—is addressed by shape representation. In the following, I relate
shape representation approaches originating from the field of computer vision to
feature representation for robot maps. The goal of my review is to discover par-
allels that can be exploited by transferring advanced shape analysis techniques
to the robot mapping domain.

Shape representation and analysis plays an important role in computer vi-
sion, in particularly in object recognition. Shape has been studied intensively,
resulting in an immense amount of literature in this field. Therefore, my re-
view cannot aim at providing a comprehensive overview®, but is restricted to
relevant approaches that can be related to the domain of robot mapping. To ap-
proach this overview, I propose to classify shape representation techniques into
three categories. Representations that describe the boundary of a shape (e.g.
by means of polylines) constitute the category of boundary-based approaches.
Representations describing the interior of a shape (e.g. by skeleton-based ap-
proaches) are subsumed by the category area-based representations. This dis-
tinction has been suggested by Pavlidis (1978); in addition, Loncaric (1998)
distinguishes quantitative and qualitative approaches. Concerning my aim of
comparing shape to feature representation, it is more appropriate to utilize a
third top-level category covering all techniques which represent by so-called
feature vectors of fixed size; this category is termed shape characteristics. Rep-
resentation of shape characteristics include, for example, approaches to Fourier

2Comparative results to Fig. 2.3 obtained by my approach are presented in Fig. 5.3 on
page 137.

3For more comprehensive reviews on shape analysis, see for example Kimia, et al. (1990);
Loncaric (1998); Pavlidis (1995)
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Figure 2.4: An exemplary curve in Euclidean space and its according tangent
space representation.

transform, either based on boundary information (Zahn & Roskies, 1972) or
area (Zhang & Lu, 2002). To judge the utility of specific approaches to map
representation in the context of my work, the evaluation criteria introduced in
the previous section are used and implications are derived from relating shape
representation techniques to feature representation techniques discussed earlier.

2.2.1 Representation of shape characteristics

This category covers approaches that determine the characteristics of a shape
with respect to certain properties, ranging from simple measures (e.g. diameter)
or symmetry properties (cf. Jahne, 1997) to complex descriptors of a curvature
transform. A fixed set of these properties is determined and compiled into a
feature vector which characterizes the shape. The most important descriptors
suggested for encoding the contour of a shape are Fourier coefficients (Zahn &
Roskies, 1972). To represent a shape’s interior, moments are especially popular.

In the case of Fourier descriptors for boundaries, the boundary is first
mapped into the so-called tangent space, representing tangent angle vs. nor-
malized curvature length (see Fig. 2.4 for an example). To be more precise,
let L denote the curvature length of a shape’s boundary b and let T}, denote
the tangent space representation of b, i.e. Ty, : [0, L] — [—m, 7). The Fourier

transform determines the coefficients a1, ao, ... and by, bo, ... of a Fourier series:
o

Ty(t) = p+ Z(an cos nt + by, sinnt) (2.1)
n=0

To represent a shape, the first coefficients (a1,b1,as,be, ..., a;,b;) are stored;

the parameter u depends solely on the chosen start point on the curve and is
often omitted. The possibility of further compacting the data is given by the
observation that phase angles are more important to recognition than ampli-
tudes, which may even be omitted (see to Palmer (1999, p. 386) for illustration).
In their original form, Fourier descriptors are defined for continuously differ-
entiable curves only; they can however be adapted to non-differentiable, e.g.
polygonal curves (Jdhne, 1997; Zahn & Roskies, 1972).
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Figure 2.5: Exemplary shape and according curvature scale space representa-
tion; Figure is taken from Mokhtarian & Mackworth (1992)

In the case of area-based descriptors using moments, the input shape is
interpreted as the characteristic function xshape : R? — {0,1} or as a greyscale
image (Jéhne, 1997; Kim & Kim, 1998). Given a shape s represented as a
greyscale image g5 : R? — [0, 1], the non-zero support of g, is interpreted as the
interior of the shape. The two-dimensional Cartesian moments m, , of order
p + q are defined as

Mp,q = / /mpngs(x,y) dx dy (2.2)

—00 —O0

According to Loncaric (1998), utilization of moments in computer vision has
been initiated by Hu (1962) who introduced the techniques previously popu-
lar in mechanics. As of today, particularly the variants of Zernike moments
are popular (Kim & Kim, 1998; Reiss, 1993). Generally speaking, variants of
moments replace the kernel 2Py? in Eq. 2.2 by a generalized form using orthog-
onal polynomials, e.g. Zernike polynomials in the case of Zernike moments; see
Teague (1980) for an overview of variations.

2.2.2 Boundary-based representations

A second category of shape representation techniques represents the boundary
of a shape and encodes its course. Approaches include polylines or tangent space
representations (e.g. Arkin et al., 1991; Latecki & Lakadmper, 2000), curvature
scale space (Mokhtarian & Mackworth, 1992), or qualitative description (e.g.
Meathrel & Galton, 2000).

A complex shape descriptor derived from the boundary of a shape is the so-
called “Curvature Scale Space” (CSS) (Mokhtarian & Mackworth, 1992). To
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construct a CSS representation, the contour is smoothened using a Gaussian
convolution filter; the CSS represents the curvature of the contour vs. contour
length for various stages o of the smoothing filter application (see Fig. 2.5). By
increasing the value of o, i.e. by increasingly simplifying the shape, details dis-
appear. Disappearance of inflection points is observed in the course of contour
simplification. Parameter values of ¢ and position on the contour are deter-
mined for disappearing inflection points and constitute the CSS representation.

Polynomial curves are of importance to computer vision as they provide a
discrete structure to which sensor information can easily be mapped. Conse-
quently, many authors approached shape analysis, in particular shape recog-
nition, on the basis of polylines (see also Section 3.5.2). Representation of
partially visible shapes is accomplished by employing open polylines, whereas
complete contours can be represented as closed polygons. Recognition has also
been studied for closed contours (e.g. Basri et al., 1998) as well as for contour
parts (e.g. Latecki et al., 2005b).

Aside from polygonal curves, chain codes are popular for constructing rep-
resentations from pixel-based images. The chain code of a pixel-based contour
captures the sequence of movements, e.g. “one pixel up” or “one pixel to the
left”, required to traverse the contour (Cortelazzo et al., 1994). Chain codes
provide a very detailed representation of the contour, but are confined to pixel
images.

An analog, but more abstract approach to boundary encoding is taken by
Galton & Meathrel (1999); Meathrel & Galton (2000). They proposed a qualita-
tive outline representation which distinguishes between seven types of curvature
(see Fig. 2.6). The authors introduce a formal grammar to represent contours
as sequence of curvature classes in a canonical manner. Analogously, Museros
& Escrig (2004) approach shape representation tailored for describing mosaic
tiles by qualitative means. In their approach, the course of a polygonal contour
is described by qualitative angles (“right-angled”, “acute”, “obtuse”), distinc-
tion between convex and concave corners, and by classifying the relative length
of consecutive line segments (“smaller”, “equal”, “longer”). Additionally, posi-
tions of holes are described using a qualitative spatial calculus.

To sum up, most boundary-based representations represent, by means of a
linear data structure, a sequence of qualitative labels or quantitatively deter-
mined curve characteristics. To examine the similarity of two boundary-based
representations, many authors suggest computation of a cost-minimizing cor-
respondence of boundary fragments which can be computed using an elastic
matching (for example, see Basri et al., 1998; Sebastian et al., 2003, or refer to
Section 3.5.2). This is often accomplished by means of Dynamic Programming
(cf. Section 4.3.1 or see for example Cortelazzo et al. (1994) for an overview of
the application of string matching techniques).
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(a) (b)

Figure 2.6: (a) Curvature classes distinguished in the qualitative outline repre-
sentation. (b) Different shapes with same qualitative description D<D>=<. Both
Figures are taken from Galton & Meathrel (1999).

2.2.3 Area-based representations

A third category represents the inner structure of a shape by determining so-
called skeletons (e.g. Blum, 1967) by decomposition into geometric primitives
(e.g. Biedermann, 1987) or by means of pixel maps (e.g. Huttenlocher et al.,
1993).

Skeletons introduced by Blum (1967) demarcate the beginning of shape rep-
resentations deriving shape information from a medial axis transform (MAT).
Roughly speaking, the medial axis or skeleton of a shape consists of the points
equally and maximally apart from the boundary. In other words, the MAT is
a kind of Generalized Voronoi Diagram (cf. Section 2.1.3); however, variants of
MATSs for shape representation are specifically designed for the discrete struc-
ture of pixel images, rather than for continuous positions of polygonal contours
extracted from range data. Special consideration must be taken to compute
a skeleton that is robust to effects of discretization in pixel images (cf. Dim-
itrov et al., 2000; Siddiqi et al., 1999a,b). Once the MAT has been computed,
the actual representation is constructed, which is an attributed graph. Orig-
inally, Blum suggested a qualitative labeling (Blum, 1967), but quantitative
information has later been introduced to provide sufficient discriminating infor-
mation (Blum & Nagel, 1978). More recently, Siddiqi et al. (1999b) proposed
to attribute the medial axis using quantitative descriptors alongside qualitative
ones. Quantitative descriptors represent the course of axis fragments; qualita-
tive labels are utilized to classify the distance of the axis to the contour. Labels
correspond to local minima (constrictions), local maxima, parts of constant
distance, and changing distance.

Biedermann (1987) proposed a cognitively motivated shape representation
on the basis of a decomposition into shape primitives which are generalized
cylinders and are termed geons. Representations by means of geons are promi-
nent in the field of cognitive modeling, but do not include computational means
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to compute a representation and to recognize shapes using the structure of
geons.

In their most elementary form, area-based shape representation makes di-
rect, uninterpreted use of the (segmented) input image. Shapes are simply
represented by their bitmap images (for example see Rucklidge, 1996).

2.2.4 Discussion

In the following, I discuss general properties of the three categories of shape rep-
resentations and elaborate on the parallels to feature representations suggested
for map representation.

Shape characteristics

Common to all approaches that encode shape characteristics is that they pursue
the determination of a compact representation that allows large shape databases
to be handled efficiently. Recognition of a query shape can be performed very
quickly by computing a weighted vector difference of the query’s feature vector
and the feature vectors stored in the database. For example, Kim & Kim (1998)
achieve remarkable results with feature vectors of only two dimensions®.

Approaches to shape representation from this category are well-suited to
recognition tasks in closed domains where the set of shapes to be discriminated
is known a-priori and discriminating characteristics can be determined. In ap-
plications where arbitrary shapes are handled, it might not be possible, let
alone feasible to determine a set of discriminating features for a-priori unknown
shapes. As a complicating fact for application to robot mapping, shape char-
acteristics are descriptors that are exclusively defined for complete shapes, i.e.
they cannot handle a partially visible shape. Therefore, recognizing a shape in
the presence of occlusion is often not possible. In the case of local changes to a
shape, a global effect on the shape descriptor can occur as these descriptors are
not local, but compile a complete shape to an atomic feature vector (Loncaric,
1998). Altogether, this renders approaches representing shape characteristics
inadequate for application in robot mapping tasks.

Notably, there exists a—somewhat weak—relation between approaches to
shape characteristic encoding and view-based approaches in robotics. In both
domains a representation is constructed that provides an atomic representation
by compiling the sensory input into a feature vector. In shape representations,
compactness of the representation is particularly fostered by using complex
transformations. Representations belonging to the category of shape character-
istics are designed for efficient recognition given a fixed, discrete set of alter-

4The authors regard using that few moments as a naive approach and conducted this
experiment purely for demonstration purposes—nevertheless, they yield a remarkable retrieval
rate of more than 90% in a test employing 3000 company logos.



54 Spatial representations for mapping

natives. In view-based representations, a discrete set of views is handled too.
Due to the atomic character of shape characteristics, even local changes of the
input may cause unpredictable global effects to the representation. In other
words, representations of shape characteristics lack a spatial interpretation, or,
as (Loncaric, 1998) puts it, shape characteristics provide no local representa-
tion. Extrapolation to anticipate the effects of changes (e.g. due to view point
variations or changes in the environment, respectively) is not possible. Since
feature recognition applicable to robot mapping requires robustness to view
point variations, occlusion, or changes, the applicability of shape characteris-
tics to feature representation in robot maps is doubtful.

Boundary-based representations

Several boundary-based shape descriptors have been developed that yield good
results in shape recognition tasks. This suggests that, if these approaches can
be transferred to the domain of robot mapping, they are beneficial for tackling
the correspondence problem.

In particular, the representation on the basis of the CSS yields excellent
results in the shape retrieval study conducted for MPEG-7 standardization
(Bober, 2001; Bober et al., 1999). However, observe that a CSS representation
is not defined for contours not displaying inflection points, since solely the disap-
pearance of inflection points during curve smoothening is represented. Shapes
that lack a CSS descriptor include circles, convex polygons, etc. Therefore,
CSS descriptors contradict the goal of finding a universal feature representa-
tion; many environments display convex shapes like, e.g. columns or rectangular
rooms. See Latecki et al. (2000b) for a discussion of additional difficulties faced
in recognition on basis of the CSS.

The approach by Latecki & Lak&mper (2000) achieves comparative results
in the aforementioned shape retrieval study. It is based on a representation
of polylines that can represent arbitrary shapes; to determine shape distance,
polylines are mapped to tangent space representations.

Purely qualitative representations seem inadequate for representing spatial
relations on a comparative low level of abstraction as is required to describe
shapes distinctively, which might only differ in details. As Galton & Meathrel
point out, “it is in the nature of a qualitative representation system that one
representation can correspond to many different objects” (Galton & Meathrel,
1999, Section 3.8); they illustrate this by different shapes that are described
by the same qualitative representation (cf. Fig. 2.6 (b)). For recognition tasks
in open domains, one cannot decide in advance which spatial relations will be
required to provide distinguishing information. In such cases, qualitative ap-
proaches are disadvantageous as it might be impossible to record all potentially
relevant, i.e. discriminating, spatial relations.

In boundary-based approaches, representation and recognition of partially



2.2 Shape features in computer vision 55

visible shapes can also be addressed. The representation of a shape’s contour
can easily be restricted to any subset of it. Shape similarity measures can
also be applied to partial contours as has been demonstrated by Latecki et al.
(2005Db).

In summary, boundary-based representations provide a suitable basis for
feature representation in robot mapping. Polylines provide a universal represen-
tation of obstacle boundaries, i.e. arbitrarily shaped contours can be modeled.
For example, Veeck & Burgard (2004) argue from the perspective of robotics
for the compactness and universality offered by polygonal line models over grid
maps.

Representations based on polylines expose a strong analogy to boundary-
based representations of navigable space used for robot maps (cf. Section 2.1.3),
polylines being a fundamental representation in both domains. However, one
cannot observe a high interconnection of the research fields of shape recog-
nition and mobile robot localization and mapping—although a link between
these fields has already been discussed by Grimson (1990). As Thrun noted,
the connection between computer vision and robot mapping is underexploited
(Thrun, 2002, Sec. 2). Lu & Milios even claim that a significant difference
between the field of shape matching and scan registration (i.e. solving the cor-
respondence problem on basis of range scans) exists, as mobile robots can only
acquire noisy discrete points instead of high-quality models (Lu & Milios, 1997,
Sec. 1)—this differentiation appears questionable to me as shape information
extractable from a vision system is also discrete and robust handling of noisy
data is one key issue for shape recognition too.

Area-based representations

From the category of area-based representations, skeleton-based techniques us-
ing attributed graphs stand out for their compact representation. They expose
an inherently close connection to route-based representations suggested for mo-
bile robots, utilizing similar techniques to construct the representation. Thus,
skeleton-based shape representations expose similar characteristics as route-
based representations (cf. Section 2.1.3), most importantly, the global struc-
ture of skeletons is affected by local changes to the shape, too. Graph matching
techniques have been developed for recognition tasks in computer vision. Since
even the graph structure of similar shapes is likely to differ, techniques for iso-
morphic graph matching are of little use and graph similarity measures need to
be employed. Edit distances for graphs have been suggested for this purpose
(Zhang & Shasha, 1989). To eclipse costly unrestricted graph matching, Bartoli
et al. (2000); Siddiqi et al. (1999b) first transform the general graph represen-
tation to a tree. Nevertheless, graph matching remains computationally more
expensive than linear elastic matching that is applicable to interrelating linear
data structures of boundary-based representations. Though, the most severe
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complication faced in recognition is anticipating the changes to the graph struc-
ture caused by small changes of the input data. It is yet unknown how to master
this problem. Difficulties of skeleton-based recognition find expression in the re-
trieval experiments that have been conducted in the context of MPEG-7 shape
descriptor standardization: the participating skeleton-based descriptor showed
the poorest performance (cf. Latecki et al., 2000b). As with the discussion
of route-based representations, I conclude that skeleton-based representations
provide no promising starting point to both address map representations, and
to support mastering the correspondence problem.

The most direct approach to shape representation in vision applications is
to utilize bitmap images. The tradeoff of this straightforward representation is
the computationally expensive shape analysis, e.g. shape similarity and shape
alignment (cf., e.g. Rucklidge, 1996). Bitmap images are interpreted as sets of
points and are compared by means of the so-called Hausdorff distance H:

H(A,B) = max{h(A,B),h(B,A)} (2.3)
h(A,B) = max géigd(a,b) (2.4)

where d denotes a distance measure, typically Euclidean distance. As can be
observed, the Hausdorff distance is a position and rotation dependent measure.
In other words, to recognize rotated or shifted shapes (e.g. shapes described in a
different frame of reference), all possible alignments (rotation and translation)
need to be examined—depending on the potential alignments to consider, this
can easily exceed feasibility. Today’s successful approaches to shape recognition
make use of more sophisticated representation techniques as documented in the
reports on the MPEG-7 shape descriptor evaluation (Bober, 2001; Latecki et al.,
2000b). Notably, shape recognition and alignment using uninterpreted pixel
images is intimately connected to the occupancy grid representation employed
in robotics. In analogy to computer vision, scan registration on the basis of
occupancy grids determines the optimal alignment of two occupancy grids by
minimizing the directed Hausdorff distance h (cf. Hahnel et al., 2002). However,
references to research in computer vision are often missing. In order to meet
requirements of efficiency (e.g. for online mapping), it is important to restrict
variations of rotation and translation that need to be considered.

To conclude, the review of shape representations demonstrates the existence
of parallels between feature representation in robot maps and shape represen-
tations employed in visual object recognition. Links between the two fields are
apparent in several approaches. Skeleton-based techniques are applied to rep-
resent shape structure or routes, boundary-based representations describe the
contour of a shape or the outline of navigable space, and greyscale images and
occupancy grids resemble one another. Sophisticated shape retrieval techniques
have been developed—the parallels suggest that shape retrieval techniques can
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be transferred to robot mapping and facilitate an efficient and robust approach
to the correspondence problem. Since shape descriptors based on polylines
support robust recognition and present means to represent arbitrary shapes,
these approaches appear particularly suited to application in robot mapping.
As a consequence, I develop a spatial representation that combines the fields
of robotics and visual object recognition; in this respect, my approach differs
from existing work.

2.3 Configuration representation

After reviewing feature representations in robotics and relating them to shape
representation developed in computer vision, I now turn to representation of
configuration information. A configuration describes the spatial arrangement
of features in the map. Generally speaking, a configuration representation pro-
vides a formalism for representing spatial relations between atomic objects and
a frame of reference. By linking individual map features, a comprehensive
spatial context is established, which is particularly valuable for addressing the
correspondence problem, since if provide rich information. To evaluate the util-
ity of individual approaches with respect to mapping and navigation, I regard
the following questions:

e What is the contribution of knowledge about configuration to distinguish-
ing map features?

e How can matching efficiently exploit configuration knowledge?
e Which knowledge about configuration supports navigation?

Objects and their locations are intimately connected, so identifying an ob-
ject and identifying its location are equivalent. Though features may be indis-
tinguishable on their own, configuration knowledge can allow disambiguating
features by distinguishing their locations. So, a representation of configuration
knowledge should offer rich and robust information of feature locations.

The correspondence problem is tackled by matching the observation of the
robot against the map, thereby interrelating features and interrelating config-
urations. A matching is plausible if only features are associated that present
agreeable characteristics, and if the configuration of associated features is re-
spected. For example, if two features are observed close to one another, they
shall only be related to features in the map which are close to one another too.
Configuration knowledge is particularly valuable if it can directly be utilized
during the matching process, thereby restricting search space and facilitating
an efficient approach (cf. Grimson, 1990).

A configuration specifies the relative positions of features to one another.
If features in the map correspond to obstacles in the environment, knowledge
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about relative position is essential to path-planning, e.g. allowing a robot to
determine whether it can pass between two obstacles or not.

Configuration knowledge is characterized by two aspects: the modality of
spatial information that is represented, and the representation formalism em-
ployed. In the following, these aspects are discussed individually. It is remark-
able that the variety of representations of configuration knowledge employed in
robotics is much smaller than the variety of map features. In robotics, coordi-
nate systems are most popular, representing positions of features in an absolute
metric frame of reference. Outside of the field of robotics, representation of con-
figuration knowledge is also studied in the field of spatial reasoning. This review
covers both fields to provide a more comprehensive overview with the goal of
identifying spatial reasoning techniques that are beneficial to robot mapping.

2.3.1 Modalities of spatial information

Following a classification by Freksa & Rohrig (1993), spatial information about
object configuration can be divided into three distinctive modalities: directional
information, distance information, and topological information.

Directional information represents information about the direction to an
object. This may be done by expressing relative information (e.g. “left
of”), or in an absolute manner (e.g. “32° North”).

Distance information describes the distance between two objects either in a
relative manner by means of comparison (e.g. “farer than”) or in terms
of an absolute scale.

Topological information denotes knowledge about connectivity. In the field
of qualitative spatial reasoning, topological information is often considered
to describe the relation of extended regions, the most prominent approach
being the Region Connection Calculus (RCC) introduced by Randell et al.
(1992). In robotics, topological information typically describes connectiv-
ity of places. Yeap & Jefferies (1999), for example, represent connectivity
of local maps. Kuipers suggests in his Spatial Semantic Hierarchy (SSH)
(Kuipers, 2000) to interpret connectivity of distinctive places as applica-
bility of action primitives that allow moving the robot from one place to
another. Representations of navigable routes (see Section 2.1.3) denote
connectivity of decision points.

Additionally, ordering information plays a central role in many qualitative
representations. Ordering information has been used to model the circular or-
der of visibility (for example see Barkowsky et al., 1994; Schlieder, 1995) or
to constitute directional knowledge (for example see Moratz et al., 2000; Ski-
adopoulos & Koubarakis, 2005). Spatial information can be ordered in various
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ways, even information across the modalities listed above can be captured in
ordering information. Thus, ordering can be regarded a proper modality of
spatial information and is added here as a separate modality.

Ordering information represents a sequence of locations according to their
projection on an arbitrarily chosen linear reference, e.g. a coordinate axis
or a circle. Ordering information has been employed in navigation too.
Schlieder (1993) suggested a navigation strategy based on a panorama
representation that has been recently improved by Wagner et al. (2004).
Barkowsky et al. (1994) employs a navigation strategy based on the cir-
cular order of obstacles.

Information present in these modalities may be represented in different
ways, e.g. individual by modality using distinct relations or cross-modal us-
ing coordinate-based geometry. There are two principally alternative represen-
tation techniques: quantitative approaches which measure with respect to an
external scale and qualitative relations that specify selected (usually relative)
properties. In the following, I contrast the two variants.

2.3.2 Qualitative representations

Qualitative representations employ a finite, typically small set of relations to
model spatial information. Typically, the relations capture relative informa-
tion obtained by comparison, for example, “north of” and “south of” can serve
as qualitative relations acquired by comparing the geographic locations of two
objects (for example see Frank, 1992). Technically speaking, qualitative rep-
resentations abstract from fine-grained or continuous information to (typically
few) discrete relations by means of equivalence classes.

Some authors confide the set of potential relations to a single connectivity
relation expressing topology (for example see Choset et al., 2000; Kuipers &
Byun, 1991; Yeap & Jefferies, 2000). Topological information captures connec-
tivity of distinctive places and can be represented by a graph. Different types
of places have been considered ranging from branching points in route-based
representations (see Section 2.1.3) to (extended) areas (for example, see Yeap &
Jefferies, 2000). Graph labeling is required to enable agents to identify individ-
ual edges that meet in a single node of the graph®. Yeap & Jefferies associate
edges with specific spatial structures termed “exits”%). Kuipers (2000) labels
directed edges with robot commands. The execution of an action associated

5Strictly speaking, such approaches are not truly topological, but incorporate additional
spatial knowledge for distinguishing edges. However, literature in the field of robotics refers to
representations that focus on connectivity information as topological approaches. Here, this
generalized view is adapted.

5The approach by Yeap & Jefferies is discussed in greater detail as regards hybrid maps—
see Section 2.4.2 on page 65.
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with an edge moves the robot between the places associated to the nodes which
are adjacent to the edge. The kind of information used to attribute the graph
structure influences the matching process in important ways so that general
statements about the properties of topological representations of configuration
knowledge cannot be made.

Ordering information is also commonly addressed by qualitative represen-
tations, e.g. a binary ordering relation that relates two map features. Schlieder
(1995) represents the cyclic order of point-like landmarks and Barkowsky et al.
(1994) utilize cyclic order of extended landmarks in non-cyclic environments,
i.e. environments without freestanding obstacles.

Qualitative representations have been claimed to provide adequate means
for communicating spatial information. Moratz & Tenbrink (2006) utilize pro-
jective relations between objects in a robot instruction setting. A robot is
instructed to move to a position described by qualitative information. As the
robot needs to identify a certain place on the basis of its representation, this
task is tightly connected to self-localization.

Qualitative relations can be the basis of a so-called qualitative calculus.
Qualitative calculi extend qualitative relations by introducing means to “cal-
culate with relations”, e.g. to infer which relation can hold between A and
C, if the relations holding between A and B as well as B and C are known
(relation composition). To reason about qualitative spatial relations, relation
composition & constraint propagation are commonly employed. Constraint-
based reasoning has been suggested for pruning the search space in matching
tasks (Grimson, 1990). A mapping of objects can be restricted by qualitative
constraints posed on the objects. Thus, qualitative calculi can be employed to
introduce hard constraints in correspondence computation (cf. Tsang, 1993). A
review of the utility of geometric constraints in recognition tasks is presented by
Grimson (1990). Besides constraint-based techniques, conceptual neighborhood
structures (Freksa, 1991, 1992) have been introduced for qualitative reasoning.
Conceptual neighborhoods are in particular valuable in resolving conflicts on
the symbolic level by defining an interrelation on the level of relations.

2.3.3 Quantitative representations

Quantitative formalisms describe the world by means of absolute, often fine-
grained, uniform scales. Quantitative representations employ no abstraction
besides reduction of resolution. Henceforth, sensor data can directly be mapped
to a quantitative representation. Virtually all approaches in robotics employ
a quantitative representation. For example, Franz et al. (1998) represent the
relative location of places in a plane using two-dimensional vectors. The most
prominent form of quantitative representations is an absolute representation in
the form of coordinate-based geometry; positions of map features are iden-
tified with locations in the Euclidean plane. Most approaches in robotics



2.3 Configuration representation 61

represent positions as coordinates in the absolute frame of reference defined
by the global map (for example see Lu & Milios, 1997; Stachniss & Burgard,
2003b; Veeck & Burgard, 2004). Various navigation strategies have been devel-
oped for coordinate-based representations. In the case of representing obstacles
by polylines, cell decomposition and route-based techniques are applicable (cf.
Latombe, 1991). In the field of computational geometry, coordinate-based maps
registering polylines are well-researched with respect to path-planning and ex-
ploration (cf. de Berg et al., 2000).

2.3.4 Discussion

As regards the four modalities of spatial information, the combination of di-
rectional and distance information is particularly useful, since it allows for an
unequivocal description of the position of a map feature. Since objects and
their positions in space are inextricably linked, these modalities are valuable to
tackle the correspondence problem and should be made explicit in the map.

Topological and ordering information both provide abstract, coarse informa-
tion. On their own, neither of the two knowledge sources may provide sufficient
information to disambiguate features. For example, the bare knowledge of a
place to be connected to another place is not sufficiently discriminating. Sim-
ilarly, the cyclic order of points as suggested by Schlieder (1994) provides no
adequate means of recognizing a particular configuration of points; see Fig.
2.7 for an illustration. However, the distinctions made by these coarse infor-
mation sources may be well-suited to making knowledge explicit that is only
implicitly contained in a representation. For example, if global coordinates are
assigned to features, distance and direction knowledge is represented. The in-
formation that a feature is located between two other features is implicit in a
coordinate-based representation. By making this information explicit in terms
of a qualitative relation, it can be more efficiently assessed. This can support
an efficient approach to the correspondence problem, since matchings should
respect configuration knowledge.

The role of topological information in efficiently tackling the correspondence
problem is not yet clear. Topological information is specified in route-based rep-
resentations (cf. Section 2.1.3), but so far route-based approaches do not make
substantial use of topological information when tackling the correspondence
problem. For example, the approach by Choset et al. (1996, 2000) to route
representation makes topological information explicit by means of a graph, but
refrains from exploiting the topological graph structure in localization. Rather,
the robot needs to cling to the paths in the environment that correspond to
the graph structure. Motion primitives are employed that let the robot travel
along Voronoi paths that correspond to edges in the graph. Omne reason for
refraining from topological information can be seen in the high computational
cost of unconstrained graph matching. Assuming the map and the robot’s cur-
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Figure 2.7: Ordering information as suggested by Schlieder (1994) for represen-
tation of configurations presents coarse information. The two configurations of
points are represented by the same triangular ordering, i.e. any triple of points
is equally oriented in both configurations. All configurations obtained by mov-
ing points without crossing the triangle outlines (dashed lines) fall in the same
class.

rent observation to be represented by a graph, the correspondence problem
is related to finding an isomorphic sub-graph of the map that corresponds to
the observation—unfortunately, subgraph isomorphism tests are known to be
NP-hard (Ullman, 1976). It remains an open problem how a feasible graph
matching technique can be designed for topological representations. Recent
advances are achieved by Huang & Beevers (2005) who approach map merging
by graph matching on the basis of a roadmap.

Topological information provides very compact information and is well-
suited to efficient path-planning. To determine a shortest path on the basis
of a topological representation, discrete and efficient graph search can be em-
ployed.

Balancing the complications of utilizing topological information for solving
the correspondence problem and the utility of efficient graph search in path
planning, I conclude with respect to the scope of my work that it appears more
appropriate not to include topological information into the map representation.
Efficient navigation strategies exist for non-topological informations as well and
techniques to substantially benefit from topological information in tackling the
correspondence problem appear out of reach yet.

In contrast to topological knowledge, ordering knowledge can easily be ex-
ploited in matching processes. For example, contour-based shape matching
respecting the order of boundary fragments is commonly approached by means
of efficient Dynamic Programming techniques (Basri et al., 1998; Cortelazzo
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et al., 1994; Latecki & Lakémper, 2000; Sebastian et al., 2003). Indeed, these
techniques may be adapted to matching techniques addressing the correspon-
dence problem as is discussed in Chapter 4.

As regards representation techniques, I have elaborated on the fundamen-
tal alternatives of quantitative and qualitative representation. Qualitative ap-
proaches represent in an abstract manner, often by comparing objects with
respect to specific spatial properties. Qualitative relations abstract from metric
details. Such abstraction can be helpful in relating knowledge sources of dif-
ferent granularities. For example, when relating a fine-grained observation to a
coarse map, congruency of observation and map may only be achievable by a
sufficient abstraction. Reasoning by means of qualitative calculi can in principle
be introduced to matching tasks (Grimson, 1990). However, the application of
such techniques, e.g. by means of constraint propagation (see Section 3.5.3), has
not yet been investigated thoroughly. A fundamental analysis of the utility of
qualitative reasoning in matching is beyond the scope of my work, but presents
an interesting starting point for further research.

Quantitative approaches present the most expressive formalism and can
provide the most detailed information to differentiate features. In particular,
coordinate-based representations are appropriate to link objects to their loca-
tions. Thus, coordinate-based representations are valuable for matching tech-
niques tackling the correspondence problem. In quantitative representations
all available information is maintained while in qualitative approaches some
details are intentionally discarded. Put differently, in quantitative approaches
all values are treated equally and no aspects are made explicit. In some situa-
tions, treating all values equally can be disadvantageous and can even hamper
recognition, as a small example on coordinate-based geometry shows: consider
a robot that observes two landmarks that are located close to one another.
By measuring their position the robot determines two similar coordinates that
are both subject to measurement errors. By evaluating the measurements and
taking into account the error margins, the robot may not be able to decide
which of the landmarks is located on the left and which is located on the right.
The robot can, however, observe with certainty which of the two landmarks is
left of the other. In a quantitative approach, this knowledge is shadowed by
a representation that relates observations to an external scale rather than to
one another. Notably, there are situations where one cannot decide in advance
which spatial relations will be required later on. In such cases, quantitative
approaches are more economical as it is impossible to record all potentially
relevant spatial relations in an environment.

To conclude, qualitative approaches are valuable to handle spatial informa-
tion on a coarse level of granularity and can explicitly describe distinguishing
information. They abstain from metrics and, by doing so, avoid inescapable dif-
ferences on the metrical level. In particular, when relating knowledge sources
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on different levels of granularity, a suitable abstraction is advantageous. Of the
multitude of spatial relations available for capturing qualitative representation,
ordering information appears especially promising. If a suitable ordering can
be determined, efficient matching techniques may be applicable (see Chapter
4). Quantitative approaches are well-suited to presenting fine-grained informa-
tion and can provide rich information to distinguish features. Efficient nav-
igation techniques have been developed for coordinate-based representations
that jointly represent information about direction and distance. In particu-
lar, coordinate-based maps representing obstacles by polygonal contours are
well-researched (de Berg et al., 2000; Latombe, 1991). Qualitative represen-
tations and reasoning techniques can be valuable to interrelating information
across different levels of granularity (e.g. as required in communication) and to
restrict the search space in the correspondence problem. Therefore, combin-
ing a quantitative, coordinate-based representation of object configuration and
qualitative descriptions appears well-suited to obtain a universal and expressive
representation of knowledge about configuration.

2.4 Map organization

Map organization describes how feature and configuration representations are
composed to an overall map representation. As regards the utility of a specific
approach to robot mapping, I evaluate which technique is suited to model the
information relevant to mapping and navigation. In particular, I consider two
questions:

e Can information required for efficient navigation and mapping be repre-
sented by the approach at hand?

e Can information be accessed and updated efficiently?

Individual approaches to feature and configuration representation display
different strengths and weaknesses. To obtain a well-suited map representa-
tion, different techniques may have to be combined. In the following I discuss
different means of map organization and evaluate their utility.

I classify map organizations by the number of views they offer. Hereby, a
view is defined by the type of information it represents and the granularity of
this information. Each view provides a single frame of reference, i.e. locations
of objects can be described with respect to the view. Therefore, each view
utilizes one configuration representation and one kind of features. The charac-
terization that a map offers individual views is related to the model of aspect
maps presented by Berendt et al. (1998) for geographic maps. In that model,
aspects are defined as properties of geographic entities and relations between
them. Aspects cover a broader variety of representation formalisms than views



2.4 Map organization 65

considered here in the context of robot maps. For example, symbolic annota-
tion in geographic maps is also covered by aspect maps. In order not to suggest
the broad interpretation of aspects, the term view is used in the following.

Any map offers at least one view; maps registering locations of features
like polylines in a global coordinate system can be regarded as an exemplary
representative of this category (for example see Latecki & Lakdmper, 2006b;
Thrun et al., 1998a). In the following, I refer to maps offering one single view
as uniform maps.

Maps can offer multiple views, for example, by linking distinct, independent
uniform maps. For example, local maps, each covering a restricted area, can
be linked by specifying connectivity of local maps. This is the case in a road
atlas where maps on each page of the book bear information on which page
the adjacent map is to be found. So, the atlas offers several individual views:
one map per page and one additional view providing a linkage of maps, e.g., by
connecting page 8 and page 16 in North-South direction.

2.4.1 Uniform maps

Uniform maps present one single view and, thus, represent features of one kind
using one representation of configuration. Hence, they utilize a single frame
of reference to register map features. Typical representatives of uniform maps
are global object maps registering the locations of specific features or uniform
occupancy grids (cf. Section 2.1.2 or Section 2.1.3). The variety in uniform map
representations has been presented in the preceding sections of this chapter by
exploring feature and configuration representations. Thus, determining the
utility of employing a uniform map can be evaluated by considering the utility
of a single best combination of feature and configuration representation.

2.4.2 Hybrid maps

Hybrid maps provide multiple views and interrelate them tightly. Individual
views can differ by the kind of information represented or by the granularity
of the information represented. In the context of this work, hybrid maps are
primarily analyzed with respect to their utility in robot mapping. See Buschka
(2006) for a general in-depth analysis of hybrid maps. To classify hybrid maps,
I regard two operators which interrelate individual views and thereby allow for
the construction of hybrid maps from uniform maps; these operators are:

e Embed

e Link

In the following, I discuss the operators in more detail. The embed operator
links views by embedding one in the frame of reference of the other. It is used
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Figure 2.8: Hybrid map representation based on five independent local maps
(termed ASRs). The individual ASRs are related by connectivity information
captured in a graph representation. Edges link to so-called exits in the local
maps. This map has been derived from log files supplied by Margaret Jefferies.

to construct hierarchical representations. Hybrid maps constructed by the em-
bed operator have been termed patchwork maps (Buschka, 2006). The work by
Jefferies & Yeap” can be regarded as a prototypical use of the embed operator.
In their work, the map representation is organized in two distinct layers: On
one layer, separate absolute metric maps are constructed for a local surround-
ing (termed ASR for Absolute Spatial Representation). An ASR is a local map
that registers line segments in a coordinate-based reference system. The indi-
vidual ASRs are embedded in a global frame of reference that is provided by a
graph structure which resembles the interconnectivity of ASRs. Connectivity is
defined by so-called exits, salient constrictions in the surroundings of the robot.
By passing through an exit, a transition from one ASR to another occurs. Jef-
feries & Yeap’s representation offers several views, it represents metric map
information by the individual ASRs and represents topological information of
connectivity of local spaces as graph structure—the ASRs are embedded in the
topological map. Thus, an ASR-based map comprises two combinations of fea-
tures and configuration representation: line segments and coordinate-systems
on the level of individual ASRs, local maps and graph structure in the top-level
map. Fig. 2.8 depicts one exemplary map consisting of five individual ASRs.
A similar approach of local maps has been taken by (Bosse et al., 2003), who
suggest an so-called atlas framework of local maps. Local maps maintaining
their own coordinate system for registering map features maps are linked by
specifying a mapping of coordinate systems in a graph structure. In the graph
structure, vertices refer to distinct local maps and edges are labeled by coordi-

" Jefferies et al. (2001); Jefferies & Yeap (2001); Jefferies et al. (2003, 2004a); Yeap &
Jefferies (1999, 2000)
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Figure 2.9: (a) Simple environment decomposed into discrete cells, (b) corre-
sponding Quad Tree, (c) pruned Quad Tree.

nate transformations.

To combine two complementary spatial representations, the link operator
is utilized. For example, Nieto et al. (2004) suggest combination of occupancy
grids with a map registering positions of landmarks. Linking map represen-
tations that present different levels of granularity is a prominent approach to
increase computation speed in path-planning. For example, Quad Trees (see
Latombe (1991) for an overview) are popular for representing cell occupancy in
different resolutions. Since every level of resolution provides an absolute global
view on the environment, a Quad Tree representation is most adequately de-
scribed as a linkage of global maps at different levels of resolution—such maps
have been termed parallel maps by Buschka (2006). To construct a Quad Tree
representation, four neighbored cells® in one layer are grouped and linked to a
single cell in the next coarser layer. This results in a tree-like link structure of
the overall representation (see Fig. 2.9). On the finest level, cells are classified
to be either free or occupied. Abstracted cells can be either free (all children
are free), occupied (all children are occupied), or mixed (some children are free
and some children are occupied). Since neither children of free nor of occupied
cells bear further information than their parents, they may be pruned, thereby
compacting the representation. Path-planning on basis of a Quad Tree repre-
sentation starts on the coarsest level which contains only a single cell. Only if a
cell considered for path-planning is labeled “mixed”, the finer levels of the map
need to be considered; this speeds up computation in typical environments, as
it is often not required to deeply descend into finer layers containing many cells.

8Depending on the cell topology, i.e. the definition of a neighborhood structure, different
partition schemes are possible—see Latombe (1991) for details.
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2.4.3 Discussion

In this Section, I have presented approaches to map organization, distinguishing
uniform and hybrid maps. Uniform maps offer one view on the map representa-
tion by utilizing one set of map features and one representation of configuration
knowledge. Hybrid maps offer several views that are either related by embed-
ding or linking; in these maps distinct views are closely related.

In some situations, it can be difficult to classify an approach at hand. One
example is the approach by Thrun (1998) to metric-topological mapping. Metric
information is represented using an occupancy grid and route information is
represented by means of a roadmap. This suggests that the representation
is a hybrid map. However, the two distinct views remain decoupled. The
mapping task is performed exclusively considering the occupancy grid. When
mapping is finished, the route map is derived from the occupancy grid map
to exploit the compactness of the GVG in path planning. In this approach,
the additional view offered by the route map is exclusively considered for path
planning and, henceforth, can adequately be regarded as a preprocessing step in
path planning. Thus, Thrun’s approach is most adequately regarded to utilize
two distinct uniform maps. To transform this representation into a hybrid
map, interrelation of route map and occupancy map need to be introduced, for
example by propagating changes in one representation to the other.

Hybrid maps can be classified into parallel maps constructed by linking uni-
form maps and patchwork maps (hierarchical maps) constructed by embedding
uniform maps in a superordinate frame of reference. Parallel maps allow the
utilization of task-specific views, e.g. one view for mapping and one view for
navigation. Since a single view representing navigable space by the outline of
obstacles is well-suited to mapping and navigation (see Section 2.1.4 and Section
2.3.4), parallel maps offer no advantage over uniform maps as regards develop-
ing a suitable representation for robot mapping. Moreover, uniform maps are
easier to maintain, since no coordination of different views is required.

In principal, hierarchical map representations could ease mapping as they al-
low decoupling information truly which may be vaguely related, e.g. two rooms
at remote parts of a building. Decoupling local areas avoids difficulties of in-
tegrating vaguely related information in a single absolute representation. As
regards the aforementioned remote rooms, detailed information about their spa-
tial relation may not be known, since inferring their spatial relation requires a
long reasoning chain relating the position of the rooms to several objects in-
between first. Making vague relations explicit in an absolute map can easily
introduce errors that may be difficult to detect and to resolve. In contrast, in
the restricted area of a hypothetical local map, such errors are comparatively
small and might even require no special treatment.

However, hierarchical representation also complicate robot mapping. Par-
titioning of space is fixed in present approaches, i.e. the area covered by a
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local map cannot be adapted. If multiple robots independently map their en-
vironment (maybe starting at different positions), the resulting partitions are
likely to differ. Thus, local maps in hierarchical representations that have been
acquired independently are often not congruent. Interrelating such representa-
tions is far from being trivial and has, to my knowledge, not been addressed so
far. Developing adaptive partitioning schemes can be helpful to overcome these
complications, but this is not in the scope of my work.

Path-planning on a hierarchical map can be decomposed in analogy to a sin-
gle division step in divide-and-conquer algorithms. Path planning on the level
of individual maps is performed as metric path planning and on the topological
level by means of graph search. This approach can speed up computation, as
costly metric path-planning is restricted to comparatively small local maps. On
the topological level, efficient graph search on a comparatively small graph can
be employed.

Evaluating the characteristics of uniform and hybrid maps, hybrid repre-
sentations offer no advantage over uniform maps that would make up for the
complex handling of hybrid maps. The most decisive aspect in designing a
spatial representation in robot mapping is how information in the map is repre-
sented in terms of map features and configuration information and how it can be
exploited in the determination of correspondences. In other words, for designing
an advanced spatial representation and for developing reasoning techniques, it
is appropriate to start on uniform maps. The results may then serve as starting
point for future work on advancing techniques to construct and maintain a hi-
erarchical map that makes path-planning more efficient and allows decoupling
vaguely related places.

2.5 Summary & conclusion

This Chapter presented an overview on the multitude of spatial representations
suggested for application to robot mapping. I have introduced a classification
scheme to characterize map representations according to their selection of map
features, their configuration representation, and their organization. The clas-
sification scheme is applied to derive strengths and weaknesses for classes of
representations. On the level of map features, I have drawn parallels between
map representations in robotics and shape representations in computer vision.
Making this connection explicit, advanced techniques can be transferred among
the research areas.

Map features can be classified into view-based representations, landmark-
based representations, and representations of knowledge about navigability of
space. I have argued for object-centered representations (sometimes called ob-
ject maps) that represent the boundary of navigable space. The review of map
features and shape representation demonstrates that shape feature representa-
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tions originating from the field of computer vision are applicable to the field of
map representations as well. There already exists a close connection between
structural (skeleton-based) shape representations and the utilization of Gener-
alized Voronoi Diagrams in route-based representations. Additionally, polylines
representing the contour of objects are utilized in computer vision as well as in
map representations. Boundary-based representations of navigable space using
universal polylines are particular adequate for map representations in robots
that need to be related to external map information, as the boundary of navi-
gable space is represented in both. So far, polyline-based map representations
have only been used for manual world modeling or compaction of point-based
maps. My work aims at devising the techniques for mapping using polylines.

On the level of configuration information, I have elaborated on the utility
of different modalities of spatial information and their representation. Con-
figuration knowledge comprises the modalities of distance, direction, topology,
and ordering. Representation formalisms can be classified into qualitative and
quantitative approaches. Rich information about the position of features is
valuable for distinguishing map features, as features and their location are inti-
mately connected. The richest information is offered by distance and direction
knowledge jointly represented in fine-grained coordinate-based geometry. I ar-
gue for registering polylines in a coordinate-based map. Such a representation
is a suitable basis for adopting efficient navigation strategies.

Besides coordinate-based geometry, additional information can be valuable
too. Determining a solution to the correspondence problem, configuration
knowledge extracted from the view of the robot is matched against the map;
plausible mappings respect configuration knowledge. The modality of ordering
information can be valuable to facilitate efficient consideration of configura-
tion knowledge by means of linear matching techniques. In general, qualitative
relations describe at an abstract, coarse level. Thus, they are well-suited to
make confident knowledge explicit in a configuration or to abstract from dif-
fering details, e.g. when relating knowledge sources of different granularities.
Exploitation of qualitative knowledge can lead to a reduction of the search
space in the correspondence problem, thus, qualitative knowledge is helpful for
deriving an efficient solution.

Map configurations have been reviewed, distinguishing uniform and hybrid
maps. Uniform maps offer a single view on the map representations, whereas
hybrid maps offer multiple views. The operators ‘embed’ and ‘link’ have been
described that allow distinct pairs of feature and configuration representations
to be combined to a map. I have discussed that in the scope of this work a
uniform amp is adequate. Such a map is easy to construct and maintain.

In summary, the review leads to the conclusion that a representation of
navigable space is essential to mapping and navigation. In particular, polylines
modeling the outlines of obstacles are adequate map features. Polylines can be
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interpreted as shape information and allow adopting shape analysis techniques
to distinguish individual features. Coordinate-based geometry is well-suited for
representing the configuration of individual polylines, but explicitly considering
a qualitative arrangement with respect to a suitable ordering appears advan-
tageous. Rich information of the quantitative representation can be combined
with efficient matching techniques that are based on qualitative information.
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Chapter 3

A functional analysis of robot
mapping

Just hold me close
Then closer still
And you’ll feel the probabilities pulling us apart.

Anne Clark, Poem For A Nuclear Romance

In this Chapter, I approach robot mapping from an algorithmic perspective.
I argue for a functional perspective on robot mapping and provide a decom-
position of it into distinct subtasks. I review approaches with respect to the
individual subtasks. Methods addressing these subtasks are algorithms that
operate on the underlying map representation. In my review, I acknowledge
the conclusions drawn from my review of map representations by focusing the
presentation on methods that are suitable for handling a representation of the
boundary of navigable space.

To classify robot mapping from a computational perspective, Thrun (2002)
examines the utilization of techniques to tackle uncertainty. In the following, I
refer to this classification as the uncertainty perspective. Thrun argues that un-
certainty in observations is the main reason that would make robot mapping a
challenging endeavor—different methods to handle uncertain information would
outline dimensions of potential approaches. Arguably, adequately handling un-
certain information is among the key challenges of robot mapping, but there
are other key challenges as well. In my introductory motivation, I argued that
sensibly processing of spatial information is one of these key challenges, too.
The uncertainty perspective takes a view that is independent of spatial repre-
sentation techniques underlying all components of robot mapping, including the
correspondence problem or the merging problem. The uncertainty perspective
abstracts from processing of spatial information.

Addressing spatial representation and reasoning, the uncertainty perspective
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offers no adequate means to review techniques of spatial information process-
ing. In context of this dissertation, it is most appropriate to identify distinct
subtasks that take a functional role in processing spatial information. I propose
a functional decomposition of robot mapping, which I refer to as the functional
perspective. This perspective focuses on the utility of individual approaches
with respect to specific spatial problems, such as the correspondence problem.
The functional perspective offers a classification scheme that is orthogonal to
the uncertainty perspective by focusing on spatial information processing.

In principle, several other views can be taken on robot mapping, depend-
ing on a specific aspect in focus. For example, primarily addressing dynamics
and changes in the environment, a perspective on handling temporal infor-
mation could be most appropriate. In current research, the uncertainty per-
spective is dominating. Virtually all approaches employ a stochastic modeling
to represent uncertain information. Advances in probabilistic techniques de-
marcate today’s state-of-the-art in handling uncertain information and have
significantly contributed to the first milestones in autonomous service robots
such as the museum tour-guide RHINO (Burgard et al., 1999a; Thrun et al.,
1998a). Achievements in computational stochastic have given rise to the popu-
larity of probabilistic reasoning, making these techniques an indispensable and
fundamental component in many approaches. Therefore, I describe relevant
techniques of probabilistic reasoning and discuss their principle characteris-
tics and interaction with spatial information processing, before I turn to the
functional analysis. Discussing basic properties of stochastic models, I derive
limitations and demonstrate how these techniques can benefit from advanced
processing of spatial information.

3.1 Addressing uncertainty with stochastic

Most of today’s approaches employ some kind of stochastic model to handle un-
certainty stemming from sensor data; probability distributions are represented
instead of single values. In its ultimate interpretation, the map itself is inter-
preted as a probability value depending on the side conditions of observations
made (cf., e.g. Montemerlo et al., 2002; Thrun et al., 1998b). In other words, a
thoroughly stochastic model interprets plausibility of data integration in terms
of probability and pursues computing the most probable map m dependent on
data d obtained by observation, i.e. argmax,, p (m | d). Some approaches even
aim for the full probability distribution p(m | d) instead of the single, most
likely map.

Though individual approaches differ, underlying stochastic foundations, mod-
els, and assumptions are the same. In the following I present a brief overview
about capabilities, limitations, and implications of stochastic reasoning.
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3.1.1 Stochastical foundations

The most import basis for stochastic reasoning in robot mapping is the Bayesian
theorem. Given some observationss o and a hypothetical explanation (model)
H, Bayes theorem expresses the so-called posterior probability of H under side
condition o:

plo| H) p(H)
p(o)

Put differently, the rule allows for a reverse in computing the conditional
probability of a hypothesis: to regard a generative conditional probability
p(o| H) of observing o in a hypothetical model H. The term p(o|H) is called
likelihood of the data and describes the probability to receive the observation o
when the model is given. The term p(H) is the prior probability of the model
and reflects one’s initial belief.

Any observation is affected by various distortions such as measurement
noise. It is widely assumed that, even though each single influencing factor
may be unknown, the overall distribution can be modeled using a normal dis-
tribution N (u, X) centered at the expectation p and with covariance 3.

For measuring in probabilistic domains the so-called Mahalanobis distance
is defined as a quadric form of z,y in relation to a covariance X, dy/(z,y) :=
(x —»)TY (2 — y). In the case of an one-dimensional Gaussion N (u,0), a
Mahalanobis distance of 1 to the center p marks a deviation by o. An im-
portant application of Mahalanobis distances is gating, e.g. in correspondence
determination: Candidates are pruned if the Mahalanobis between observation
and estimation (e.g. regarding position) exceeds a given threshold, which is
equivalent to the probability of correspondence falling below some confidence
value. The Mahalanobis distance allows for a covariance-sensitive threshold.

p(H |o) = (3.1)

3.1.2 Stochastic formulation of localization and mapping

Stochastic modeling of robot localization (and mapping) is based on Bayes the-
orem. The task of localization is posed as the task of computing the posterior
probability of a pose & at time ¢, given all previous observation data d;.; (con-
sisting of observations s1.; and odometry information 0;4) and known map m:

p (& | die,m) =ne p(de | die—1,&,m) p (& | dig—1,m) (3.2)

The denominator in Bayes theorem provides no helpful information in this
formulation and is commonly replaced by a constant 1 which provides the
scaling required to make the numerator a probability distribution (Thrun,
2000). Now, the Markov assumption, also referred to as static world assumption
(Thrun, 2000), is applied to express that the robot’s pose is the only state in
this model, i.e. that distinct measurements are independent from one another
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except for their relation to the view pose. This allows simplification of the
equation by removing dy.;_1 in the estimation of d; from the side conditions:

p(ﬁt ! dlzt,m) = mp (dt | §t,m)p(§t ’ dl:tfl) (3-3)

Applying the rule of total probability, the second term on the right hand
side of the equation is expanded:

p(gt ‘ dl:tam) = Utp(dt | £t7m) :
/P(ft | dit—1,&-1,m) p (§—1 | dig—1,m)dE—1 (3.4)
This permits another application of the Markov assumption, since the pose & is

only dependent on the last motion estimate o,—; and pose &;—;. This yields the
recursive form of probabilistic localization (Thrun, 2002; Thrun et al., 2005):

perception model

—N—
p (& | dig,m) =n p(se|&,m)

motion model

/p(ﬁt | or—1,&—1,m) p(&—1 | di:p—1,m)d&—1 (3.5)

To employ stochastic reasoning, a probabilistic motion model and proba-
bilistic perception model need to be defined. Generally, they are time invariant
so that the index ¢t may be dropped. The perception model provides the proba-
bility value of receiving a measurement s; given that the robot is located at pose
&. Scan registration techniques (scan matching) can be applied to compute this
value (Héhnel et al., 2002). Similarly, the motion model describes the probabil-
ity of being at pose & given the odometry reading o;_1 for the movement from
a previous pose &_1. Such model can be learned from empirical experiments
with a robot (Thrun, 2000).

For simultaneous localization and mapping, equations that express the pos-
terior probability of the robot being at pose & and the map being m; can be
derived in a similar way. Assuming that the map is independent of time and
the robot motion is independent of the map, the resulting equation reads as
follows (cf. Thrun, 2000, 2002)!:

p(&m | dig) = nip (se | &, m) /p(ﬁt | o6, &—1) P (§—1,m | dip—1)dE—1 (3.6)

LAs can be observed, the map does no longer appear in the side conditions of p(&|---),
since it can be dropped by assuming independency of robot motion and map, which is a
difference to the localization model of Eq. 3.5. The assumption can be regarded as a tribute
to obtaining a computable formulation by escaping the interdependency of localization and

mapping.
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Besides the perception and motion model, the equation relates the joint pose
and map estimate p (§;, m | d1.1) only to its preceding value p (§4—1, m | d1.4—1).
The recursive characteristic of this formulation has let to the name recursive
Bayes filter. This formulation underlies virtually all stochastic frameworks to
robot mapping; approaches to obtaining a computational solution to it differ,
though.

3.1.3 Kalman filter

The Kalman filter defines a stochastically sound method for combining mea-
surements of the same physical entity as, for example, is performed during map
update. It is assumed that the values 01,09 are to be combined and both are
represented by normal distributions N (p, %;), ¢ € {1,2} and that 01,0, are
stochastically independent. The combined measurement is also described by a
normal distribution N (u, ¥) with expectation value according to the average
of both expectations weighted with their respective covariance (for example see
Bauer, 1991):

(Zr 20 7 (S + 25 )

g L 57)
= (=" +3251)

This builds the basis for the Kalman Filter. Let x; denote the true state of
some system and Zj an estimation thereof. The Kalman filter is applicable, if
the system can be described using linear functions. Kalman filtering can then
be used to stochastically propagate the estimate state & according to a system
model

T = AZp_1 +Bug_1 (38)

where A is the state transition function and Buy_; describes the effect of
an added control ug_q in the previous time step; the covariance X according
to T gets propagated, too. Now, a measurement z; of the current state is
obtained which is assumed to be linearly dependent on the state with added
Gaussian noise, i.e. z = Cxp_1 + €4—1; the covariance X o g of 2 is required
to be known, too. This allows refinement of the propagated estimation Zj in
combination with the measurement z; to a new estimation of Z;1; (Kalman,
1960):
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Tpy1 = T + K (2 — Cayg)
St = (Id - ch:,m)
whereby (3.9)
K =3,Cc7(Cc,c"+5,)7!
T = A AT £ Sap

Kalman filters provide a popular technique to construct a map that consists
of locations of landmarks and that incorporates uncertainty in landmark posi-
tion given that the correspondence of observations is known (Neira & Tardds,
2001). Gaussians are used to model the posterior p (&, m | di.t). The proba-
bilistic state &, m is a high-dimensional vector comprising, in the case of planar
maps, robot pose (x,y, ¢) and x—, and y—coordinates for all landmarks. How-
ever, the necessity to specify linear models for perception and motion is widely
regarded as an inadequate restriction (Thrun, 2000; Thrun et al., 2005).

To allow for non-linear models, the Extended Kalman Filter (EKF) has
been introduced which approximates the model’s non-linearities by means of
a Taylor series approximation (see Smith & Cheeseman, 1986). The overall
procedure is similar to standard Kalman filters. Though the EKF advances
stochastic reasoning towards less restricted system models, prerequisites for
sound application of Kalman filters in general may still not be fulfillable, in
particular, it may not be adequate to model uncertainty as Gaussian noise su-
perimposed on a measured value (Thrun et al., 2005). Since Kalman filters bear
quadratic computational complexity in the number of landmarks for individual
map updates, research has concentrated on speeding up computation of the
posterior p (&, m | di.t), e.g. by means of efficient data structures based on a
decomposition of map (Frese, 2005) or particle filters (e.g. Héahnel et al., 2003;
Montemerlo et al., 2002, 2003).

3.1.4 Particle filter

Particle filters provide an alternative approach to stochastic propagation. Each
particle represents an individual hypothesis which, in the case of simultaneous
localization and mapping, consists of a robot pose and a map. Particles rep-
resent distinct hypotheses that, if taken together, approximate a probability
distribution such as, e.g. the posterior introduced in Eq. 3.6. There are sev-
eral variants of particle filter algorithms which, roughly speaking, operate on
individual particles by integrating new information into the particle’s hypoth-
esis and updating an importance weight. To avoid degeneration of importance
weights, i.e. convergence of all but one weight to zero, a resampling is performed
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to re-select particles from the distribution—see Arulampalam et al. (2001) for
details.

Particle filters allow for approximation of arbitrary distributions and ex-
tend Kalman techniques in that respect. For some distributions, an adequate
approximation may require many particles, though. Since the required amount
of data can easily outgrow feasibility when either large sets of particles are
required? or large environments are mapped, input data needs to compacted.

Héahnel (2004, Chapter 5) proposes application of incremental scan match-
ing techniques to interpret a sequence of range finder measurements as pose
measurements of the view pose similar to odometry information. Individual
particles only need to represent a sequence of poses rather than a complete
map; the sequence of scans can be stored once and shared by all particles to
enable rendering of a point-based map.

Particle Filters are acknowledged for their capability of handling distribu-
tions other than Gaussians. Moreover, they are claimed to improve efficiency
(Thrun, 2002). Migrating from an analytical representation of uncertainty (e.g.
parameterization of Gaussians) to a discretized one can introduce severe compli-
cations, though. Most notably, the so-called particle depletion problem (van der
Merwe et al., 2000) causes—as a side-effect of the resampling step—the set of
particles to converge to the maximum likelihood of the posterior rather than
truly approximating the distribution. To handle this effect, parameters for the
number of particles and resampling need to be chosen carefully. A significant
problem in practical application is discussed by Stachniss et al. (2004): if a
robot travels through an environment, visiting one part of the environment
significantly more often than another, the variation in trajectory hypotheses
depletes for less frequently visited areas. This can easily result in mapping
errors, if critical uncertainty information for some poses vanishes and poses
previously exhibiting uncertainty are now considered certain information (see
Fig. 3.1 for an illustration). Technically speaking, the represented distribution
has partially converged to the maximum likelihood. This is a general problem
of particle filters as has been shown by Bailey et al. (2006). So, application
of particle filters to represent uncertain pose histories along a non-cyclic path
with constant estimation quality would require an ever-growing set of particles
to maintain approximation quality for remote poses, since pose approximations
are propagated from predecessors—inherent approximation errors get propa-
gated as well and accumulate. As of today, this effect can only be avoided
by appropriately directing the robot during the exploration phase (cf. Stach-
niss et al., 2004). During regular robot operation with occasional map updates
to respond to changes, such a technique may not be applicable, though. In
summary, particle filters represent arbitrary distributions, but require careful

2Hihnel (2004, Chapter 5) reports employing 100 to 500 particles to successfully map
environments from 12m x 50m to 232x198m, for example.
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Figure 3.1: Illustration of the particle depletion problem by Stachniss et al.
(2004). Traversing the left loop for some time, the uncertainty in the path,
which took the robot to the start of the loop, decreases (left image). Moving
on to close the outer loop, no fitting hypothesis for the remaining part of the
cyclic trajectory remains represented and subsequent mapping fails.

adaption to the specific environment and may still not be applicable to derive
a map from sensor information along arbitrary paths.

3.1.5 Multi-hypothesis tracking

Approaches to multi-hypothesis tracking (see e.g. Cox & Leonard, 1994; Jens-
felt & Kristensen, 1999; Roumeliotis & Bekey, 2000) allow for combining the
advantage of the Kalman filters, namely its sound technique for Gaussian distri-
butions in observations with known correspondence, with the ability of particle
filters to approximate arbitrary distributions. In this category of approaches,
the uncertainty in correspondence determination is represented by particles, i.e.
single particle represents the hypothesis of a specific history of correspondence
determination. This allows utilization of Kalman techniques for propagating
position uncertainty, as the correspondence relation in context of individual
particles is fixed. Technically speaking, the full posterior p(m, &|d;.+) is decom-
posed into individual Gaussians representing landmark positions and “glued to-
gether” by an analytically intracktable distribution over correspondences which
is modeled using particle filters. Methods of decomposing a stochastic dis-
tribution are referred to as Rao-Blackwellization (Doucet et al., 2000). The
particles are weighted by a plausibility estimated for the complete sequence
of correspondences. As Thrun (2002) points out, the main problem in these
approaches is that ambiguities in correspondence determination can cause the
amount of required particles to grow exponentially as new observations arrive.

3.1.6 Discussion

Stochastic reasoning techniques provide a sound framework to calculate with
uncertain information, given that uncertainty can be modeled by a probability
distribution. Various techniques have been developed that allow propagation of
stochastic information, i.e. the accumulated uncertainty of landmark position
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can be inferred, when the landmark is observed in relation to the uncertain
pose of the robot.

To apply stochastic reasoning, several assumptions need to be made. Most
importantly, individual measurements need to be stochastically independent
from one another. However, in practical applications this is hardly the case.
Measurements are affected by systematic distortions, like those resulting from
misalignment of the robot’s sensory device at certain places in the environment
(cf. Section 3.4.3 for discussion and illustration). Furthermore, object surfaces
can display characteristic noise. Complications of applying stochastic reasoning
techniques also arise, if correspondence determination is subject to errors; for
example, the Kalman filter will not converge under these conditions (Neira &
Tardds, 2001).

The example depicted in Fig. 3.1 demonstrated that a purely stochastic for-
mulation is limited: subsequent mapping (middle and right image) introduced
overlapping, self-intersecting corridors in the map. A more sensible processing
of spatial information should have rejected any attempt to register spatially con-
flicting knowledge. A sensible approach to the correspondence problem should
have registered a correspondence despite a moderate position error. In the case
of the middle map in Fig. 3.1, the position estimate deviates by just about half
the corridor’s width. Nevertheless, no correspondence is established, but the
conflicting knowledge sources are simply overlaid.

To conclude, efficient and sound techniques exist for reasoning about infor-
mation suffering from measurement noise. However, handling the full band-
width of uncertainty inherent in robot mapping tasks is beyond today’s ca-
pabilities. Furthermore, it is questionable if a stochastic framework can pro-
vide the required means at all, since application of stochastic models requires
many simplifying assumptions to be made in order to fit to a computation-
ally tractable model; these assumptions introduce effects not thoroughly un-
derstood. Advancing intelligence in spatial information processing in terms of
relaxed requirements on estimates can help to overcome limitations faced in
current approaches.

3.2 Functional components of robot mapping

In the following, I present my functional approach to analyzing algorithms in
robot mapping. I distinguish four distinctive tasks; in one or the other way,
any approach to robot mapping handles these tasks:

e View acquisition from sensor data
e Correspondence determination between view and map

e Alignment of the reference systems of view and map
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e Merging view information and map

View acquisition describes the process of mapping sensor information to a
spatial representation representing the robot’s view. By sensor information, I
subsume information obtained by the robot’s own sensors and externally sup-
plied information, such as maps or information obtained by communication
with a fellow robot (cf. Section 1.1). In that sense, external information pro-
vides an abstract sensor reading. View extraction comprises two steps: feature
detection and construction of a representation of feature configuration. Feature
detection interprets sensor readings according to the types of features employed
in the robot’s map representation, e.g. a grouping into geometric primitives oc-
curs. Feature extraction is a complex process that is discussed in detail in
Section 3.4. To construct the configuration resembling the robot’s view, spatial
information interrelating the extracted features is made explicit according to
the representation formalism at hand; this step is straightforward and is not
explicitly covered.

Correspondence determination relates spatial knowledge from the observa-
tion and the map. To achieve this, matching algorithms are employed which
compute a plausible correspondence given the uncertain and partial informa-
tion retrieved from the observation and the map. In stochastic frameworks,
correspondence determination rates hypothetical correlations of observations
and map in terms of a probabilistic measure, i.e. the perception model. Put
differently, all possible associations are rated by a matching plausibility.

Alignment procedures determine the mapping from the observation’s local
frame of reference to the map’s absolute frame of reference on basis of a match-
ing of observation and map. In other words, the robot is localized.

Merging is used to update the internal map on the basis of the current
observation. At this point, observation and map are already aligned. Merging
includes registration of newly explored features and refinement of repeatedly
observed features.

These four functional components may be combined in different ways. In-
terconnection of components characterizes the overall functional architecture.
In the following, I discuss two alternatives and their implications.

3.3 Mapping architectures

Mapping architectures are defined by the interrelation of the individual func-
tional components. Two principle mapping architectures are commonly em-
ployed. First, the sensor data may be processed sequentially as it arrives.
Features are extracted from the sensor data and matched against the map.
Finally, observation and map are aligned on the basis of the correspondences
determined and the map is updated. This category of architectures aims at
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providing up-to-date map information as new sensor information arrives. Such
step-by-step map construction is commonly referred to as incremental mapping
(cf. Thrun, 2002). A second category of approaches processes all sensor data
in parallel. First, the robot collects sensor data which is then interpreted to
features, correlated, and integrated to a map representation. I refer to such
all-at-once approach as closed mapping. In the following, I discuss these alter-
natives in more detail.

3.3.1 Incremental mapping

Incremental mapping approaches compute an up-to-date map in an any-time
fashion as new information arrives. The current map (m); at time step ¢ con-
tains all information which, in combination with the new observation, is re-
quired to update it to (m)+1. The new observation is used to refine the in-
formation represented in the map and new features get registered when they
emerge. Given that involved computations can be carried out fast enough, in-
cremental mapping allows for real-time map construction and is, henceforth,
the most commonly pursued approach (cf. Thrun, 2002).

Dissanayake et al. (2001) point out the importance of correct correspon-
dence determination: no information besides the current map is retained so
that recovering from past errors is often not possible. In presence of erroneous
feature association, a statistical refinement procedure may not converge.

The key challenge in incremental mapping is to handle cyclic environments.
Accumulating localization errors in the course of ongoing mapping can lead to
large errors in position estimation. Fig. 3.2 illustrates this using an example of
Gutmann & Konolige (1999): a robot has traveled a cyclic path and the accu-
mulated error caused the estimated robot pose to significantly differ from the
true pose. As a result, the robot did not realize that it re-entered a previously
visited area. Due to not discovering a correspondence of places, subsequent
mapping obfuscates the map (see Fig. 3.2 or middle and right map in Fig. 3.1
on p. 80).

3.3.2 Closed mapping by Expectation Maximization (EM)

An alternative to incremental mapping algorithms are closed mapping algo-
rithms which consider all sensor data in parallel after the robot has finished
exploration. Simultaneous evaluation of sensor data helps to handle the pejo-
rative effect of accumulating mapping errors in incremental approaches. The
key algorithm utilized in closed mapping is the statistical Expectation Max-
imization (EM) algorithm (Thrun et al., 2005). It determines the maximum
likelihood map by optimizing its parameters. In robotics, EM has also been ap-
plied to various other tasks, including feature extraction (cf. Section 3.4.2). 1
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(a) (b)

Figure 3.2: (a) Accumulation of localization errors is a side-effect of purely
incremental mapping, straight hallways are bend in the map. The robot may
not notice that it has re-entered a previously visited area (marked in (b)). The
map computed from sensor data is taken from (Gutmann & Konolige, 1999).

outline EM in greater detail here and will reference back when reviewing feature
extraction.

EM algorithms have been applied to mapping by congruently aligning sets
of range measurements (Burgard et al., 1999b; Thrun et al., 1998b) and to
consolidate a map of points to a more compact representation, e.g. by fitting
polylines (Latecki & Lak&mper, 2006b; Veeck & Burgard, 2004). Additionally,
EM has been used to feature extraction (Sack & Burgard, 2003) from single
observations similar to interpreting an overall map into geometric primitives.

EM is applied to determine the optimal parameter vector ¥ with respect
to some quality measure given some data d. In the case of constructing a
point-based map or grid map, the data d constitutes from the robot’s local
observations, e.g. range scans. Poses at which the data has been recorded define
the parameters & (Burgard et al., 1999b; Thrun et al., 1998b). When applying
EM to construct a map of landmark positions, # describes the positions of
landmarks and the observation poses (Koenig & Simmons, 1996; Thrun et al.,
1998b).

The EM algorithm is iteratively performed as a two-step process: In the
expectation step (E-step), the probabilistic support of the current step’s choice
of parameters (), is evaluated, i.e. it is determined how well the data accords
with the expectation induced by (#)s. In the successive maximization step
(M-step), (Z)s is optimally fit to the expectation, yielding a new parameter
vector (Z)sy1. In the case of EM applied to maps of landmarks, position of
landmarks and poses are selected to most congruently fit the observation using a
probabilistic support measure as weighting, i.e. highly probable correspondences
have a stronger effect than less probable correspondences.

EM can be viewed as breaking up the interdependency of localization and
mapping (cf. Section 1.1.1) by alternately developing a hypothesis of local-
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ization for all poses (while retaining the map) and improving the map (while
retaining the poses). In this sense, the E-step can be related to localization and
the M-step to mapping (cf. Burgard et al. (1999b)).

Two problematical observations can be made about EM: first, the amount
of model parameters must be known in advance. In mapping, this is the case
when poses constitute the parameters; a fixed set of view poses corresponds
to the individual observation. However, if EM is applied to compute a map
of landmarks, the overall number of different landmarks must be known in
advance (cf. Koenig & Simmons, 1996; Thrun et al., 1998b). Typically, this is
not the case. Similarly, when fitting geometric models to data, the number of
models is usually not known in advance. Thus, the number of parameters is
initially unknown. Adaptively determining the amount of model parameters has
been proposed for handling this complication. Some authors (Bennewitz et al.,
2002; Sack & Burgard, 2003) apply EM using an estimated set of parameters
and inspect the outcome of EM. If too many data points remain unmapped to
the primitives described by the parameters, EM is restarted with an increased
number of primitives and according parameters. Analogously, the number of
primitives is decreased if a primitive does not receive sufficient support by the
data. In the case of determining line models, this is indicated by lines that
are closest to few data points only; roughly speaking, too many lines are too
densely arranged. The outlined technique to adapt the amount of parameters
may require careful fine-tuning of parameters. If EM needs to be restarted
often, this can become computationally expensive.

In an alternative approach to adapting the set of parameters, Latecki &
Lakdmper (2006b) modify the EM framework itself. Their objective is to fit
polylines to aligned range data. To adapt the set of parameters, the EM frame-
work is extended by introducing line splitting and line joining steps. These
steps are motivated by cognitive principles of perceptual grouping, i.e. Gestalt
laws (Wertheimer, 1925).

The second problem in EM stems from EM being an iterative optimization
technique: EM is susceptible to getting stuck at locally optimal parameter vec-
tors. Therefore, a good initial estimation for the parameter vector Z is required.
Burgard et al. (1999b), for example, deduce this estimation by first running an
incremental mapping algorithm on the data and thereby localizing the robot
considerably well. Latecki & Lakdmper (2006b) present nice illustrations of
local minima for the task of line fitting; they claim their approach to master
local minima purely by adapting the number of model components.

3.3.3 Discussion

Although Thrun (2002) regards EM algorithms as providing today’s most accu-
rate maps, the capabilities of EM are quite restricted. First of all, a good initial
estimation of model parameters is required, so that sensor information needs
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actually to be preprocessed by a more robust mapping algorithm. Second, the
accuracy of EM algorithms requires consideration of all sensor information in
parallel and can, consequently, not be performed in on-line applications. The
computational cost of EM in mapping applications scales with the operating
time of the robot, since it directly depends on the amount of scans to be pro-
cessed. Regardless of the robot’s working environment, the amount of data
collected will exceed the boundary of computational feasibility at some point.
Moreover, current EM algorithms are not able to handle changes in the environ-
ment, i.e. to handle the presence or absence of an environmental feature from
one time step on.

In contrast, incremental approaches enable online map acquisition and,
therefore, allow the robot to respond to new observations and changes in the
environment. However, incremental approaches suffer from accumulating errors
along paths traversing previously unvisited parts of the environment. However,
accumulating errors are not the core of the problem: whenever the robot re-
enters known terrain and is able to recognize the part it is re-entering, the robot
correctly solves the correspondence problem. In such situations the accumu-
lated error can be canceled out (Gutmann & Konolige, 1999). Loop detection
requires tackling the correspondence problem in presence of high pose uncer-
tainty. In other words, advancing correspondence determination by reducing the
influence of pose estimates makes incremental mapping the superior approach.
Aiming at advances in correspondence determination, I adopt the incremental
mapping paradigm in my approach.

3.4 Feature extraction

Feature extraction is the process of interpreting sensor information with respect
to a parametric model of the environment. When, for example, range data is
interpreted to line segments, position, orientation, and number of line segments
are the parameters to determine. Parameters are chosen to model the sensor
data adequately. Often, adequacy of parameters is evaluated by means of sta-
tistical error analysis. The distance between the points obtained from range
data and the extracted boundaries determines the quality of feature extraction.
To interpret range measurements to a representation of the boundary of navi-
gable space, approaches that fit lines or polygons to sensor data are particularly
relevant. These approaches build the foundation of the shape extraction I de-
velop and which is presented in Section 5.4. In principle, other models can be
employed to describe the boundary of navigable space—for example, fitting of
parametric curves like splines which are widely employed in computer graphics.
However, such techniques appear difficult to combine with shape distance mea-
sures developed for comparing contours. This work focuses on extraction and
handling of polygonal curves, which are a solid basis to shape analysis and robot
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mapping. Exploring alternatives and developing appropriate shape analysis is
beyond the scope of this work.

3.4.1 Line fitting

Utilization of lines to represent obstacle boundaries is a popular approach (cf.
Section 2.1.3) and different approaches for interpreting range data to lines have
been proposed. Geometric world models that solely employ straight lines dis-
play shortcomings (cf. Section 2.1.4) which can, in principle, be overcome by
grouping line segments to more universal polygonal curves. This makes the
process of line extraction relevant to extracting polygonal curves.

If a set of data points is known to constitute a line, line parameters can
easily be determined using linear regression. Therefore, the true objective in
line fitting is to determine the grouping, i.e. to determine the set of points
supporting the individual lines. Hereby, approaches in robotics can rely on
the circular order of points obtained from a LRF. Obstacle surfaces (or parts
thereof) correspond to connected subsets of the data points. Grouping points
in a laser range measurement to distinct surfaces is equivalent to determining
object transitions in the sequence of data points. Approaches to line fitting
described in the literature can be classified into three groups: generalization,
iterative splitting, and Hough Transform.

Generalization techniques are sequential algorithms. They have been com-
prehensively reviewed by Stein (2003) in the context of interpreting sequences
of positions to trajectories. Generalization to extract lines is utilized by Rofer
(2002), who employs the variant developed by Musto et al. (1999). Points re-
trieved from a LRF are sequentially processed in the order provided by the
sensor. The first two points are used to initialize the line parameters for the
first line. Subsequent points are tested whether they fit to the line or not;
the distance of a point to the line is determined and compared against a fixed
threshold. If the point is close enough, it is integrated in the line by updating
the line parameters. If not, a new line is started using the current point as start
point. Generalization is an efficient algorithm of linear complexity with respect
to the number of points.

Iterative splitting (Duda & Hart, 1973) is performed recursively. Gutmann
(2000) extensively describes its application in the context of robots equipped
with a LRF. A single line is fit to all points using linear regression. While
line fitting yields a standard deviation exceeding a fixed threshold, the set of
points is split at the point farthest away from the fitted line. The algorithm is
recursively invoked on the two resulting subsets. This results in a computational
complexity of O(n?), where n denotes the number of points. The extraction
is parameterized by the threshold for maximal deviation in line fitting and the
minimum number of points required to constitute a line.

Forsberg et al. (1995) suggest an adaption of the Hough Transform known
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from computer vision (Duda & Hart, 1972). Approaches based on the Hough
Transform map Euclidean space of data points to parameter space (here: line
parameters). Clusters in the parameter space are interpreted as support for
a specific set of parameters. The Hough Transform is particularly valuable to
detect lines in fragmentary observations, e.g. if scattered points constitute a
line (Duda & Hart, 1972). Pfister et al. (2003) extend the Hough Transform by
including a statistical error estimate into the line extraction. Line parameters
determined by Hough Transform are adapted optimally to fit a statistical model
of measurement errors using numerical optimization. Unfortunately, details on
how optimization can be performed are omitted and no empirical run times are
presented.

3.4.2 Polygonal line fittting

The task of interpreting a contour described by points to a polygonal repre-
sentation is an important task in the context of computer vision and has been
intensively studied in this context — see Kolesnikov & Franti (2005) for an
overview. In the context of robotics, only few approaches deal with extraction
of polylines.

Fitting polylines to points requires balancing between the amount of cor-
ner points to use and the desired proximity of the points to the polyline. In
principle, a set of points may be interpreted as a single polyline by using each
point as corner point. This yields the closest fit to the data, as each point is
contained in the polyline. However, such approach is not useful. First, the
resulting polyline does not improve compactness of the input data in terms of,
as all data is retained. This counteracts to the slenderness geometric primitives
can provide in map representations (cf. Section 2.1.4). Second, as sensor data
is affected by noise, the polyline is fit not only to the data, but to the noise as
well—this is known as overfitting.

For balancing between proximity to the input data and compactness of the
polyline, i.e. the amount of corner points, a parameter € can be introduced to
specify the maximum distance between data points and the resulting polyline.
The parameter can be chosen in accordance with a noise model of the sensor
data. Larger noise in the data is countered by larger tolerances e. Determination
of the curve using the fewest points to approximate the data with required
tolerance € can be performed in O(n?) time (cf. Kolesnikov & Frinti, 2005),
where n denotes the number of data points.

In robot mapping, an observation may cover several independent objects,
which each require a polyline to be modeled. The aforementioned approaches
to approximating points by polylines assume that the points are grouped to
individual contours. So, sensor data needs to be grouped first. Gonzalez-Banos
et al. (1999) suggest a fixed threshold to cluster points (the threshold shall
be chosen to obtain one cluster per obstacle). Each of the clusters is then
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approximated by a polyline. The number of vertices is minimized such that the
distance between point and polyline does not exceed a distance threshold.

Determining a suitable threshold for grouping sensor data may be difficult.
Depending on the distance of the sensor to the obstacle, the distance of con-
secutive points obtained from the sensor varies, as LRFs sample with a fixed
angular resolution3. Latecki & Lakimper (2006b) suggest a dynamical adaption
of the amount of model components by extending the EM algorithm?* in their
application of interpreting a set of point in terms of a generalized definition of
polylines. They apply perceptual grouping techniques motivated by the Gestalt
Laws (Wertheimer, 1925) to determine whether individual line segments can be
combined to a polyline. Although intended for interpretation of comprehensive
maps composed out of aligned LRF scans, the approach can also be applied to
individual scans. It is parameterized by the desired approximation accuracy.
A related approach is suggested by Veeck & Burgard (2004), which requires
several restarts of the algorithm to adapt the model components though.

In the context of computer vision, a comprehensive discussion of recovering
polygonal shape information from noisy data is presented in Latecki & Rosenfeld
(2002). The utility of an alternative to model fitting is described, which builds
on cognitively motivated principles of shape similarity consideration. On the
basis of a local vertex relevance measure, a discrete curve evolution (DCE)
(Latecki & Lakadmper, 1999) is performed to cancel out the effects of noise.

3.4.3 Discussion

Extraction of polygonal obstacle boundaries from range data is confronted with
the dilemma an unknown model to the data. Observations comprise an un-
known amount of (freestanding) objects that need to be modeled by individual
polylines. Even fitting a polyline to a single model component is non-trivial and
requires carefully balancing proximity to the data of fitting vs. generalization.
Line fitting techniques approximate contours by lines—likewise, a parameter
for balancing proximity to the data vs. generalization is required. In the follow-
ing, I discuss characteristic properties of line fitting and polygonal line fitting,
how to handle the grouping problem, and how to assess the appropriateness of
extracted features.

Line fitting versus polygonal approximation

Line fitting is well-suited to interpret straight obstacle surfaces to lines and,
by combining individual line segments, it can be applied to extract polygonal

3Using a SICK LMS-200, the angular resolution is up to 0.5°—this yields a distance of
approx. 0.4 cm between consecutive points sensing an obstacle in range of 1 meter and approx.
4 cm in range of 10 m, respectively.

1See also Section 3.3.2
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(a) (b)

Figure 3.3: Interpreting curved obstacle boundaries (circles denote points on
the contour) to linear segments can introduce self-intersections, if line segments
are independently fitted to the data (solid lines); (b) shows a magnification of
the marked area in (a).

models. Virtually no environment purely exhibits obstacles with straight out-
lines. Applied to curved contours, line fitting can introduce systematical errors,
as an inappropriate model is fit to the data. As illustrated in Fig. 3.3, this can
result in self-intersection of extracted boundaries. In the featured example, a
flare-shaped boundary is sampled to points and is used as input for a recursive-
split line extraction; this results in three individual line segments marked 1 — 3.
Retaining the order of points on the contour, the corresponding line segments
are joined (dashed lines in Fig. 3.3 (b)). Unfortunately, such process can result
in self-intersections, as shown in the illustration. Self-intersecting lines do not
adequately model real world spatial properties and need to be avoided.

By considering a wider spatial context than individual lines, polygonal line
extraction can avoid self-intersection (see Fig. 5.4 on page 138 for the outcome
of the shape extraction developed in this work). Of the approaches to fitting
polylines to range data, EM approaches appear to be the computationally most
expensive. In general, the computational complexity is difficult to determine as
EM approaches iterate until convergence is reached and it may be impossible
to estimate the number of iterations required. Computing times are likely to
exceed feasibility for use in online mapping systems®. Thus, the more efficient
approaches to polygonal approximation are better suited. Standard approxima-

®Veeck & Burgard (2004) state a compute time of about 100 minutes for 268,640 laser
beams. In the case of a LRF providing 361 beams per half-plane at a rate of 50 scans a second
(e.g. SICK LMS 200 LRF), this is an equivalent of nearly 15 seconds real-time.
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Figure 3.4: Four sets of points are obtained by simulated sensing of a straight
surface; Gaussian noise is superimposed on the measurements. As a result of
a fixed grouping threshold in presence of measurement noise, a single line-like
object may be interpreted as multiple lines; the four exemplary outcomes yield
a grouping into 1-5 line segments.

tion techniques require to specify a maximum tolerance, whereas the approach
by Latecki & Rosenfeld (2002) utilizes a vertex evolution process that allows
for various stop criteria.

Grouping in feature extraction

The main challenge in determining a representation of the boundary is to find
a suitable grouping, i.e. a mapping of data points to model components (poly-
lines), and, in the case of line fitting, grouping individual object surfaces to
linear patches. One can distinguish two approaches: conservative strategies
that only group local clusters and progressive strategies that also aim at finding
clusters constituted by distributed points. Any approach that sequentially pro-
cesses the sensor data and indicates an object transition, whenever the distance
of consecutive points exceeds a threshold, pursues a conservative strategy. Line
fitting by generalization and splitting in polyline extraction (Gonzélez-Banos
et al., 1999) are representatives of this category. These approaches ensure that
new groups are formed if an object transition is possible—this may result in
more model components than physical entities. For example, if an obstacle is
partially occluded, visible fragments are interpreted as distinct groups. Besides,
if thresholds are used to determine object transitions, grouping is affected by
small differences on the input data. This can result in an alias problem, de-
tection of multiple, distinct features instead of a single one (see Fig. 3.4 for
illustration).

Line fitting by Hough Transform and the EM fitting developed by Sack &
Burgard (2003) are progressive approaches as they are capable of determining
clusters constituted by distributed points. Especially the Hough Transform
addresses grouping into comprehensive clusters, even if the observation is frag-
mentary. In the above example of some partially occluded object, line fitting by
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means of the Hough Transform enables to group the individual fragments that
are observable at separated positions. However, such an approach gives rise
to serious complications. Whenever two object surfaces of distinct, freestand-
ing obstacles are (nearly) collinear, they are grouped together, interpreting the
unobserved link between them as an occluded obstacle boundary. The result-
ing feature representation does not agree with physical reality. Erroneous links
declare truly passable space to be blocked, possibly leading to complications
in path-planning. Moreover, erroneously blocked space has a severe effect on
correspondence determination. Erroneously inferring a link between separate
obstacles ignores an opening between obstacles through which arbitrarily exten-
sive parts of the environment can be observed. An observation can significantly
differ from the view that can be inferred according to the map. This can hinder
matching observation and map which inhibits robot localization.

In contrast, conservative groupings may miss connectivity of observed fea-
ture fragments, declaring truly blocked space to be passable. If the gaps be-
tween feature fragments are smaller than would be required for the robot to
pass through, these gaps have no effect on path-planning. So, erroneous link-
age of distinct obstacles implied by progressive groupings has a worse effect
on the map than erroneously missed links in conservative groupings. Thus,
conservative grouping appears to be more appropriate for robot mapping.

Notably, the grouping that truly resembles real world object transitions is
unknown. Therefore, any approach for extracting extended features remains
a heuristic approach, possibly determining an inadequate grouping. Besides,
determined groupings are subject to uncertainty in sensor data. Thus, it can
be necessary to consider variations of the determined grouping.

Assessing quality in feature extraction

Sensor data is affected by measurement noise. If a straight obstacle surface
is scanned by a LRF, linear regression can be employed to fit the line param-
eters optimally to the model, i.e. to determine the line receiving the largest
support by the sensor data. Statistical error analysis can then be applied to
keep track of the residual uncertainty in line parameters (Pfister et al., 2003).
This suggests that a suitable goal in feature extraction is to aim at an opti-
mal fit. However, there are several complications that inhibit achieving desired
optimality in feature extraction.

First, the aforementioned optimal fitting of line parameters assumes that
the surface is known to be straight and the sensor data only to be affected by
measurement noise. Many object surfaces are not straight and it appears im-
possible to reliably detect straightness. Interpreting sensor data in terms of not
sufficiently adequate models introduces systematical errors, i.e. stochastically
dependent, intractable errors. This is particularly the case of fitting straight
line segments to curved contours, but, unfortunately, the problem remains for
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Figure 3.5: Interpreting surfaces to line segments introduces errors dependent
on the boundary’s visible part. In each of the three images, the boundary
fragment marked by the box is approximated differently. Differences solely
depend on the visible fragment.

polygonal curve approximation as well. For example, by fitting a polygonal
curve to a nearly straight obstacle boundary can be dependent on the visible
fragment of that boundary. This is illustrated in Fig. 3.5. In the illustration,
the visibility of both the upper and lower end of the contour influences the
contour orientation of the middle part. The quality of feature extraction or,
equivalently, the approximation error can only be determined with respect to
the observation at hand, but not with respect to the true environment.

Furthermore, if error characteristics are dependent on unknown properties
such as the kind of surface material sensed, it is questionable if a sound error
model can be designed at all. By empirical analysis of LRF data, I discovered
greater distortions scanning semi-translucent obstacles (toned glass doors with
wire frame) than opaque, white walls.

As a complicating fact, the robot and the sensor are typically not exactly
leveled out. Hence, the LRF scans obstacles at varying scan heights and orien-
tations, depending on the orientation of the sensor. This problem is inherent to
any kind of features—including direct uninterpreted use of measured points. For
example, such distortions can be caused by bumps in the ground. Misalignment
of the scan line occurs when the robot drives on the bump. Thus, view pose and
distortion are stochastically dependent errors. A possible effect of misalignment
is depicted in Fig. 3.6. Sensor information can differ from objectively true data
in ways that cannot be described in known statistical uncertainty frameworks,
since these deviations are strongly dependent on the view pose and on the type
of environment sensed (cf. Section 3.1.2 and Eq. 3.6). In other words, even if
the boundary could precisely be extracted from the data, the interpretation of
sensed information to obstacle boundary is affected by distortions.

To sum up, one can find a variety of line extraction techniques ranging
from heuristic approaches with linear complexity to computational expensive
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Figure 3.6: Misalignment of the scanning device results in deviations in the
observable boundary. (a) A robot misaligned by a jacket on the floor faces a
shelf. (b) Scan fragments corresponding to the shelf illustrate the difference of
a robot equally leveled out (top) and a misaligned robot (bottom).
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approximations which seek to compute an optimum fit. The core problem is
to determine the grouping. Unfortunately, it remains unknown which points
constitute an obstacle or a single straight surface. This means that any approach
is heuristic, as it estimates the grouping.

The full spectrum of residual uncertainty in extracted features cannot be
modeled easily. Thus, some distortions in feature extraction cannot be engi-
neered away. The utility of approaches aiming at optimally fitting models to
sensor data appears difficult to comprehend, as statistical criteria for assessing
the quality of model fitting rely on assumptions, e.g. the grouping is assumed
to be known or surfaces are assumed to be straight. Notably, difficulties in
feature extraction have an impact on stochastic frameworks that reason about
uncertainty. Generative models that stochastically evaluate likelihood of sensor
readings constitutes one fundamental component in stochastic frameworks (cf.
Section 3.1). If no sound model of uncertainty in feature extraction is provided,
erroneous conclusions may be drawn. This should, however, not be interpreted
as a consent to completely drop statistical analysis, since results documented in
the literature illustrate its utility (Thrun et al., 2005). However, as argued by
Latecki et al., cognitively motivated approaches to interpret uncertain spatial
information provide an equally sound basis to feature extraction (Latecki &
Lakadmper, 2006b; Latecki & Rosenfeld, 2002).

3.5 Correspondence determination

Determining correspondences between an observation and the map is funda-
mental to integrating the observation and the map. Mastering the correspon-
dence problem is among the most challenging endeavors in robot mapping and
it is challenging in many regards: obtaining a plausible solution, obtaining
it efficiently, responding to changes of the environment or novel views on it,
and handling conflicting or uncertain knowledge. Unfortunately, plausibility of
matching is hard to define. Generally speaking, one desires that only similar
features are associated and that spatial configurations are respected, i.e. the
mapping between observation and map induced by a correspondence should
be homomorphic with respect to the spatial structure. Changes, measurement
noise, and uncertainty make it necessary to balance all contributing factors.
As a result, it is doubtful if an indisputable definition of plausible matching
exists at all. In the following, I review existing approaches to correspondence
determination, describe key techniques, and elaborate on my interpretation of
a plausible correspondence.
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3.5.1 Achieving feasibility in correspondence computation

Correspondence determination may be posed as a search problem in the space
of feature-feature correspondences. Considering a map containing m features
and an observation comprising n features, there are

zz: <7Z> ‘ (7?) g (3.10)

potential correspondences, if observed features are not necessarily represented in
the map, i.e. only ¢ = 0,1, ..., n features get matched, and only correspondences
of type 1-to-1 are taken into account. Even this restricted case is infeasibly
complex, so additional knowledge must be exploited to reduce the search space
and computation time. If a pose estimate is available, the projection filter (Lu &
Milios, 1997) can be employed to disregard map features that are assumed to be
hidden to the robot. Likewise, observed features are filtered. The pose estimate
must be of high quality in order not to disregard features erroneously classified
as invisible, which would disturb the matching. Similarly, the Mahalanobis
distance (cf. Section 3.1.1) can be applied to pruning candidates located outside
a confidence area (Neira & Tardds, 2001).

Computational complexity can be further reduced if features are distin-
guishable by restricting the search space of potential correspondence partners to
similar candidates. Additionally, respecting spatial configurations of observed
features in relation to the configuration of map features can also allow for a
reduction of search space. Confident knowledge, for example, can be exploited
in terms of hard constraints restricting the search space.

3.5.2 Recognizing individual features

Disambiguating features is one key to efficient matching. As most map rep-
resentations employ simple features like points or lines, no distinctive feature
similarity has yet been utilized in the context of robot mapping based on range
scans. Matching on basis of point-based maps is therefore highly susceptible
to wrong assignments on the level of points and is commonly performed by
iterative alignment (see Section 3.5.4).

My work utilizes polygonal contours, so extensive research on shape similar-
ity originating in the field of computer vision moves into focus. To measure the
similarity of features (including shapes), feature distance measures are applied.
In the context of shape analysis as performed in object recognition, shape sim-
ilarity is determined by shape similarity measures (cf. Veltkamp, 2001, for an
overview), which are in fact shape distance measures as identical shapes yield
0, the lowest possible value. In the following, I will therefore use the term shape
distance measure.
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Shape distance measures

To evaluate the benefit of a shape distance measure in robot mapping, one must
consider the special requirements of this domain. First, perceivable contours
like nearly straight walls with only small protrusions are of relative simple kind
as compared to contours of complex objects in shape retrieval. This requires a
highly sensitive measure. Second, complicating the simplicity of contours, un-
certainty in measurements calls for techniques that can handle this uncertainty
in extracted features. Uncertainty in perception may be challenging with the
total amount of shape information available, making it difficult to single out
shape information. Third, in most observations objects are partially occluded;
this has been discussed in Section 2.2 and I argued for polygonal shape represen-
tations to allow for representation of partially visible features. This review on
shape distance measures is therefore restricted to measures operating on polyg-
onal shape representations—for a general overview of shape distance measures,
see to Loncaric (1998); Veltkamp (2001).

Any shape distance measure suitable to object recognition robustly responds
to distortions or noise, as shapes need to be recognized in presence of distorted
models. Distortions can be caused by a multitude of ways, e.g. by change of view
pose, observation conditions, or segmentation errors—its effects on the shape
cannot easily be modeled. Instead, shape distance measures address robustness
by aiming at a cognitively motivated visual similarity (cf. Latecki & Lakamper,
2000; Siddiqi et al., 1999b). In this respect, object recognition approaches differ
from robotics.

Some shape distance measures approach modeling of shape distance as a
metric, which eases design of shape retrieval database (see Basri et al. (1998)
for a discussion). However, properties of metrics like symmetry in arguments
or the triangular inequality do not agree with human perception (cf. Tversky,
1977; Veltkamp, 2001). To measure shape distance, Arkin et al. (1991) utilize
a Lo measure in tangent space®; by pairing contours in a straight-forward man-
ner, the approach handles distortions that are uniformly distributed over the
contour. Basri et al. (1998) incorporate a matching of discrete contour points
to compute a matching of points that minimizes deformation energy. Shape dis-
tance is defined by summing up local differences. Sebastian et al. (2003) design a
shape distance as locally computable edit distance in a contour transformation
process. Besides shape distance computation, the approach addresses shape
morphing in computer graphics. Sebastian et al. report a slightly improved
performance in the MPEG-7 similarity-based retrieval experiment (see Late-
cki et al., 2000b) over the best performance by correspondence of visual parts
(Latecki & Lakimper, 2000)7. Curve transformation as proposed by Sebastian

5See also Section 2.2.1.
"Sebastian et al. report a retrieval rate of 78.17% whereas shape similarity based on
correspondence of visual parts yields 76.45%.
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(a) (b) (c)

Figure 3.7: Shape (a) is modified in two ways by doubling the length of two seg-
ments (shapes (b), (c)). Shape distance measures accumulating a local distance
measure such as deformation energy (Basri et al., 1998) determine (b) and (c)
to be equally similar to (a); human perception, as the reader may verify, tends
to attest (c) a higher similarity to (a).

et al. requires balancing of penalty measures for curvature and position mis-
match. Approaches based on local distance measures widely employ Dynamic
Programming techniques which are governed by a local distance measure to
compute an elastic matching of discrete contour points. Purely local determi-
nation of shape distance may in some situations yield counter-intuitive results,
which is exemplary illustrated in Fig. 3.7. To overcome limitations of purely
local distance measures, Latecki & Lakamper (2000) suggest a combination of a
local measure and consideration of the shape’s structure of arcs. A cost-optimal
matching of maximal convex and concave arcs is performed, whereby the cost of
arc correspondence is locally determined by a Lo distance measure in tangent
space. This approach can directly utilize the discrete structure of polygonal
curves. In this respect, it is suitable for polygonal lines extracted from LRF
data. Furthermore, the approach performed well in the MPEG-7 shape retrieval
experiment on basis of shape similarity (as noted above) and in the experiment
testing for robustness to effects of digital rotation and scaling which introduce
distortions to the contour (Latecki et al., 2000Db).

To design the shape distance measure in my approach, I adapt the shape
distance measure by correspondence of visual parts.

3.5.3 Respecting spatial configurations

Configuration information links together individual features. Therefore, it pro-
vides a larger context than a single feature. This makes configuration informa-
tion valuable for matching—in the case of features lacking distinctive properties,
configuration knowledge is the only clue to feature identification. Configuration
representations are often coordinate-based and Euclidean distance measures are
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widely applied: The positional difference of associated features is used as a
measure of configuration congruency by most authors®. Lu & Milios (1997)
proposed an additional rule to estimate the likelihood that points detected in
different scans correspond to the same physical entity by considering the ori-
entation of a fitted tangent. Similarly, Gutmann (2000) suggests a line-based
alignment measure combining differences of lines with respect to position and
orientation. Difference of positions can only be determined if the observation is
already aligned with the map. Henceforth, all of these methods perform match-
ing in an iterative framework, which repeatedly alternates a matching and an
alignment phase. Notice, that any configurational knowledge to be exploited
without prior alignment is of relative nature, e.g. as captured by qualitative
representations. Relative positional knowledge is acknowledged in approaches
to object recognition (cf. Grimson, 1990).

Not handling configuration knowledge on a relative basis can introduce
complications though. As discussed by Neira & Tardés (2001), configuration
knowledge must be jointly exploited to fully acknowledge it; a simple example—
similar to the one of Neira and Tardés—illustrates this. An observer detects
two features A, B which—for the sake of simplicity—are assumed to be indis-
tinguishable (cf. Fig. 3.8). In a second observation, the observer detects three
features A’, B’,C". The task of determining the most plausible correspondence
should yield the correspondences A ~ A’ and B ~ B’. However, if individu-
ally considering differences of position, the result may be counter-intuitive as
illustrated in Fig. 3.8 (c): since the spurious detection of C' is closer to the
expected position of A, the correspondence A ~ C' is erroneously determined.
Simultaneously considering the mapping A ~ C and B ~ B’ indicates that A
and B are indeed mapped to features much closer to one another than agree-
able with the initial observation. Neira and Tardés propose an algorithm that
jointly considers differences in position in a probabilistic model. To conclude,
handling of spatial configuration information must not restrict to relationships
of individual feature correspondences.

3.5.4 Matching techniques

Approaches to the correspondence problem can be classified into two main cat-
egories. Approaches that explore the discrete search space of potential corre-
spondences constitute the first category. Their main focus is the determination
of a mapping between features in observation and map. Simultaneously to re-
lating features, spatial relations are also related, since features are embedded
in a configuration representation. Matching needs to mediate between congru-
ency of assigned features and congruency of spatial relations in the presence of

8 Among others, see Besl & McKay (1992); Cox (1990); Gutmann et al. (2001); Hahnel
et al. (2002); Lu & Milios (1997); Thrun et al. (2000b).
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Figure 3.8: (a) An observer located as marked by the cross detects two features,
A and B. (b) In a second observation from the same pose, three features are
detected at different positions. This can be the result of measurement noise.
(c) Both observations are matched using the compatible local reference system.
Individually considering the distances of associated features (nearest neighbor)
can result in a counter-intuitive matching (solid lines). Considering the relative
position of features (A) allows handling this situation (dashes lines).

uncertain, sometimes even conflicting knowledge. Evaluation of both aspects
is combined to a discrete matching algorithm that computes the most plau-
sible correspondence, given two (maybe not fully agreeable) configurations of
features. I refer to this matching technique as discrete matching.

The second category covers all approaches that, exploiting the inherent
connection of objects and their location, pose correspondence determination as
the problem of searching for the alignment which aligns observation and map.
Thus, the functional components correspondence determination and alignment
are jointly tackled. I refer to such techniques by the term iterative alignment®.

Discrete matching

Lingemann et al. (2004) employ the greedy nearest neighbor (NN) algorithm to
associate sets of feature points in a pose tracking application. The error func-
tion to be minimized is composed of feature distance (features belonging to the
same class have zero distance and features of different classes infinitely high dis-
tance) and a distance measure based on the Euclidean distance of the features
in a local coordinate system.'® After association, ambiguous correspondences

Tterative alignment has been termed non-matching by Grimson (1990); since approaches
in robot mapping that abstain from explicit correspondence determination by searching for
a plausible alignment employ at least some simple matching, the term iterative alignment is
used here for clarity.

10The application is intended to high-speed tracking. The robot’s movement between con-
secutive scans is small, so the relative displacement of the robot is estimated to be close to
zero. Therefore, two consecutive observations can be related using the same local coordinate
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(a) (b) (c)

Figure 3.9: (a) Two sets of features (denoted by circles and boxes, respec-
tively) are to be matched. (b) Using the nearest neighbor algorithm, a 2:1-
correspondence is established which may be unacceptable in some applications.
By resolving ambiguity, the middle feature is no longer associated. a posteri-
ori consideration of the alldifferent constraint leads to a different result than
including the constraint as side condition into the computation (c).

are resolved, i.e. whenever two or more features of one scan correspond to a
single feature in the other scan, all but the closest match are removed since two
distinct features must not correspond to a single one. This pruning of multiple
associations can be interpreted as the application of the alldifferent constraint
(van Hoeve, 2001). However, this approach is not equivalent to seeking the op-
timal association under the side condition of alldifferent as is illustrated in Fig.
3.9. Truly determining the cost-minimizing, disjunct association of features is a
combinatorial optimization problem. If two sets of features of equal size are to
be matched, the problem can be be posed as a maximum weight bipartite graph
matching (see Chapter 4) and it can be solved in O(n?) time complexity using
the Hungarian method (Kuhn, 1955), whereby n denotes the number of fea-
tures in one set. Put differently, any greedy approach to computing one-to-one
correspondences is heuristic and not guaranteed to find the cost-optimal as-
signment. But optimal assignments are desired since feature distance measures
capture plausibility of feature correspondence.

Neira & Tardés (2001) formulate matching as a search in the interpreta-
tion tree to acknowledge the spatial configuration in the matching process. The
interpretation tree is the decision tree of all possible correspondences (cf. Grim-
son, 1990). Each feature to be matched corresponds to a specific level of the
tree; the root does not correspond to any feature. Nodes on one level represent
possible correspondences of the associated feature (cf. Fig. 4.1 on page 114
for an illustration). Matchings correspond to paths in the interpretation tree
from the root to some leaf. If mutually exclusive feature assignments need to

system.
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be respected (e.g. the alldifferent constraint), the interpretation tree is pruned
during search to remove inadmissible alternatives. In the absence of mutually
exclusive assignments, the full search tree of exponential size according to Eq.
3.10 needs to be explored. Neira and Tardés note that their matching algo-
rithm may, despite of its exponential worst-case complexity, provide a feasible
approach to real applications. Applicability depends on the existence of suf-
ficiently many, mutually exclusive assignments and a (heuristic) technique to
apply branch and bound most effectively and prune the search space.

Iterative alignment

Iterative alignment techniques have been suggested to eclipse explicit, com-
plex computation of a jointly compatible association, but to improve over NN
matching. This family of approaches shifts the problem from a search in cor-
respondence space to a problem in pose space: the goal is to compute the
observation pose directly which most congruently aligns perceived features and
map. In other words, it is a joint solution to correspondence determination and
alignment. Iterative alignment is a continuous optimization problem, which is
commonly tackled by a hillclimbing search. NN matching is iteratively per-
formed in alternation with an alignment step. The steps are repeated until
convergence is detected. The underlying idea is that the matching (and align-
ment, simultaneously) converges to a sensible solution if sufficiently many fea-
tures are correctly assigned. In other words, erroneous associations of the NN
algorithm may be recoverable in a subsequent step, i.e. after the alignment has
been updated. In the case of point-based iterative matching, the algorithm is
commonly referred to as Iterative Closest Point (ICP), which has its origin in
computer vision (Besl & McKay, 1992). ICP has, for example, been employed
by Héhnel et al. (2002); Lu & Milios (1997); Stachniss (2006). Gutmann &
Schlegel (1996) complement the point-based iterative alignment by a line-based
approach, which proceeds analogously.

Besides robot mapping, matching has been applied to several other domains,
most notably object recognition, and is related to matching theory in graph
theory (cf. Chapter 4). In his survey book, Grimson (1990) reviews several
approaches to visual object recognition that make use of branch and bound
techniques similar to Neira and Tardds. From the field of biological applications,
Wang et al. (2004) extend the bipartite graph matching to acknowledge an
order of protein’s structural elements. By respecting a total linear order in the
structure, the assignment problem can be solved efficiently.

3.5.5 Discussion

Shape distance measures provide a promising foundation for attacking feature
similarity on the basis of polylines that represent the boundary of navigable
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space. These measures disambiguate features and, thereby, ease efficient cor-
respondence determination. Complementary means to increase efficiency are
offered by exploitation of configurational knowledge. In principle, this can be
achieved similar to constraint propagation (cf. Tsang, 1993), treating relative
positions of features as constraints. If, for example, feature A is observed north
of feature B, then, by assigning A to some map feature, the set of candidates
for B can be pruned. Unfortunately, uncertainty inherent in map and observa-
tion requires a careful selection of hard constraints that are applied to prune
the search space and, hence, can be interpreted to model confident knowledge.
Grimson (1990) notes in the context of object recognition that constraints are
particularly valuable if they can directly be implemented in the formulation
of the matching algorithm, i.e. respecting constraints is an integral part of the
algorithm and requires no active reasoning at runtime. To give an example, elas-
tic matching in shape distance measures by means of Dynamic Programming
respects the sequence of points on the contour by algorithm design. Grimson
adds that constraints should capture global configurational knowledge such that
single feature assignments possibly allow for extensive pruning.

Notably, the application of the Mahalanobis distance for pruning candi-
dates located outside some confidence area can be interpreted as an elementary
application of constraint handling. To my knowledge, constraint propagation
has not been further exploited in robot mapping. Instead, correspondences are
sometimes pruned in a successive step. For example, Gutmann (2000) sug-
gests to disregard already assigned features if feature correspondence entails
a transformation from the agent-centered to the absolute frame of reference
that significantly deviates from the overall average. Similarly, Lingemann et al.
(2004) handles the alldifferent constraint in a successive step. These techniques
can yield sub-optimal solutions though.

Joint consideration of configurational knowledge is important—the proba-
bilistic, quantitative framework suggested by Neira & Tardés (2001) may not
cover all aspects though. In quantitative representations, all positional informa-
tion is treated equally. It is not possible to make confident knowledge explicit.
This can indeed hamper recognition as a small example demonstrates: consider
the observer in Fig. 3.8 detecting the features A and B and assume the distance
from A to B being small with respect to measurement uncertainty. By eval-
uating the measurements and taking into account the error margins, one may
not be able to decide which of the landmarks is located on the left and which
is located on the right. The observer has, however, observed with certainty
which of the two landmarks is left of the other. In any quantitative approach,
this knowledge is shadowed by a representation that relates observations to an
external scale rather than to one another (cf. Section 2.3.2, Section 2.3.4). 1
suggest to incorporate confident knowledge explicitly in terms of qualitative
relations.
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To sum up, approaches to matching in the field of robot mapping typically
employ very efficient greedy strategies, NN for instance. Application of NN is
susceptible to erroneous assignments, in particularly if the set of individually
agreeable correspondence partners is high, e.g. if features are located densely.
Furthermore, NN strategies require an a-priori estimate for the mapping of
spatial configurations (cf. Section 3.5.3) to express a measure of joint compat-
ibility of configuration as on the level of individual feature correspondence, i.e.
to consider the relative position of features. If such an estimate is not available,
branch and bound techniques can be applied to prune the search space, but
such approach yields an exponential worst time complexity.

Alternatively, matching can be shifted from discrete correspondence space
to continuous pose space. Iterative matching algorithms iterate matching and
alignment by means of optimization, which principally allows erroneous feature
assignments to be retracted. This approach displays two major drawbacks: first,
it requires a pose estimate to start with. In the case of relating the robot’s
observation to an external map no such estimate may be available. Second,
optimization algorithms are susceptible to getting stuck in local minima. This
can easily happen when the optimal alignment of perception and map is of poor
quality, e.g. when features identified in the sensor information are not registered
in the map or vice versa as can, e.g. be caused by changes in the environment.

Statistical propagation of uncertainty in mapping is a computationally de-
manding task. It is often granted many computational resources by restrict-
ing matching to highly efficient, though error-prone greedy processes in order
to meet time constraints for online mapping. I argue for favoring correspon-
dence determination in allocation of computational resources—simultaneously
the need for extensive stochastic computation may decrease as fewer alterna-
tives appear “plausible” to a more sensible algorithm.

I suggest focusing on the correspondence problem in order to compute an
optimal mapping from perceived features to the map with respect to a plau-
sibility measure. The computational goal in matching should be modeled as
simultaneous minimization of the feature distance measure and the spatial dis-
tance between assigned features under the side condition of confident knowledge.
Doing so enables formulation of matching as a discrete optimization problem
that can be solved analytically, i.e. without the risk of getting stuck in a lo-
cal minimum. Confident information can be explicitly introduced by means
of qualitative information, its exploitation facilitating an efficient approach. In
summary, by incorporating shape distance measures resembling visual similarity
and simultaneously relaxing requirements on estimates (e.g. expected position
of features), on the one hand, and by explicitly handling confident knowledge,
on the other hand, one can significantly reduce the number of plausible alter-
natives that must be taken into consideration while at the same time fostering
plausibility of determined correspondences. Such approach may be regarded
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to resemble knowledge-based hypothesis matching in natural cognitive systems
more closely and considerably cuts down the computational complexity.

3.6 Alignment

Alignment describes the task of determining a mapping between two frames of
reference such that corresponding locations line up. Knowledge about corre-
spondence of observed features and features registered in the map allows the
observation’s local frame of reference to be aligned to the map’s global frame
of reference, thereby localizing the robot.

Due to distortions (e.g. noisy feature detection), usually there exists no
fully congruent alignment of observation and map. Thus, alignment is most
adequately posed as the optimization task of determining the most congruent
mapping of reference frames. In the context of 2D maps, a mapping is defined
by a rotation ¢ and a translation ¢. The most commonly used formulation of the
alignment task is to determine (¢, t ) such that the the distance of corresponding
objects is minimized with respect to the sum of least squares, i.e. the Lo metric.
Using the Lo metric, closed form solutions exists for sets of corresponding points
(see e.g. Lingemann et al., 2004) and sets of corresponding lines (see e.g.
Gutmann, 2000, pp. 42). An efficient heuristic alternative for aligning sets
of lines has been developed by Roéfer (2002), who suggests a histogram-based
correlation.

3.6.1 Alignment of contours

Aligning complex objects like sets of corresponding polylines is more difficult.
One difficulty is to define a suitable distance measure for extended objects. A
suitable distance measure can be derived from the distance of one or several
anchor point(s) belonging to the extended objects at hand. Assuming that a
correspondence of anchor points is known, Larsen & Eiriksson (2001) address
alignment of polylines by linear regression and evaluate the effects of various
metrics. In the case of the Lo metric, they pose alignment as a problem of linear
programming and apply the simplex algorithm. Unfortunately, it is non-trivial
to determine suitable sets of anchor points and to select an appropriate mapping
between them. Observe, that aligning two polylines is equivalent to aligning
two observations of point-like landmarks: each observation can be interpreted
as a polyline by connecting the locations of the landmarks observed in some
well-defined manner.

In the context of computer vision, the Hausdorff distance (cf. Eq. 2.4) has
been applied to measure the distance of pixel images (Rucklidge, 1997). Each
pixel serves as anchor point and the closest pixel on the other image deter-
mines the distance (cf. Section 2.2.4). Alignment can then be performed as
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minimization of the Hausdorff distance. If the minimization is pursued by hill-
climbing search, it is equivalent to ICP (cf. Section 3.5.4), which is a very
popular method of alignment on basis of occupancy grids (H&hnel, 2004). The
idea underlying iterative approaches like ICP is that no robust correspondence
of anchor points needs to computed, but a simple greedy assignment stabilizes
itself during the optimization process (see discussion in Section 3.5.4). Opti-
mization techniques such as ICP depend on an initial estimate ((bo,ﬁ)) close
enough to the globally optimal solution in order not to get stuck at a locally
optimal solution. Different techniques have been suggested to determine a suit-
able start estimate. In robotics, odometers measure the movement of the robot
and, by relating the measured movement to the last pose at which localization
has been performed, the alignment can be estimated. In the context of aligning
contours in computer vision, Marques & Abrantes (1997) propose utilization of
the Discrete Fourier Transform to estimate alignment parameters.

3.6.2 Discussion

Alignment has a broader field of applications than just robotics, in particu-
lar applications related to computer vision require knowledge about congruent
mappings of reference frames. The task is well understood if a correspondence
of points or lines is provided. If no correspondence is known, iterative alignment
strategies may be applicable. These strategies avoid explicit determination of
a robust, sensible matching, but rely on the stabilizing effect of repeatedly per-
forming greedy matching and alignment (cf. Besl & McKay, 1992; Gutmann,
2000). A good estimate close to the globally optimal solution is required to
start the process (see Fig. 5.15 on page 160 for illustration of difficulties in
iterative alignment).

Aligning sets of polylines is particularly difficult as a suitable distance needs
to be defined, e.g. based on correspondence of anchor points. In context of
shape distance measures, some shape matching techniques determine a corre-
spondence of anchor points (e.g. Basri et al., 1998; Sebastian et al., 2003) or
arcs (Latecki & Lakamper, 2000) as a side-effect. Thus, alignment of polylines
can benefit from shape analysis. Using these anchor points, an alignment can
be determined. However, since shape distance considers two polylines at a time
and alignment considers two configurations of polylines simultaneously, this
solution may not be optimal. Starting with this solution, iterative strategies
may now be applied that allow re-consideration of anchor point assignment in a
global context. This can improve the initial solution towards global optimality.
In other words, required start estimates for the aligning shape features can be
derived from shape analysis; no estimates need to be derived from odometry.
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3.7 Merging

Merging describes the task of updating the map when correspondence of ob-
served features and map features is known and the observation has been aligned
to the map. The main objective in merging is to integrate multiple observations
of the same map features into a coherent observation. Merging is applied at two
levels: in the configuration representation to integrate observed configuration
information and in the feature representation to integrate multiple observations
of feature appearance.

3.7.1 Configuration merging

On the configuration level using coordinate-based geometry, merging deter-
mines a feature’s position in agreement with multiple position measurements.
In principle, this can be approached by weighted averaging. Modeling uncer-
tainty in position stochastically by Gaussians, the Kalman filter (cf. Section
3.1.3) determines a weighted average accordingly that respects uncertainty in
positions—this approach is popular if object maps (i.e. landmarks of geomet-
ric primitives) are constructed (e.g. Castellanos & Tardds, 2000; Dissanayake
et al., 2001; Leonard et al., 1992; Se et al., 2002). To my knowledge, merging
configuration information represented in terms of qualitative relations has not
been addressed so far. It appears a challenging problem to mediate between
different relations on a symbolic level, in particular if conflicting knowledge
needs to be resolved. Moratz & Freksa (1998) indicates that conceptual neigh-
borhoods (cf. Section 2.3.2) and relaxation techniques can provide a point of
departure.

3.7.2 Feature merging

As regards the feature level, the feature representation needs to be updated.
Only few approaches explicitly address merging of feature representations. In
stochastically interpreted occupancy grids, merging is performed by stochas-
tically combining the distinct measurements of an occupancy value—usually,
ad hoc models for uncertainty in measurements build the basis (cf. Stachniss,
2006, pp. 37). Pfister et al. (2003) develop a stochastic reasoning to update line
parameters in a map registering lines. Latecki & Lakdmper (2006b) draw mo-
tivation from human principles of visual grouping to determine which distinct
line segments are to be merged into a single one. Criteria of parallelism and
proximity are evaluated. If the line segments are sufficiently close and parallel,
they are merged by fitting a single line segment to the data points constituting
the individual line segments.

Merging of two contours can be interpreted as determining a specific contour
in the space that continuously transforms one contour into the other. Besides
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robot mapping, techniques to continuously transform images into one another
are investigated in the field of computer graphics. As regards transformation
of contours, the approach by Sebastian et al. (2003) addresses shape distance
computation (see Section 3.5.2) by a transformation process that morphs one
polygonal contour into another. Elastic matching by means of Dynamic Pro-
gramming is performed to determine an anchor point correspondence that gov-
erns the morphing process.

3.7.3 Discussion

Merging combines distinct observations into a coherent whole. If uncertainty
in feature position or feature appearance can stochastically be seized, stochas-
tic reasoning techniques (e.g. the Kalman filter) are applicable. The spatial
processes underlying merging can be regarded as weighted averaging: average
positions are computed when merging landmark positions by the Kalman filter
and observed feature and map feature are merged by averaging lines (Latecki &
Lakamper, 2006b; Pfister et al., 2003) or contours (Sebastian et al., 2003). The
approach by Latecki & Lakdmper (2006b) and the approach by Sebastian et al.
(2003) both address polylines, but Latecki & Lakamper only handle merging
of distinct line segments in their application. Besides, the data points need to
be retained to perform the merging. In an application of incremental mapping,
this is disadvantageous as all data points need to be stored alongside the map,
which results in a map representation of infeasible size. Thus, the approach
by Sebastian et al. (2003) applicable to curve morphing appears promising. It
is based on a correspondence of anchor points whose computation requires a
balancing of parameters that control the matching—in context of shape dis-
tance measures comparing unaligned curves. I regarded this a shortcoming (see
Section 3.5.2). However, in the context of corresponding polylines that are
already aligned, demands on the anchor point matching may be relaxed. My
approach utilizes a curve transformation process similar to the one suggested
by Sebastian et al.

3.8 Summary & conclusion

In this Chapter, I have reviewed techniques for robot mapping and proposed
a functional analysis scheme of robot mapping that identifies the components
view acquisition (feature extraction), correspondence determination (match-
ing), aligning (localization), and merging (map update).

Probabilistic techniques have been presented that demarcate today’s state-
of-the-art in uncertainty handling. I have demonstrated limitations of stochastic
modeling in terms of restricting assumptions like state transition models for
Kalman filters, in terms of mathematical limitations as particle depletion in
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particle filters, and fundamentally by discussing if computationally tractable
probabilistic models can offer adequate means to model the full bandwidth
of uncertainty at all. I have argued not to subordinate spatial information
processing to stochastic frameworks, but to make uncertainty handling less
challenging by improving on spatial information processing.

Two alternative mapping architectures have been contrasted. Closed map-
ping processes data that has previously been collected and incremental map-
ping aims at providing up-to-date map information in immediate response to
observations. Incremental mapping appears necessary for enabling intelligent
exploration strategies and for allowing a robot to respond to changes in the
environment. The main deficit of incremental mapping is that position er-
rors accumulate during the mapping process—this leads to the challenging loop
detection problem. Mastering loop detection requires recognition of a place in
presence of strongly uncertain pose estimates. Developing techniques to address
the correspondence problem with relaxed requirements on position estimates as
is addressed in this dissertation provides means to master the challenges of
incremental mapping.

The crucial task in view acquisition is feature extraction. As regards fea-
tures extraction, the problem of defining an optimal model fitting to uncertain
observations has been discussed and an alternative approach originating in the
field of computer vision has been presented. Cognitively motivated principles
of visual perception provide a solid basis to feature extraction too.

Matching techniques for tackling the correspondence problem have been
described in consideration of approaches to robot mapping and to object recog-
nition. Matching techniques in robot mapping are often very efficient at cost
of limited robustness; computational resources are widely spent on expensive
stochastic propagation rather than on carefully handling the correspondence
problem. I have argued for re-balancing these components in favor of im-
proved correspondence determination. Improving correspondence determina-
tion simultaneously decreases the necessity of extensive stochastic propagation.
Advanced matching that allows for incorporation of constraints describing con-
fident knowledge has already been proven valuable in object recognition and
appears to be adequate in robot mapping too.

Alignment techniques for aligning observation and map and, thereby, local-
izing the robot have been described. A transformation is computed to most
congruently align corresponding features. If extended features like polylines
are aligned to one another, sensible anchor points on the polylines need to
be determined and a correspondence between these anchor points is required.
Shape analysis provides appropriate means to derive this knowledge. Alignment
of polylines can jointly be achieved by shape analysis and iterative alignment
techniques.

Finally, merging techniques to update the robot’s internal map on basis of
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aligned observations with known correspondence has been described. In the
context of polygonal curves, curve morphing is applicable.

To put it in a nutshell, I have analyzed the processes involved in robot
mapping and derived suitable means to realize them. Open problems have been
detailed which are attacked by my approach to robot mapping presented in the
following. First, Chapter 4 describes a new graph-theoretic formulation of the
correspondence problem from a theoretical point of view and presents a new
matching algorithm. Second, Chapter 5 describes realizations of all functional
components which constitute my approach.
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Chapter 4

Homomorphic matching in
balanced hypergraphs
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This chapter elaborates on the mathematical background of describing corre-
spondence determination. I develop a generalized graph-theoretic formulation
and relate it to research on combinatorial optimization. In the previous chapter,
in particular in Section 3.5, existing algorithms to tackle the correspondence
problem have been reviewed; these techniques are fairly straight-forward like
greedy nearest-neighbor association and often lack of a theoretic classification.
By investigating into matching problems in graph theory, a sound basis for
correspondence determination can be established.

Responding to properties of perceivable features, their extraction from sen-
sor data, and requirements for sensible matching discussed in the previous
Chapters, I develop a theoretical framework for correspondence determination
and introduce a new matching technique tailored to correspondence determi-
nation on the basis of extended geometric primitives. From the review I derive
the following characteristics for a theoretic framework underlying matching ob-
servation and map:

e Map and observation are likely incongruent, so some features may not get
associated; matchings may not be of maximum cardinality

Visibility of a feature can change for various reasons, e.g. due to occlusion,
changes to the environment, or the feature may unexpectedly emerge in the
field of view, to name but a few. Matchings that need to leave some features
unassociated may very well be a typical case rather than an exception. However,
a suitable overall goal is to associate as many features as sensible.
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e Correspondences are not restricted to the type one-to-one

The alias problem in feature detection (see Section 3.4.3 and Fig. 3.4 on page
91) may cause several features to be detected for a single obstacle and, similarly,
a single object may be perceived as two separate ones when a missing joint is
hidden behind another obstacle. The alias problem in grouping can lead to
a different amount of features detected for a single physical obstacle—features
only correspond to some fragment of a physical object. Recognition of a feature
may require consideration all features corresponding to the same physical entity.
Thus, correspondences that cover multiple entities need to be expressed to
handle the alias problem and to address partial occlusion.

e Matchings shall maximize some plausibility measure of features to corre-
spond

Associated features should provide a plausible solution in terms of respect-
ing additional measures of likelihood for their correspondence, such as feature
similarity or configuration information. In this theoretical contemplation I ab-
stract from concrete, potentially contributing factors. To enable determining
the most plausible matching of features—independent of any interpretation of
what plausibility could mean and how to compute it—plausibility of feature
correspondence must be expressible by ordered values to enable comparison of
alternative solutions.

e Side conditions to introduce confident knowledge shall be expressible

Explicit consideration of side conditions in the matching process allows to in-
troduce confident knowledge that must not be violated by a correspondence of
features (cf. Section 3.5.3). Simultaneously, side conditions reduce the search
space, cutting down the overall computational cost.

In the following, I discuss relevant mathematical frameworks to express
the matching problem and examine their suitability to express the outlined
matching properties or presence of starting-points for a generalization.

4.1 Mathematical characterizations

Correspondence determination by means of matching can be posed in a mul-
titude of ways. In the following, I discuss the most popular approaches and
examine which comes closest to the outlined characteristics and provides a solid
basis for generalization to suit the demands. In forthcoming examples a simple
setup using the two sets of features { F1, F», F3} and {G1, G2, G3} is assumed. In
more general contexts, the sets F' = {F1, Fy, ..., F¢} and G = {G1,Go,...,G4}
will be regarded.

Combinatorial optimization problems are one natural form of characterizing
the matching task, as they aim at maximizing some similarity function—let S



4.1 Mathematical characterizations 113

denote this function. The problem to determine the optimal matching ~*C
2F % 2¢ can be posed as follows:

~*= arg max Z S(f,9) (4.1)

~cCoF G
CE2TX27 (fg)e~

However, difficulties in such an approach lie in the integration of side con-
ditions and in an unclear relationship of the problem formulation to other com-
binatorial problems. The actual combinatorial problem structure is somewhat
shadowed, making it difficult to derive efficient algorithms. To make the combi-
natorial aspect first matter, graph-theoretic approaches are more appropriate.

Definition 1 (Weighted graphs). An edge weighted graph G = (V,E,w) is
a graph (V,E) with a set of vertices V, a set of edges E C {{vi,va}|v; €
V,vg € V}, and a weighting function w : £ — R* U {0}. Analogously, the
vertex weighted graph G = (V, E, o) is a graph (V, E) with a weighting function
o:V —=RTU{0}.

The interpretation tree already mentioned in Section 3.5.4 is a decision
tree in which nodes at depth d represent all possible associations of features
Fi,...,F; (see Fig. 4.1). It can be modeled as vertex weighted graph using
feature similarity as vertex weight.

To determine a maximum weight matching, a path of maximal weight from
the root () to some leave is searched, e.g. using branch and bound techniques
(Neira & Tardds, 2001). Interpretation trees comprise exponentially many
nodes against the number of features. Generalization to other than one-to-
one matches would grow the set of nodes at each level but the root by a factor
of 29 — 1, as any node represents a potential correspondence and there are 29 — 1
non-empty subsets in G, i.e. potential correspondence partners. This results in
a double-exponential tree size, making it doubtful that an efficient algorithm
for exploration of this tree structure can be designed. There is yet another
complication involved: assume, Fj is associated to G’ C G and F) is associated
to G” C G with G'NG" # ); in such cases there seems no proper interpretation
to the matching of the simultaneous yet independent association of features
G'nG".

Association graphs introduced by Ambler et al. (1973) extend expressiveness
of matching by incorporating observance of relational structures, i.e. potential
correspondences can be constrained by a binary relation. Utilization of associ-
ation graphs transforms the matching problem into a maximum weight clique
problem. Roughly speaking, nodes represent potential correspondences and the
largest set of mutually agreeable correspondences is searched for. In the context
of robot mapping this has been detailed by e.g. Bailey (2002, Chapter 3).

Definition 2 (Maximum weight cliques). Let G = (V, E, o) be a vertex weighted
graph. A subset V' C V is called a clique, if the induced subgraph G’ = (V', E'),



114 Homomorphic matching in balanced hypergraphs

{3
{F~G> Fr-Gi}

{F1~Gy Fr-G; F3~G3}

Figure 4.1: Interpretation tree and iterative construction of {F; ~ Ga, Fy ~
G1, F3 ~ Gs}.

E' = {{v1,ve}|{v1,v2} € E, v1 € V', vg € V'} is complete, i.e. Voi,v9 € V'
{v1,v2} € E'. A clique is mazimum if it is not a proper subset of another clique
and mazimal if it is the largest clique in the graph. V' is the mazimum (vertez)
weight clique if V! = argmax{}_ .y o(v)|V' is clique of G}.

Given that the weighting is positive, maximum weight cliques are maximum
cliques. They may not be maximal, though.

Definition 3 (Association graph). Let F', G denote disjunct sets of features
with feature distance measure d. Let further R C (F'xG)x (F xG) be a (binary)
relation over correspondences, i.e. R describes the set of mutually compatible
assignments between F' and G. The association graph G4 = (V, E, o) defines a
vertex weighted graph whereby V := F x G, F := R, and o := .

Consider an example of matching the sets F' and G whereby the alldifferent
constraint shall be obeyed, i.e. the desired correspondence relation ~ needs
to be bijective. Assume F} ~ G2 and F» ~ (G are mutually exclusive. The
resulting association graph is depicted in Fig. 4.2 (a).

Unfortunately, the general maximum clique problem is known to be NP-
hard. There exist, however, tractable subclasses and equivalent formulations to
maximum clique problems, e.g. maximum clique computation can be mapped
to a continuous optimization problem in the n-dimensional Euclidean simplex
{xeR" :2; >0, | x; = 1} (cf. Pelillo, 1998) which allows to adopt heuristic
optimization algorithms and thereby elegantly links the discrete and continuous
domain. This is just one result from the extensive research on the maximum
clique problem; refer to Bomze et al. (1999) for an extensive review. In-depth
analysis of tractability for a maximum clique problem at hand is difficult and
exceeds the scope of this work. As regards computational modeling of matching,
association graphs already offer means to incorporate constraints to the match-
ing and could be generalized to n-to-m-matches in a straight-forward way. One
simply adds nodes for all potentially corresponding subsets F/ ~ G', F' C F,
G’ C G. This increases the set of nodes exponentially. Since the original prob-
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Fy Gy
F, G
F3 Gs

Figure 4.2: (a) Association graph and a maximal clique (bold edges) (b) Bipar-
tite graph and a perfect matching (bold edges)

lem is already NP-hard it appears questionable if a tractable subproblem can
be identified if the set of nodes is increased further.

The number of different graphs on a fixed set of nodes is exponential against
the number of nodes, as there are exponentially many ways to select edges.
Therefore, I argue for a formulation modeling correspondences by means of
edges rather than nodes, as are used in interpretation trees and association
graphs. Such framework is provided by bipartite graph matching.

Definition 4 (Bipartite graph). A graph G = (V, E) is bipartite, if its set of
vertices V' can be divided into exhaustive, disjunctive sets V’, V" such that
Ve € E:enV' # 0ANenV” # (). Bipartite graphs will also be denoted
G=(V,V"E).

Definition 5 (Biparite matching). Let G = (V', V"  E) be a bipartite graph.
A matching is a subset of the edges E’ C FE such that a vertex is adjacent to
at most one edge. The matching is mazimum, if it is not properly contained in
another matching; it is maximal, if it is the largest. A matching E’ is perfect, if
Yo e V'UV":3E, € E' : v € E,. A maximal weight matching is a matching E’
in an edge weighted bipartite graph G = (V/, V", E,w) such that " _p w(e) is
maximal.

Thus, perfect matchings are vertex covers of the graph, i.e. every vertex is
adjacent to an edge. In Fig. 4.2 (b) the example used to illustrate the problem
formulation with association graphs is presented using bipartite graphs. Note
that mutual exclusiveness of certain associations cannot be modeled in the
framework of bipartite graph matching.
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Several theoretical and algorithmic results exist on matchings in bipartite
graphs, e.g. Hall’s marriage theorem about existence of perfect matchings (for
example, see Lovasz, 1986) or the Hungarian method for computing maximum
weight matches in complete, symmetric bipartite graphs (Kuhn, 1955). Gener-
alizing matching to include n-to-m-correspondences, edges can be introduced
which are adjacent to multiple nodes in V’ or V”, respectively. This generalizes
the graph to a hypergraph. Edges adjacent to a single vertex only can analo-
gously be introduced—they are commonly termed loops. Loops allow modeling
that a feature is not associated to another feature, while at the same time allow-
ing for maintenance of the notion of perfect matches, as all vertices are covered
by an edge. In the context of correspondence determination in robot mapping,
loops model loss of visibility.

To conclude, several alternatives exist to approach mathematical modeling
of matching problems. Taken the desired generalization into account, bipartite
graphs can provide a suitable basis to generalizing matching problems, in par-
ticular as the introduction of n-to-m-matches does not increase the set of nodes.
Unfortunately, bipartite graphs do not provide inherent means to incorporate
side conditions as association graphs do. In summary, bipartite graphs provide
a promising start to find a computationally tractable approach to generalized
matching.

4.2 Generalizing matching to hypergraphs

Definition 6 (Hypergraph). A graph G = (V, E) with a finite set of vertices
V and set of hyperedges E C 2V which is a subset of the powerset of vertices
is called hypergraph.

An illustration of a hypergraph is shown in Fig. 4.3 which depicts a first
challenge in generalizing matching: there is no sensible interpretation of the
attribute bipartite in hypergraphs. Generally, one wants to view edges consti-
tuting a matching as edges linking the two distinct parts in a graph. However,
in the depicted hypergraph the edge {F,G1,G2} intended to model a one-to-
two correspondence simultaneously links two nodes in the set G. From the
definition alone one is unable to deduce the intended partition of the graph’s
vertices. Balanced hypergraphs (Berge, 1970) have been suggested to generalize
bipartite graphs.

Definition 7. A hypergraph G is balanced if each odd cycle in G has an edge
containing at least three vertices of the cycle. Hereby, a cycle is defined as closed
path v; & Vit1 R vj+1 = v;, whereby v; € e; Av;41 € ;. Analogously
to bipartite graphs, G = (V/, V" E) is used as notation, whereby V’, V" model

two disjunct sets of vertices to be associated.

Hypergraphs allow for a straightforward generalization of matching.
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Figure 4.3: Hypergraph modeling a matching that comprises a two-to-one cor-
respondence; edges in hypergraphs are depicted to enclose adjacent vertices.

Definition 8 (Balanced hypergraph matching). Let G = (V| E) be a balanced
hypergraph; then, M C FE is a matching if M consists of pairwise disjoint edges.
If M is a vertex cover of G then M is called perfect.

Notably, this definition already includes the case of not-associated vertices
by allowing for hyperedges comprising single vertices. Therefore, the generalized
matching task can simply be formulated as the maximal weight vertex cover.
The formulation using vertex covers ensures that all features are regarded, and
it allows for a transformation into an equivalent minimization problem, given
that a distance measure is to be minimized, instead of similarity measure to be
maximized.

To incorporate side conditions to the matching, I introduce the notion of
homomorphic matchings that obey constraints. Since constraints are usually
defined for tuples of individual objects, but multiple correspondence partners
are allowed in the desired correspondence relation ~C 2F x 2C it is useful to
first define an elementary correspondence relation ~C F x G with respect to
the correspondence relation ~:

rry:e3IXY : X~YANzeXAyeY (4.2)

This relation maps n-to-m-correspondences to 1-to-1 correspondences and
eases the definition of a homomorphic matching.

Definition 9 (Homomorphic matching). Let G = (V/, V" FE) be a balanced
hypergraph and ~ a matching. Let further C' be an n-ary constraint on V’, i.e.
a m-ary relation over the vertices. A matching defined by its correspondence
relation ~ and induced elementary correspondence relation = is homomorphic,
if the mapping from V' to V" (and vice versa) respects the given constraint:
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Homomorphic matching with respect to a set of constraints is defined analo-
gously.

In this definition, existence of some correspondence partners that satisfy the
constraint is sufficient; it could hence be regarded as weak homomorphic match-
ing as opposed to a strong homomorphic matching requiring all correspondence
partners to satisfy the constraint. However, such distinction is not required in
the following. In-depth evaluation of matching in balanced hypergraphs and
algorithmic bounds of its computation would exceed the scope of this work by
far; I will restrict myself to a special case of homomorphic matching relying on
a total ordering relation. As is demonstrated in the following chapters, total
ordering is valuable to capture confident information in the robot mapping task.
Now, I elaborate on efficient computability of matchings that respect a total
ordering of features.

4.3 Algorithmic solution

Since the utilized framework of bipartite graphs—or balanced hypergraphs,
respectively—does not include methods for expressing constraints such as the
association graph, constraints need to be directly accounted for in the deter-
mination of the matching. However, this might not be a deficit. As has been
argued by Grimson (1990), constraints directly introduced into matching com-
putation are especially suited to improve computation speed as they already
limit the search space in the algorithm’s formulation and do not require an
active pruning during runtime, as is the case with, e.g. branch and bound tech-
niques. In the following, I demonstrate that the Dynamic Programming (DP)
paradigm introduced by Bellman (1957) can be used to tackle the outlined
matching task.

4.3.1 Dynamic Programming

In today’s understanding the term Dynamic Programming can be misleading
since programming refers to a tabular structure employed in the computation,
rather than to programming in the sense of informatics.

DP can be applied to problems presenting a structure of overlapping sub-
problems which form an optimal substructure. In other words, DP can be
applied to a problem II, if II can be decomposed into subproblems II; C Il C
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... C II,, such that II; is a subproblem of II;; and the solution to II; can be ex-
tended to a solution to II; ;1. Graph search serves as an example: to determine
the shortest path from a to b, the subproblems of determining the shortest path
from a to all of b’s neighbors can be regarded. The shortest path obtained by
linking the paths to a neighbor of b and the edge between the neighbor and a
extends the solution of the subproblem to the overall solution.

Lemma 1. Let F' = [Fy,...,Ff] and G = [G1,...,Gy] be two sequences of
features and let § be a feature distance; let further 7 denote a penalty measure
for not associating a feature. The cost-minimizing assignment of objects F; ~
G; that is homomorphic with respect to an order <, F; < Fj;, G; < G; &
i<j,ie (i <i?ANF;~G;jANFy~Gjy)— j<j,is of optimal overlapping
substructure.

Proof. To show that the problem is of optimal overlapping structure, I intro-
duce the subproblems II; ; which address computation of the cost-minimizing
assignments of the sequences [F1,...,F;] and [Gy,...,G;]. Thus, Iz  is the
original problem. First, observe that II; ; can easily be solved for i =1,..., f

by
~=0 F~Gy

min{ 7(G1) + Z T(Fy) , . ?%in . d(Fg,G1) + Z 7(Fy)
=1 L ik

The first term expresses the option of not associating Gy (~= (), whereas the
second term expresses the association of G and Fj. Analogously, II; ; can
be determined for j = 1,...,g. Second, a solution to II; ; for 7,5 > 1 can be
reduced to one of the exhaustive cases:

e F;is associated to Gj; in this case, the problem can be reduced to II;_1 ;1
e Fj is not associated to any feature in G, reducing the problem to II;_; ;

e F; is associated to a feature preceding G}, i.e. G; is unassociated in the
context of [F1,..., F;]. The problem can be reduced to II; j_.

The cost-optimal choice provides the optimal solution to II; ; O

Corollary 1. The computational complexity of this assignment problem is
o(f - 9).
Proof. Follows directly from the definition of subproblems II; ; in the proof of

Lemma 1; there are f - g problems which can be reduced to subproblems in
constant time by evaluating the three alternatives. O

There are many application of DP, for example the elastic matching of
contours in determination of shape distance mentioned earlier.
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4.3.2 Matching in bipartite graphs

Theorem 1. Let G = (V, V', E,w) be an edge weighted bipartite graph and
let < be a total order on V and <’ on V’, respectively. The homomorphic
maximum weight match can be computed using Dynamic Programming.

Proof. The proof follows directly from Lemma 1, constructing the sequences F
and G according to the order on V and V' respectively; the edge weighting w
defines the distance measure ¢ to be minimized: ¢ := —w. The penalty 7 can
be set to maxw({v',v"}) + 1. O

Corollary 2. Theorem 1 can be extended to include unmatched features by
introducing a vertex weight ¢ that defines a penalty for not matching a vertex.
In the DP scheme, an additional step is introduced that determines if skipping
a vertex F; (or Gj respectively) is advantageous when advancing from II;_; ; to
IL; ; (or from II; ;1 to II; j respectively).

4.3.3 Matching in balanced hypergraphs

By generalizing matching to multiple correspondences, the set of cases to con-
sider grows further as compared to Eq. 3.10. However, with one for practical
applications mild assumption and some extra computational effort, the result
of Theorem 1 can be adapted to hypergraph matching. In other words, it is
possible to derive an algorithm to compute the optimal matching in polynomial
time. The remainder of this section describes which assumptions allow to derive
a modified DP scheme and prove its correctness.

As a first restriction, I restrict the variety of associable subsets to partitions
with respect to a total order of features. This means that only connected sub-
sets are considered, i.e. if F; ~ G and Fy ~ Gj, i </, then F}, ~ G; holds for
every k =14,i+1,...,4". This restriction resembles the observation that the alias
problem only introduces neighbored features. Nevertheless, the ability to de-
termine a cost-minimizing matching in polynomial time—with just one further,
quite mild assumption—is a remarkable result. Naive, unconstrained match-
ing would involve consideration of all potential correspondences of connected
subsets. Note that there are exponentially many pairings of partitions with
respect to the number of elements, even if obeying homomorphic associations
with respect to order, since there are 2"~ connected subsets for n features!.
Put differently, naive matching cannot be solved in polynomial time.

The assumption made to squeeze computation to polynomial time is as fol-
lows. Let II; ; denote the subproblems introduced in the proof of Lemma 1 and
let ~* denote the desired globally optimal matching of the complete problem,

1To determine the number of connected subsets, all possible positions for boundaries be-
tween subsets are counted. In a sequence of n features there are n — 1 possible boundary
positions. Each of the n —1 potential boundaries can independently split the overall sequence.
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Figure 4.4: Illustration to the assumption of local optimality. Exemplary sub-
problem II3 3 of the overall problem II5 4; the globally optimal correspondence
is depicted by dashed outlines. The assumption of local optimality is fulfilled
in (a) since the second preceding, fully contained correspondence, F; ~ G is
contained in the solution of I3 3. (b) Example of a violation of the assumption,

Fi o+ G

i.e. Il 4. The matching ~* consists of a sequence of individual assignments (hy-
peredges) ~*= [~7,~3, ..., ~7]. This sequence is ordered according to a partial
order induced by features’ order: ~y<~7:& I{F;, G} C~j: V{Fy,Gy} C~f
: F; < Fy NGj < Gjr. Thus, [~],...,~7] is a serialization of the partial order
on ~* induced by the total order < of features.

Put differently, correspondences are ordered as induced by the indices of
features 4, j in the sets {F,..., Fy} and {G1,...,Gg4}. Then, I assume that
the second maximum correspondence of ~* fully contained in the subproblem
IL; ; must also be optimal with respect to II; j—see Fig. 4.4. I refer to this
assumption as local optimality.

In the context of the correspondence problem in robotics, local optimality
can be rephrased as follows: given a set of features to associate, the cost-
optimal association of features must not only be cost-optimal with respect to
the complete set of features to be associated, but to a local context as well. The
formulation using the local context of complete matches is considerably less
restrictive as would be required for application of greedy matching strategies
(the association would be required to be optimal in any context (Lovasz, 1986)).
Local optimality appears to be a reasonable assumption in practical application:
recognizing an object should not be affected by potential associations of remote
objects.
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Theorem 2. Let G = (V, V', E,w) be an edge weighted balanced hypergraph.
If w is locally optimal, then the homomorphic maximum weight matching w.r.t.
< can be computed using an extended DP scheme.

Proof. The idea underlying the proof is to inductively show that a local opti-
mal correspondence can be propagated while starting at subproblem II; ; and
advancing towards the overall solution. Let ~* denote the globally optimal
solution as regards Iy, and let [~},~3,...,~] denote an ordered sequence of
associations with respect to the order induced by the features. Since ~* is a
vertex cover, it is non-empty. Let H[Nﬂ denote the minimal subproblem which
contains all features associated in ~7.

Basis II.:) =: II;; can be computed by regarding all ' < i and j' < j to
determine the optimal association {Fy, ..., F;} ~ {Gj,...,G;} as regards
the edge weighting w. This association is optimal with respect to Hion
as well as to Iy 4.

Inductive step To solve Ijx | =: IL;;, all i < i and 7/ < j need to be
regarded in a similar manner. Determine ¢/ and j’ such that the asso-
ciation {Fy,..., F;} ~ {Gj,...,G;} as regards the edge weighting w is
optimal in conjunction with the overall edge weighting of the association
determined by IIy_; j7_;. According to the assumption of local optimal-
ity, Il;_1 ;-1 = H[NZ is optimal in II; ; and IIf,. Hence, the association
{Fir,...,F;} ~{Gj:,...,G;} is optimal as regards II; ; as well as IT¢ .

Observe, that it is required to have knowledge about the subproblems II; ;,
H[Nﬂ refers to. It is sufficient to determine a solution to all II; ; using the single
method used in the basis and inductive step. ]

Corollary 3. The homomorphic maximum weight match in Theorem 2 can be
computed in O(f2 - g?).

Proof. From the proof it follows that in each step of the computation the best
association of the topmost ¢’ features of sequence F' and topmost j' features of
sequence G need to be regarded; i’ can be assessed with an upper bound of f
and j' with g respectively. O

Observe that the Theorem provides an upper bound assessment—it remains
an open question, whether there exist more efficient means of computation.

4.3.4 Generalizing the matching

It is possible to relax the requirement of local optimality and thereby gain a
more general formulation of Theorem 2—at the cost of extra computational
complexity, though. The matching as described above is already appropriate



4.4 Summary & conclusion 123

for correspondence determination in my approach to robot mapping. There-
fore, the generalization is only discussed briefly here. In-depth investigation of
the generalized matching is an interesting starting point for further research,
though.

To generalize the matching, the requirement of local optimality is relaxed.
In the given definition of local optimality, the second maximum correspon-
dence that is fully contained in a subproblem must be optimal to both the
subproblem and the global problem—here, I abbreviate this condition as LOs.
A relaxed condition LOs3 can be defined analogously to LO> as optimality in
the context of the third maximum correspondence that is fully contained in a
subproblem, i.e. the local context is enlarged in which local optimality entails
global optimality of a correspondence. This definition is relaxed, since any edge
weighting that meets the condition LOs meets LO3 too. Matching on the basis
of an edge weighting that meets the LO3 condition can be performed similar to
matching with an edge weighting conforming to LOs, but instead of determin-
ing the single maximum correspondence when advancing the subproblems II; ;
(see proof for Theorem 2) the two maximum correspondences may need to be
determined simultaneously. When solving 1I; ; this requires evaluating an addi-
tional case of establishing two correspondences by selecting variables 7', 7" with
1 <4 <i” <iandyj,j ” with 1 <5 < j” < j such that the three components
Fini ~ Gjn.j (maximum correspondence), Fir.jr_1 ~ Gjr.ju_q (second maximum
correspondence), and the solution? to II;s_1,j/—1are cost-optimal with respect to
the edge-weighting. Thus, solving the subproblem II; ; requires an extra effort
ofi-(i—1)-j-(j—1) alternatives to evaluate (as compared to Theorem 2). This
results in an overall complexity of O(f2 - ¢%), since the extra effort is necessary
for each of the ¢ - j subproblems. The exemplified generalization from LOj to
LOs suggests that these steps can be carried out for analogous definitions of
LOy, LOs, ... as well and a general theorem can be shown that the matching
problem for an edge weighting that meets the LO; condition can be solved in
O(f*- g') time.

4.4 Summary & conclusion

In this Chapter, I have investigated mathematical frameworks for matching
tasks and devised an adequate theoretical foundation of matching for corre-
spondence determination. Graph-theory provides appropriate means to formu-
late the matching task. I have proposed a new mathematical formulation of
the correspondence problem based on balanced hypergraphs, a generalization
of bipartite graphs. My formulation generalizes matching in bipartite graphs to
hypergraphs. It augments existent approaches to correspondence determination

2For simplicity, I assume IT; » to be defined for negative j,k as well. The subproblem is
empty then, i.e. its solution is the empty correspondence relation.
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in robot mapping with the capability to express n-to-m correspondences of fea-
tures, i.e. joint associations of multiple features. This extension is particularly
suited to address different results of the grouping in the feature extraction (alias
problem). Advancing matching techniques to multiple feature associations is
one important step for grounding robot mapping on extended features, as detec-
tion of extended features is subject to grouping differences. I have proposed the
problem formulation of homomorphic matchings which combine qualitative and
quantitative knowledge in the matching. A quantitative measure is employed
in terms of an edge weighting to evaluate the plausibility of individual feature
correspondences and to allow for differentiating between alternative solutions.
Qualitative knowledge is employed as constraints that model side conditions,
i.e. confident knowledge about feature configuration that needs to be respected
by the matching.

In general, correspondence determination considering m-to-m correspon-
dences comprises a search space of non-polynomial size, but (qualitative) knowl-
edge about ordering allows for an efficient approach. I have developed a new
algorithm for determining a cost-optimal matching that is homomorphic with
respect to an ordering of features. The developed algorithm is an extended
Dynamic Programming scheme and it efficiently computes the cost-optimal
matching in O(f? - g?) time where f, g denote the number of features to be
associated.

The algorithm proposed in this Chapter presents two characteristics that
need to be evaluated with respect to the concrete task of matching configura-
tions of polylines. First, n-to-m-correspondences are restricted to connected
sets with respect to the order of features. Connected subsets are suitable to
address the alias problem, given that an appropriate ordering is applied, as in-
dividual fragments are neighbored. However, connected subsets cannot model
all facets of perceiving a single physical entity as multiple features (see Sec-
tion 7.3.4). For example, visibility of an object partially intercepted due to
occlusion, results in an unconnected set of features: one fragment to the left of
the interceptor, one fragment to the right of it. To include such aspect in the
matching, correspondence of arbitrary subsets of the set of features would need
to be examined. However, this requires an extension of the matching framework
that increases the computational cost as well, most likely beyond polynomial
time. Thus, the developed technique is a compromise between addressing the
full scope of potential correspondences of extended objects and computational
feasibility.

The second characteristic is the an edge weighting is required that meets
the condition of local optimality. Local optimality of a measure means to cor-
rectly determine a globally optimal association in a restricted context. Local
optimality can be regarded an fulfillable requirement: identification of feature
associations should not be affected by potential associations of remote features.
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However, in order to meet the requirement a decisive and robust feature simi-
larity measure must be employed.
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Chapter 5

Shape-based incremental
mapping

Bring a quarter-liter Riesling to boil and reduce
to half; add 2009 of cream and let it reduce
further. Add 200g peeled, diced tomatoes and
cook for 10 minutes. Add 100g cooked shrimps
and freshly chopped dill; let it heat up. Season
to taste with salt, pepper, nutmeg, sugar, and
lemon. Serve with spaghetti.

In this Chapter, I detail my approach to robot mapping. At a glance, 1
present an incremental mapping based on shape features extracted from range
finder data. Being a SHape-based approach to Robot Mapping, my approach is
named SHRIMP and its prototypical implementation is named SHRIMPS, short
for shape-based robot mapping system.! First, I develop my characterization of
plausible mapping data integration and explain how this can be implemented
in terms of computational modeling. Thereafter, SHRIMP and its functional
components are presented in detail.

5.1 Characteristics of plausible mapping

The central component in my approach is correspondence determination. Char-
acterizing plausibility as regards correspondence determination characterizes
mapping as a whole. To start with, I give an overview of my requirements to
plausibility in correspondence determination:

1. Only similar features may be matched.

'In the era of iPods, iThis, and iThats one should be allowed to talk about incremental
robot mapping in terms of robot i-mapping as well and, by doing so, finding a vowel at the
right place to add some melodiousness to an otherwise unpronounceable acronym.
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2. Grouping differences must be addressed.
3. Confident knowledge about feature configuration must be obeyed.

4. Feature associations must be mutually compatible with respect to the
mapping of configurations induced.

In the following, I explain these requirements in more detail and discuss,
how they can be realized in terms of computational modeling.

Restrict matching to mutually similar features Feature distance mea-
sures support correspondence determination by quantifying a feature similarity
that can be interpreted as likelihood of feature correspondence. From review-
ing spatial representations, I concluded to employ polylines as features; a shape
distance measure compares individual polylines. Feature appearance can vary
due to a multitude of factors, some of which cannot be anticipated, e.g. mea-
surement noise. Under these conditions, feature similarity is subject to undeter-
mined change, even if the features compared relate to the same physical object.
Therefore, I suggest implementing consideration of feature similarity in terms of
an optimization: the aim is to minimize the summed up feature distances of all
features associated. If feature distance between two features exceeds an upper
limit, matching of these features is inhibited, i.e. unsimilar features may not
be matched. The outlined modeling reflects the claim in my thesis that shape
information is valuable to improve robustness of correspondence determination
and to disregard odometry (cf. Section 1.4).

Addressing grouping differences FExtended objects may be only partially
visible, for example due to occlusion. In some situations, this may lead to de-
tection of multiple features, if middle parts remain hidden. Due to the alias
problem in grouping, extended objects may be interpreted to multiple features,
even though they are visible in their full extent. These effects need to be ad-
dressed. Eclipsing explicit consideration of partial visibility, e.g. by interpreting
perceived line segments as infinite lines (cf. Section 2.1.3 and Section 3.4.3),
introduces artifacts, i.e. counter-intuitive results. Ignoring the alias effect would
discard valuable information, as individual feature fragments may be uninfor-
mative on their own, but provide rich information, if interpreted as a whole.
This results in the necessity to handle multiple features potentially correspond-
ing to a single feature, or even to handle two sets of corresponding features. If
possible, multiple correspondences should be accounted for as early as in the
matching. The developed theory of hypergraph matching provides a suitable
tool for this task.
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Respecting confident knowledge Discovering confident knowledge and re-
specting confident knowledge provides a way to improve on matching plausi-
bility and efficiency at the same time. The difficulty is to discover confident
knowledge in robot mapping, as this domain is characterized by inherently un-
certain information. In the context of extended geometric primitives like poly-
lines, one characteristic property of a local surrounding is the circular order of
visibility, in which individual features are arranged. I regard the circular order
of polylines as confident knowledge for recognizing a specific place. Extended
features maintain their circular sequence in observations, if moderately varying
the view pose. If the view pose is continuously changed, two features that are
neighbored in the sequence of circular order do not interchange positions before
one feature (partially) occludes the other. In the case of total occlusion, view-
point variation leads to the disappearance of one feature. In the case of partial
occlusion, viewpoint variation leads to a splitting of one feature; this single fea-
ture is no longer detected, but two distinctive features are observable instead:
one before the feature blocking sight, and one after it. These changes can be
interpreted in terms of conceptual neighborhoods (see Section 2.3): disappear-
ance or appearance of features marks a transition to a conceptually neighbored
configuration with respect to circular order. Hence, configurations that differ
by two features interchanging positions are not conceptually neighbored. Put
differently, obeying circular order in correspondence determination limits to re-
lating configurations that are either isomorphic or conceptually neighbored. In
terms of homomorphic matching (cf. Section 4.2 and Definition 9, respectively)
this means to determine a matching that is homomorphic with respect to the
circular order.

Ordering plays a double role in my approach. First, it delimits acceptable
deviations between configurations to relate. In this way, it overcomes problems
of unlikely associations discussed in Section 2.3.4. Second, by making unac-
ceptable configurations explicit in terms of hard constraints, the search space
is trimmed and the matching techniques derived in Section 4.3 are applica-
ble. Technically speaking, correspondence determination can be formulated as
a combinatorial optimization problem using balanced hypergraphs.

In respecting confident knowledge, I restrict myself to confident information
about configuration—there may be alternative sources of confident information
valuable to exploit, though. Exploring further alternatives is beyond the scope
of my work; it could serve as starting point for future research.

Ensuring mutual compatibility of feature correspondences Any sin-
gle feature correspondence of observed feature and map influences the overall
alignment, i.e. the mapping of the local frame of reference of observation to the
absolute frame of reference of the map. Metric positional information allows
for a fine-grained, gradual assessment of compatibility in feature association.
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My argumentation for jointly compatible feature assignments conforms to the
discussion by Neira & Tardés (2001) (see Section 3.5). Positional information
can provide valuable information to disambiguate potentially corresponding fea-
tures. Since metric information of positions is subject to uncertainty, it is most
adequate to address mutual compatibility in terms of an optimization: deter-
mine the assignment of two sets of features that minimizes the summed up
deviations from true compatibility. Association of features is inhibited, if the
induced deviation from true compatibility is too large.

As regards computational modeling, addressing mutual compatibility of in-
duced alignment is similar to addressing feature similarity; in both cases, han-
dling of uncertain, fine-grained metric information is tackled by optimization.
Both goals are independent, though. A different feature association may be
optimal with respect to feature similarity, as is optimal with respect to com-
patibility in alignments. This requires mediating between both goals, which
can be done by weighting the two goals and computing the jointly optimal
solution. In my approach, I utilize a weighting which favors consideration of
feature similarity over alignment.

To sum up, I detailed characteristics for correspondence determination and
formulated four individual goals. My characterization of plausibility is arranged
at an abstract level of spatial reasoning. The presented goals contrast to purely
stochastic mapping architectures which “only require” specification of probabil-
ity models for involved components like sensors. Computational characteristics
in stochastic approaches are derived from probabilistic reasoning. In this way,
plausibility of matching is derived along a deep probabilistic reasoning chain
from sensor models to the map update processes, thereby potentially propa-
gating shortcomings in the initial models as well. T objected to this approach
in Section 3.1, since I do not fully agree to the underlying probabilistic mod-
eling in first place. Therefore, the present characterization of plausibility is
anchored at a more abstract level. My demands extend existent approaches in
that I introduce feature-intrinsic similarity for geometric primitives and focus
on it. Explicit incorporation of hard constraints and implications of extended
features, namely alias effect and partial feature visibility, have to my knowl-
edge not been addressed before explicitly. However, my list of demands is by
no means exhaustive; it expresses key demands I derive and which are realized
in my computational model. I address some potential extensions and implied
research questions in the outlook of this thesis.

In the following, I present my computational model to robot mapping which
reflects my characterization of plausibility. Starting with an overview, I then
descend to an in-depth description of the individual components of SHRIMP.
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Figure 5.1: Architectural overview of the SHRIMP architecture

5.2 Overview of SHRIMP

SHRIMP’s architecture interrelates the functional components view acquisi-
tion, correspondence determination, alignment, and merging. They constitute
an incremental mapping architecture that is is based on a shape-based map
representation. A diagram of the mapping architecture is depicted in Fig. 5.1,
and in the following, I present the interconnection of the individual components
in some detail, before descending to the in-depth description of the individual
components.

Regarding the architecture from the perspective of information flow, the
first building block—besides the sensors—is view acquisition by means of shape
extraction. Range information is retrieved from the LRF and is transferred
into a shape representation that is based on polylines. Sensor data is grouped
to individual polylines, and compacted by a curve evolution. Shape extraction
does not rely on fixed thresholds, but it adapts in response to shape information
present in the map. During the matching, when shape information extracted
from sensor data is related to the map, the extraction is finalized, determining
a configuration of polylines that agrees to both sensor data and map. So, shape
extraction operates in a data- and model-driven manner. In the diagram, this
adaption is indicated as circular arcs along shape extraction and matching.

Simultaneous to extracting shape information from sensor data, shape infor-
mation is also retrieved from the map. The map registers polylines as features,
so that shape information can directly be retrieved without shape extraction.
View extraction from the map aims at retrieving a view, i.e. a configuration of
polylines that significantly overlaps with the observation of the robot. This is
achieved by retrieving the view according to an estimated pose of the robot.
Since no full congruency of map view and observation is required, two ways to
obtain an estimate of the robot pose present themselves: first, the robot pose
that has been determined by the most recent localization of the robot can be
used. If the robot has not traveled so far that the view on its surroundings
substantially changes (e.g. less than 1 meter), this option is applicable. Second,
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if odometry information is available, it can be exploited to derive an estimate of
the robot’s pose. Odometers measure the movement of a robot, i.e. the pose of
the robot is determined in relation to a reference pose. Relating odometry in-
formation to the pose determined by the previous localization, the desired pose
estimate is obtained. One asset of SHRIMP is that precise pose estimates are
not required. Matching will be successfully performed if a significant overlap of
observation and the map view exists.

Matching observation and map is the central component in SHRIMP, which
is characterized by two aspects: feature similarity in terms of a shape distance
measure and a matching algorithm based on Theorem 2. The shape distance
measure [ developed is especially tailored to the domain of identifying polylines
that are extracted from range data. The measure evaluates the agreement of
perceived shape information and shape information represented in the map by
determining the most agreeable interpretation of the sensor data. This results
in a noise-sensitive shape extraction that is particularly valuable in situations
where the amount of noise is challenging with the overall amount of shape
information. In the matching algorithm distinct polylines in observation and or
map can be joined, thereby adapting feature extraction and map information.
In other words, shape extraction is finalized in the context of computing the
shape distance of corresponding polylines and matching observation and map.
This yields a parameter-free approach to feature extraction.

Besides considering plausibility of matching in the context of alignment,
joint compatibility of feature associations is evaluated. Circular arrows in the
diagram Fig. 5.1 indicate that alignment is evaluated in the matching to en-
sure a mutually agreeable alignment of corresponding features. This linkage of
matching and alignment implements the demand for jointly compatible associ-
ations.

Based on the matching that determines a correspondence on the level of in-
dividual polylines, perceived shape information is aligned with the map. Align-
ment induces a two-way mapping between the robot’s local coordinate system
to the global coordinate system of the map. This localizes the robot.

After the alignment has been determined, the map can be updated. Ob-
served features that correspond to map features are integrated into one feature
representation. Features that are not matched to the map are interpreted as
newly emerged featured; they are added to the map.

The rest of this Chapter presents an in-depth description of the components.

5.3 Map representation
SHRIMP is based on a uniform object map registering features in a single,

absolute coordinate system. On the feature representation layer, polylines are
employed to represent the boundary of navigable space, or, equally, the outline
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of obstacle boundaries. Polylines are universal geometric primitives represent-
ing boundary information in an extended context such as the outline of an entire
obstacle. Ideally, the complete outline of an obstacle is represented by single
polyline.

Configuration information is represented metrically, the vertices of polylines
are anchored in the map’s global coordinate system, which is once initialized
at startup time, i.e. the robot is interpreted to start from the origin of the
coordinate system. When required, qualitative information can also be retrieved
from such fine-grained metric information.

For retrieving the view from the map that associated to a pose £, a ra-
dial sweep line algorithm can be applied. This technique has been developed
in the field of computational geometry and yields a computational complexity
of O(nlogn), where n denotes the total number of vertices stored in the map
(de Berg et al., 2000). The retrieval process (see Fig. 5.2 for an example) com-
putes the visible fragments of the polylines stored in the map and places them
in the a local coordinate system, using the view pose ¢ as origin. Extracted
polylines maintain a link to the original map features that are required in the
alignment and merging process (cf. Section 5.7 and Section 5.8). For exam-
ple, these links allow one to determine if multiple visible fragments emanate
from the same map object. Simultaneously to the local metric information
about polylines, circular order of polylines is determined, which is regarded as
confident information in correspondence determination.

In summary, map retrieval computes a sequence of polylines. The polylines
are assumed visible according to the map and a pose estimate &; they are ordered
in a circular, counter-clockwise manner.

5.4 Extracting polylines from range finder data

Sensor data is interpreted to features by extracting polylines from the sensor
data. The polylines are represented in a local coordinate system, and their
circular order is determined. Laser range finders scan the surrounding in a
circular manner by letting the laser beam sense the obstacles from right to left,
i.e. counterclockwise. So, the sequence of range measurements already provides
the circular order.

In a preparation step, range values are mapped to points in the Euclidean
plane. Shape extraction comprises two separate steps: grouping to individual
polylines, and consolidating shape information represented by the polylines.
Feature extraction adapts to map information and is finalized in the matching,
making this process independent of parameters.
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Figure 5.2: (a) Exemplary map representation in SHRIMPS comprising 16
polylines. (b) View retrieved from the map according to the view pose marked
in (a); 7 polylines are determined, they correspond to 5 polylines in the map
(denoted by dashed lines). Numbers denote the sequence order of circular
visibility.

5.4.1 Grouping to polylines

Grouping is performed to assign measured points to individual features. Like
any grouping, it is a heuristic process, since the true assignment of points to real
world objects is unknown (cf. Section 3.4.3). The rule employed in SHRIMP
assumes that neighbored points belong to the same object, if their distance does
not exceed a threshold. Analogously, an object transition is assumed present
wherever two consecutive points are farer apart than specified by the threshold.
By sequentially processing the data, grouping is performed in linear time with
respect to the number of points provided by the sensor.

To select the grouping threshold, two effects need to be balanced: if the
threshold is decreased, more object transitions are assumed. This intensifies
the effect of the alias problem, i.e. the problem of multiple registrations of the
same physical entity. Different outcomes of the grouping process are handled in
the matching by adequately linking distinct features, since any crisp grouping—
independent of a potential choice of parameters—can yield different outcomes
depending on the view pose or noise superimposing on the data. However, the
more individual features are detected in an observation, the more computational
resources are required in the matching, possibly slowing down the mapping
system to a degree unsuitable to online application.

On the contrary, if the threshold is increased, object transitions are more
likely to be ignored for separate objects located close to one another. Joining
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boundaries across gaps can introduce severe complications as has been discussed
in Section 3.4.3. Overlooking object transitions has significantly worse effect
than surplus detections of object transitions.

So, the threshold is chosen to reliably detect object transitions. In exper-
iments a threshold of up to 10cm seems adequate for typical indoor environ-
ments. If using a LRF with an angular resolution of 0.5°, a threshold of 10cm
will group range measurements corresponding to a wall opposing the robot in
a distance of as far as about 10 meter into a single feature.

5.4.2 Consolidating shape information by curve evolution

Shape consolidation describes the process of reducing the bare amount of data
stored for polylines, while maintaining their visual appearance, which is ex-
amined in correspondence determination. Curve evolution can filter out noise
present in sensor data that superimposes on relevant shape information. In con-
trast to approaches aiming at optimally fitting of a model to the data, SHRIMP
pursues an adaptive approach based on a discrete curve evolution process. This
avoids the difficult definition of an optimality criterion in model fitting (cf.
Section 3.4.3).

In SHRIMP, the Discrete Curve Evolution (DCE) developed by Latecki &
Lakédmper? is employed. Applicability of DCE has already been demonstrated
in applications in computer vision (e.g. Latecki & Lakémper, 2000; Latecki
& Rosenfeld, 2002) and appears well-suited to interpreting range information
(cf. Section 3.4.2; Section 3.4.3). DCE describes a context-sensitive process of
evolving a polyline by vertex removal. It proceeds in a straightforward manner
by removing the vertex with least relevance until the lowest relevance value
remaining exceeds a chosen stop threshold. To compute the relevance of a
vertex v; as regards visual appearance of the complete polyline, DCE employs
a local measure. Let v;—; and v;11 refer to vertices adjacent to v;, and let
£ denote the angular difference of line segments, then the measure reads as
follows:?

L(0; =104, 00311) d(vi—1,v1) d(vi, Vig1)
d(vi—1,v;) + d(vi, vig1)

K(vi—1,vi,vi41) = (5.1)

The relevance measure K grows monotonously with respect to the overhang
of v; over v;—10;11 as well as with respect to the length of the segments adjacent
to v;. The evolution process is stopped, when all remaining vertices present a

*Latecki & Lakidmper (2000); Latecki et al. (2000a)

3Earlier (Wolter & Latecki, 2004; Wolter et al., 2004), I utilized a computationally less
expensive relevance measure K'(v;) := d(vi—1,vi) + d(vi, vit1) — d(vi—1,vi+1). The measure
avoids computation of angles and performs comparatively well in environments presenting
mostly polygonal contours, but it appears more difficult to determine a suitable intermediate
threshold (see Fig. 5.5). Therefore, I returned to the original DCE measure.
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relevance value that exceeds a pre-defined threshold. Due to the changing vertex
neighborhoods during the removal process, the spatial context considered by the
relevance measure grows.

No fixed stop criterion is utilized in SHRIMP. Rather, the process contin-
ues in negotiation with shape similarity (cf. Section 5.5). The reason to delay
the shape extraction until correspondence determination is given by the overall
small amount of shape information perceivable in some environments compared
to the amount of noise. When removing anything than can be caused by noise,
much valuable shape information would also be removed. DCE makes vertex
removal decisions in the context of a single polyline. A better noise identifica-
tion can be made in the context of comparing corresponding polylines. Shape
properties caused by noise are less likely to receive support from an independent
polyline representing the same physical entity.

SHRIMP utilizes an intermediate threshold that halts DCE well before
reaching the final end. This allows benefiting from the small computational
cost of solely performing DCE. In the experiments an intermediate stop thresh-
old of 5.0 has proven adequate for an unit size of one centimeter. The concrete
choice is not critical. The relevance of the least relevant vertex in a polyline
grows increasingly fast, the more vertices are removed (see Fig. 5.5). This
reduces the effect variations of the intermediate threshold cause.

Implementation of DCE can benefit from the observation that polylines can
simultaneously be represented as double-linked lists and as self-balancing trees
ordered by vertex relevance. Setting up this data structure and computing the
initial relevance measures for n vertices can be done in O(n - logn) time. Each
simplification step consists of identifying the least relevant vertex, removing
it, and updating its neighboring vertices’ relevance measures. This can be
performed in O(logn) time. Since there are at most n vertices to remove, the
overall time complexity for DCE is O(n - logn).

Shape extraction by DCE describes polylines using vertices already con-
tained in the sensor data. In environments known to only display polygonal
surfaces a more accurate approximation is possible by fitting line segments to
known groups of scan points. In such cases, polylines obtained through DCE
can be adapted by applying linear regression to the original scan points consti-
tuting the individual segments of the polyline. This approach improves on pure
line fitting (e.g. relying on the recursive split algorithm—see Section 3.4.1), as
the comprehensive spatial context of a complete boundary is regarded to deter-
mine the grouping into line segments. It allows robust detection of short line
segments.

Exemplary results of the shape extraction process are shown in Fig. 5.3-Fig.
5.6. Fig. 5.3 picks up the example of Fig. 2.3 on page 47 which demonstrated
that line segments are not adequate to represent arbitrary indoor environments,
but polylines are indeed. As can be observed, shape extraction is well-suited
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Figure 5.3: Exemplary results of shape extraction. (a), (b) depict two exem-
plary scans obtained in indoor environments and (c), (d) show polylines ex-
tracted from them, using a grouping threshold of 10 cm and a DCE threshold
of 5. Compare to Fig. 2.3 on page 47. Grid lines denote 1 meter distance.
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Figure 5.4: Shape extraction by means of DCE (solid line) using points on a
flare-shaped contour as input data (circles); self-intersections do not occur (b)
presents an enlargement of the area marked in (a). Compare with the discussion
related to Fig. 3.3 on page 90.

to both examples. The example illustrated in Fig. 5.4 demonstrates that poly-
line extraction by grouping and consecutive DCE avoids the risk of topological
violations faced in individually fitting line segments (cf. Fig. 3.3 on page 90).
Adequacy of DCE-based polyline extraction for representing curved contours is
presented in Fig. 5.5. In Fig. 5.6, an exemplary development of the grouping
and DCE process using different intermediate stop thresholds is shown. These
examples clearly indicate that DCE-based polyline extraction is also applicable
to range data. In a context of interpreting trajectories, an extensive review of
generalization techniques can be found in Stein (2003). His exemplary compar-
ison of different relevance measures also indicates that the relevance measure
of Eq. 5.1 is well-suited to consolidate shape information stemming from non-
polygonal contours (see Stein (2003, p. 204)).

5.5 Shape similarity

Shape similarity operates on shape features that are either extracted from per-
ception or represented in the map. Shape similarity consideration provides
a decisive input to the central matching algorithm. More precisely, a shape
distance measure defines a feature distance measure that is interpreted as plau-
sibility measure for correspondence of features.

To briefly recap the discussion on suitable shape distance measures (cf. Sec-
tion 3.5.2), measures need to be decisive even for comparatively simple shapes,
and they need to account for uncertainty in the shape information. In the
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Figure 5.5: Applicability of DCE to curved contours. (a) Original synthetic
data. (b) Some DCE stages using the original measure. The interval of rele-
vance thresholds is denoted, which yields the depicted polylines. (c¢) The plot
analogous to (b), but using the distance-based relevance measure. The inter-
vals are smaller than in (b), making choice of the threshold more difficult. (d)
Relevance of the least relevant vertex against number of remaining vertices
for original DCE measure. (e) The plot analogous to (d), but using the purely
distance-based relevance measure, the decreased differentiation can be observed.
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Figure 5.6: Extracting polylines from a scan. (a) Raw scan points in local
coordinates. (b) Grouping to individual poylines (start- and endpoints are
highlighted). (c), (d) Shape simplification using DCE. The threshold used to
obtain (c) is 1.0 (resulting in 88 points) and 5.0 in (d) (resulting in 22 points).
Grid lines denote 1 meter distance.
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context of range information the level of noise may nearly conceal the overall
amount of shape information present in obstacle boundaries. Shape distance
measures employed in object recognition tasks can usually rely on significant
shape information, e.g. when comparing the silhouettes of complex objects.
From an experimental analysis I concluded that a more sensitive measure is
required for recognition of polylines in robot mapping than is urged by object
recognition tasks—see the forthcoming Fig. 5.8 for an exemplary comparison of
shape distance measures.

Combining the DCE-based polyline extraction with an existing shape dis-
tance measure, | derived a new shape distance measure. The measure focuses
shape comparison to shape properties exhibiting a maximal similarity. The
measure presented in the following has been generalized for application in vi-
sual object recognition (Latecki et al., 2005b) and is termed partial optimal
similarity, shortly POS. The approach can be regarded as a meta-approach to
shape distance measures, as it relies on a basic shape distance measure and
encapsulates this measure in an iterative evolution process.

The two following sections deal with the two components of this shape
distance measure. First, the basic shape distance measure is presented. There-
after, the integration of the basic shape distance measure into the iterative
search process is detailed.

5.5.1 Basic shape similarity

As basic shape distance measure, shape similarity consideration based on corre-
spondence of visual parts (Latecki & Lakadmper, 2000) is utilized in SHRIMP;
the utility of this measure has been demonstrated in context of the MPEG-
7 shape descriptor experiments (see Latecki et al., 2000b). Shape distance
based on correspondence of visual parts can be regarded an extension of the
Lo-distance measure in tangent space proposed by Arkin et al. (1991). To fully
acknowledge the properties of the robot mapping domain, I slightly adapted
the measure as is presented in the following.

To determine a Lo-distance for polygonal curves P, () in tangent space, the
tangent space representations Tp and Ty are normalized to the same curva-
ture length of 1. Tangent space representations are then aligned to minimize
the global difference in orientation before summing up the local differences.
In contrast to the original approach by Latecki & Lakdmper that utilizes a
penalty for difference of relative length, difference of absolute length is regarded
in SHRIMP. Since object boundaries are always present in the same scale, and it
is not desired to achieve scale invariance, as is the case in many object recogni-
tion applications, consideration of change in absolute length is more appropriate
in robot mapping:
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1
$u(P.@)i= (1401 (Lo = Lo)?) - [ (To(s) = Tols) + @) ds
0

) (5.2)

Org = [(Tn(s) - Tol»)ds
0

Since discrete polylines are compared in SHRIMP, the above integrals reduce
to sums in the implementation. ©p¢g provides the alignment of orientation
(refer to Arkin et al. (1991) for derivation). The deficit of the Ly-measure in
tangent space is its sensitivity to local occurrence of noise. By shifting vertices
from the contour, local noise elongates the contour locally, thereby deforming
the proportions of the polyline with respect to the curvature length, e.g. the
parts not affected by noise become shorter as regards relative curvature length.
Fixed scaling and alignment only with respect to curvature length aligns the
curves unfittingly (an illustration appears in Fig. 5.7, which is discussed later
on). Shape distance computation as described by correspondence of visual parts
overcomes this deficit by encapsulating the measure in an elastic matching of
contour fragments that locally adapts curvature length.

Polygonal curves are decomposed into sequences of maximal left- or right-
arcuated arcs, i.e. parts of positive and negative curvature. Based on this de-
composition, the correspondence allowing for one-to-one, one-to-n, and n-to-one
associations is computed that minimizes the shape distance of corresponding
arcs. The main idea here is that at least on one of the contours a maximal
arc corresponds to a part of the other contour, which is composed of adjacent
maximal arcs (cf. Latecki & Lakédmper, 2000). To determine shape distance of
corresponding arcs, the tangent space measure of Eq. 5.2 is applied; the opti-
mal rotation © is once determined globally. Cost-minimizing correspondence of
arcs can be computed using Dynamic Programming (cf. Latecki & Lakamper,
2000). In the following, shape distance by correspondence of maximal arcs is
denoted as S.

The computation of the basic shape distance measure is illustrated in Fig.
5.7. In the example, two polylines, P and @, are compared, whereby () differs
from P only in the occurrence of local noise. When comparing the polylines by
means of the Lo, a larger difference is determined than for correspondence of
maximal arcs (shaded area in Fig. 5.7 (b)). In this example, the correspondence
of maximal arcs can handle non-uniformly distributed noise. However, a con-
siderable small change to a contour can change the structure of maximal arcs.
In such a situation, the shape distance might be overestimated dramatically
(see Fig. 5.8, which is discussed later on). As is demonstrated in the following,
the developed extension to shape distance computation overcomes this deficit.
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Figure 5.7: (a) Two polylines and their corresponding tangent-space represen-
tation. (b) Difference in tangent space for comparing P ~ @ using Ly measure
in tangent space (top), the non-uniform distortions stretch the contour, thereby
altering the relative position of the two salient peaks in the contour. As a re-
sult, the difference between the tangent-space representations is overestimated
(shaded area). Comparing P ~ ) using correspondence of maximal arcs (bot-
tom), shape differences remain local to the actual distortion.



144 Shape-based incremental mapping

5.5.2 Partial optimal shape similarity

Polylines resembling laser range data suffer from sensor noise that cannot be
removed easily. This is due to the relative size of the noise, which is challenging
with the amount of shape information present. As a concrete example, the
typical noise of a SICK LMS series laser range finder used in the experimental
evaluation of this work is about £+ 2cm, which is just about the size a door
frame protrudes a straight wall. Thus, removing noise up to the magnitude of
+ 2cm would also remove shape properties. However, losing any shape feature
cannot be afforded due to the lack of salient shape characteristics.

To overcome this dilemma, noise identification and noise removal is delayed
until shape distance of corresponding polylines is determined. In the context of
corresponding polylines, it can more easily be decided whether a small shape
property is more likely caused by noise in the sensor data or it contributes to
the shape information. The proposed approach is to restrict determination of
shape distance to the parts of a polyline that present a maximal similarity.
Clearly, the ability to mask out parts of a polyline before determining shape
distance requires a counter-weight to prevent masking out all differing shape
properties.

In this context of robot mapping, polylines bearing sensor noise are com-
pared with polylines represented in the map. Polylines in the map are con-
sidered to be already freed of noise.* Only vertices in the perceived polyline
are examined, whether they are more likely caused by noise or they contribute
to shape information. The challenge in designing an algorithm that resembles
the outlined idea of restricting a polyline to a subset displaying high similar-
ity lies in finding a computationally tractable solution. When considering a
part of a polyline, i.e. a subset of vertices, combinatorial explosion can easily
occur, as there are possibly 2" subsets of n vertices to consider. Any naive
implementation is infeasible in terms of required computational resources. To
avoid combinatorial explosion, I propose an iterative algorithm that minimizes
shape distance by iteratively removing vertices. Discrete Curve Evolution em-
ployed in the feature extraction is restarted until the minimum shape distance
is reached. Iterative algorithms are efficient, but introduce sensitivity to local
minima. A small lookahead can help to overcome most minima. In the imple-
mentation SHRIMPS, a lookahead of three steps is employed. DCE is continued
for three more steps, after a local minimum has been detected. If shape dis-
tance decreases during the lookahead steps, minimization is continued. If shape

4Strictly speaking, this assumption is not fully valid, since any polyline extracted from
the map has been added to the map at the moment it came first into sight. Newly added
polylines suffer from noise just like any observation. However, repeated observation of the
feature results in a gradually decreasing influence of noise, and, after a few observations, the
map polyline suffers from little noise only, which is negligible in comparison with polylines
extracted from sensor data. Later on, I will discuss a variation of partial optimal similarity
that adapts to noise in both, observed polylines and map polylines.
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distance does not decrease further during the lookahead steps, the process is
ultimately stopped, yielding the determined minimum.

Vertex removal needs to be balanced with a counter-weight in order not
to remove all differing shape information. The counter-weight is defined as a
removal cost for vertices. One somewhat natural choice for defining the vertex
removal cost is to reuse the vertex relevance measure: the larger the contribution
of a vertex to the overall shape information, the higher the penalty for its
removal. If a noise model is available for the range sensor at hand, it can
be exploited for designing a noise-sensitive counter-weight. For example, the
aforementioned residual noise of + 2cm in range data can be transformed into
a relevance measure that assigns a very low penalty for shifts in contour below
2cm, but grows rapidly for larger deviations. A large removal cost eventually
inhibits vertex removal, as the removal cost finally dominates over any decrease
of shape distance. Models defined in accordance with noise models appear well-
suited to cancel out noise in polylines extracted from LRF data. SHRIMPS
utilizes a removal cost that is based on typical noise in LRF data. The removal
cost R for removing a set of vertices from a polyline P is defined on basis of
a removal cost r that evaluates the cost for removing a single vertex v from a
polyline. Denoting the sequence of vertices to be removed as [v1,...,v,], the
measures are defined as follows:

RP([Ul, e ,’Un]) = Z rP\{UI,--q’Uifl}vi
i=1

ro(v) = A <i>2

Hereby, h denotes the height and ¢ the denotes the base of the triangle Avtvv™;
Ao is a parameter balancing removal cost and shape distance®. The overall shape
distance measure, S*, is then defined on the basis of the basic similarity measure
S as follows:

SPQ= mn  (SP\PLQTENP)  (54)
P*=[pilyp¢2:--~7pij]

An illustration of the process of computing S* is presented in Fig. 5.9; a
noisy polyline is compared against a model in the course of curve evolution.

The presented definition of partial optimal similarity can be generalized to
accomodate for a wider range of applications, such as a “key part” shape re-
trieval in analogy to keyword text search. In Latecki et al. (2005b) we presented

°In the experimental evaluation, a parameter value of Ay := 2.5-107° yields good results—
see Section 6.1.
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O1:
Measure ‘ Ol1~M 02~M
02 Lo-measure 1.85 1.51
Corr. of max. arcs | 8.93 1.62
POS 0.10 73.97
M:

(a) (b)

Figure 5.8: Comparison of shape distance measures. (a) Polylines O1 and O2
denote observations and M denotes a polyline represented in the map. O1 is
a distorted variation of M and should result in a smaller shape distance than
02 to M. (b) Results obtained for different shape similarity measures; only the
proposed partial optimal similarity (POS) determines a smaller shape distance
for O1~M than for O2~M. Both, the Ls-measure by Arkin et al. (1991) and
the correspondence of maximal arcs arcs by Latecki & Lakamper (2000), judge
02 to be more similar to M as O1 to M. The example indicates that partial
optimal similarity is well-suited to recognizing noisy polylines.

A

N shape distance o

32 10 3|

number of remaining vertices

(a) (b) () ()

Figure 5.9: Computation of the model-based similarity measure. (a) An ex-
emplary, distorted polyline as could be perceived. (b) A polyline as could be
represented in the robot’s internal map. (c¢) The development of the basic shape
distance measure against number of remaining vertices while the vertex dele-
tion advances; for illustration purposes, the process is not stopped when no
further improvement has been found (marked ‘2’). (d) Intermediate stages in
the vertex deletion process marked in (c).
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variations of partial optimal similarity and their respective applications. For
example, the process I developed for comparing polylines extracted from LRF
data on basis of a removal cost according to a noise model can be adapted to
recognizing shapes suffering from digitization noise.

As regards application to robot mapping, it should be noted that a symmet-
ric vertex removal for comparing polylines similarly suffering from noise can be
performed by alternatively removing a vertex from one or the other polyline.
The symmetric formulation is a direct extension of Eq. 5.4 and reads as follows:

Sin(PQ)i= - min | AS(PAPLQ\Q)+ Re(P) + Ro(Q)

Q*=di1,qig %), ),Q* CQ

(5.5)
One option to derive a computational tractable approach that avoids combina-
torial explosion in determining suitable subsets P*, Q* is to approach compu-
tation of S%;,, in an iterative manner by alternating evolution of both polylines
as in computation of S*. The removal cost R inhibits that both polylines are
evolved to straight lines which would present minimum shape distance. In prin-
ciple, application of the symmetric variant allows dropping the assumption of
only observed polylines substantially suffering from noise. However, an ade-
quate removal measure for map polylines would be required that accounts for
an estimated noise level in a map polyline, e.g. by considering the history of
merging steps. Determining an appropriate noise model and deriving removal
measures appear to be a challenging task, exceeding the scope of this work,
but providing a starting point for further work and for potential improvements.
Notably, experiments indicate that the asymmetric shape distance defined in
Eq. 5.4 does not introduce any complications.

It should be noted that this shape distance measure is based on shape infor-
mation only, neither the position nor the orientation of polylines is considered,
i.e. shape distance is a purely feature-based measure not regarding configuration
information. Obtaining decisive feature information is possible due to the large
context information captured in polylines. The ability to employ distinctive
feature distance measures is a significant difference between a shape-based map
representation and a map representation based on less informative features, e.g.
lines or points.

5.6 Matching

Provided two configurations of features, the task of the matching algorithm is
to determine a plausible correspondence on the level of individual polylines. In
SHRIMP, the two configurations stem from observation and map, respectively.

Qualitative ordering information about the circular sequence of perceivable
objects is made explicit in the configuration, resembling that ordering informa-
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tion of extended objects can be regarded as confident information. This paves
the way to applying the matching techniques described in Chapter 4. Put dif-
ferently, the matching is formulated as a combinatorial optimization problem.
Picking up the demands developed for a plausible correspondence in Section
5.1, they can now be stated precisely:

e The summed up shape distance of associated polylines shall be minimized.
e Circular order of visibility is regarded as a side condition.
e Polylines may be disregarded at the cost of a penalty measure.

e n-to-m correspondences of consecutive polylines need to be considered,
concatenating simultaneously associated polylines to a single one.

e Each potential correspondence of two polylines induces an alignment that
would adjust the complete configuration of polylines; a penalty for devi-
ating from the common alignment is introduced.

In the following, I describe the computational modeling of these require-
ments in detail and describe how the matching can be computed using the
matching technique presented in Section 4.3.3. For applying the matching tech-
nique developed in Chapter 4 polylines extracted from observation and map
serve as the vertices of the hypergraph. Edges represent the correspondence
relation. An edge weighting needs to be specified that assigns a non-negative
measure to any potential correspondence of features, and to any single feature
(if the feature remains unmatched). Before detailing the modeling, I briefly
introduce the notation used in the following.

Let S* : polyline x polyline — R*™ U {0} denote the shape distance mea-
sure. Sequences of polylines ordered in a circular manner are denoted by
P =[P,P,,...,P,] and Q = [Q1,Q2,...,Qn] respectively; a sub-sequence
[P, Pit1, ..., Pj] will be abbreviated P;; and P;; will be abbreviated P;. Sub-
vectors represent a single polyline composed by concatenating a sequence of
polylines. Polylines are concatenated by joining vertices in the order as ob-
tained by the sensor. Furthermore, let ~ denote the relation of correspondence
which pins polylines from map and observation together. The aim is to com-
pute the optimal correspondence relation ~ with respect to the circular order
of polylines denoted by <.

Since matching is a combinatorial optimization problem, a penalty for not
associating a polyline needs to be introduced, as otherwise, the empty corre-
spondence relation yields zero shape distance, the lowest possible, i.e. optimal
choice. This ignorance penalty measure is defined for individual polylines. It
defines the edge weighting for hyperedges covering a single polyline. I propose
a counterweight function I : polyline — R* U {0} that grows linearly with the
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Figure 5.10: Measuring the angular field of view to determine the ignorance
penalty for polylines

polyline’s angular size in the field of view (see Fig. 5.10). Denoting the angular
field of view covered by a polyline by Zp, the penalty is defined as follows:

I(P)= A3 Zp (5.6)

A linearly growing penalty reflects the observation that the shape distance
of two polylines, which differ only by independent noise, grows linearly too.
In the developed shape distance measure, differences of curvature are accumu-
lated. Assuming distortions to be equally distributed over two corresponding
contours, a relative change of curvature lengths implies the same relative change
of shape distance. The proposed object-dependent penalty that increases with
the size of objects enforces correspondences for salient environmental features
to be established. As a result, the matching procedure more easily agrees with
many small changes in the environment as compared to fewer large ones, which
is a reasonable characteristic. This model vaguely echoes human intuition in
recognizing local surroundings, since small objects tend to be moved around
more frequently (cf. Dong, 2005).

The necessity to allow for n-to-m correspondences has been discussed, but a
naive realization would introduce complications—a simple example illustrates
this. Assume, two identical sequences of polylines [Py,..., P,] are matched.
The sequence of one-to-one correspondences P, ~ Py,..., P, ~ P, would not
be preferred over the matching using a single n-to-n correspondence Pi.,, ~ Py.p,.
Noise superimposing on one of the involved polylines may even cause the con-
catenated polylines to be the cost-optimal solution. Inadequate concatenation
of polylines spans (and closes) arbitrary large gaps between map features that
could not possibly stem from grouping differences; such erroneous links easily
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cut off parts of the environment in the map, thereby introducing the problem
of extra grouping discussed in Section 3.4.3. Thus, a constraint needs to be
introduced to avoid inadequate grouping. I propose employing a combination
of soft and hard constraints. One one hand, hard constraints inhibit grouping of
polylines farther apart than a fixed threshold, but do not help avoiding group-
ings spanning smaller gaps, if reasonable. On the other hand, soft constraints
by means of gap-dependent penalties avoid grouping, but cannot reliably sup-
press grouping, e.g. inhibiting linkage of gaps that are regarded as too wide. In
SHRIMPS, I utilize a small penalty of 0.5d? as soft constraint, whereby d de-
notes the gap distance. Additionally, a hard constraint suppresses re-grouping
of polylines farther apart than 0.5 meter. This ad-hoc solution proofed rea-
sonable in the experiments. The penalty for concatenating two polylines is
extended for concatenation of a sequence of polylines, hereby d; denotes the
gap between polylines P; and P;yq:

(d) = 0.5d%, ifd<0.5
g\@) = 00, otherwise
(5.7)

7j—1
G([P, Prir,.., B]) = 3 g(dy)
k=i

My interpretation of plausible data integration includes the demand to only
associate polylines which induce a compatible alignment (see Section 5.1)—
this is the most delicate part in computation of the matching, since a common
ground for induced alignments is not known a-priori. This mens, no misalign-
ment penalty can directly be assigned to pairs of polylines in terms of an edge
weighting required for application of the developed hypergraph matching tech-
nique. One option of addressing this difficulty is to start associating polylines
without consideration of alignment, and consider alignment, not before it can be
derived from the features already assigned. Truly to determine the maximal set
of mutually compatible assignments, different alternatives for the first assign-
ments need to be examined in order not to select an unfavourable assignment in
first place. Examination of alternative associations increases the computational
burden (cf. Neira & Tardés, 2001). Therefore, I propose a different solution.
In the following, I discuss that in shape-based mapping, one can easily obtain
a sufficiently reliable estimate of the alignment, which then allows definition of
an edge weighting.

Assume that an estimate of the induced alignment would already exist. In
this case, a penalty for incompatibility of induced alignments can be designed
by comparison with this estimate. Alignment consistency, shape distance, and
ignorance penalty could be combined to a single edge weighting in hypergraph
matching. Note that in the context of a decisive feature distance measure such
as shape distance, positional information takes a subordinate role. Significant
shape distance dominates over positional information, so precise evaluation of
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(a) (b)

Figure 5.11: (a) Exemplary map view comprising two features of identical shape
(G and H). (b) Observation of the surrounding depicted in (a) which misses
one of the two features (G); only knowledge about congruent alignment allows
identifications of the observation marked “?” and the map feature H.

alignment is rarely necessary. Many polylines can be identified purely by con-
sidering shape information. Indeed, in some situations alignment needs to be
regarded: in Fig. 5.11 an exemplary environment is depicted that comprises two
features of identical shape. Assume that in an observation of this surrounding,
only one of these features is observed. In the depicted example (image (b)),
only positional knowledge allows for disambiguation, since both map features
G and H are potential correspondence partners in terms of circular order, and
both are of identical shape. In practical investigations, this phenomenon occurs
when identifying small, simple polylines that lack of informative shape informa-
tion and can easily be overlooked. I conclude that the alignment estimate needs
to provide sufficiently detailed information to disambiguate simple shapes, but
does not necessarily need to provide very detailed information.

Two alternatives present themselves for obtaining a suitable alignment: first,
if odometry information is available, it provides a sufficiently reliable estimate.
In this case, the map view has been retrieved according to odometry and the
observation and the map view can be regard to be aligned already, i.e. the
estimated alignment is zero. Second, if odometry is not available, the estimate
can be computed by shape analysis—the next section details this process. On
that account, I assume in the following that such an estimate, i.e. a translation
vector ¢ and a rotation by ® exists. I denote alignment induced by corresponding
polylines P and @ by A(P, Q). The difference of the induced alignment A(P, Q)
and the estimated alignment is denoted as AA(P, Q). To measure AA(P,Q),
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SHRIMP utilizes a parametric model that proved reasonable in experiments®:
D(dt,d®) = Ay|dt]] + Asd® (5.8)

Denoting the set of unmatched polylines {F;, Py,...,Q;,Qj:,...} by PQ",
determination of the optimal correspondence relation ~* is formulated as fol-

lows:
~F= arg min E I(R) +
~ is homomorphic matching — ~
of P and Q w.r.t. < RePQ

N———

ignorance penalty

> S*(Prz, Q) + G([Prs - -, By]) + G([Qi, -, Qs]) +
S—_—— ——

P—Q7—)€~ .
(P ’Q’L’:J’) shape distance grouping penalty

AA(P5, Q) | (5.9)
N—

250

alignment consistency

The equation can be solved, using the techniques developed in Section 4.3.3.
Roughly speaking, the developed DP scheme introduces an update step to the
standard DP scheme applicable to incremental computation of ~*, if no mul-
tiple correspondences would be considered (cp. the proof of Theorem 1). The
developed extension of DP can be interpreted in the context of matching con-
figurations of polylines as follows: the extensions enables overcoming a prefix
requirement in classical DP by reconsidering correspondences determined in
previous steps. Suppose a polyline P shall be matched against two polylines
@1, Q2 that are created by splitting P. In classical DP, the result of comparing
Q1 to P cannot be altered in subsequent computation, i.e. the solution to a
subproblem (cf. Section 4.3.1) is fixed and it is a proper part of the overall so-
lution. In this example this means that if P and ) are sufficiently dissimilar,
@1 is irrevocably disregarded. Consequently, @2 is likely not to be matched
either. In the developed extension to DP, not associating P and (); is again
inspected when comparing Q2 and P; this gives the correct correspondence of P
and (1.2, the concatenation of ()1 and @)2. In the following, I present the com-
plete algorithm in detail—for comparison, refer also to the proof in Theorem
2.

Let P be a sequence of polylines of length n, i.e. P = [P,..., P,]. Analo-
gously, let Q = [@Q1,...,Q]. For matching two P and @, a matrix M of size
n x m is used similar to most DP schemes. The cell M; ; corresponds to the
matching of sub-sequences P;.; and @1.j. So, M; ; represents the solution of the

6See Chapter 6 for concrete choices of the parameters A4 and As
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subproblem II; ; introduced in Section 4.3.1, and M, ,, represents the overall
solution. At the beginning, M is empty and is initialized by computing the
entry M 1. Two alternatives need to be evaluated:

1. P, and Q7 are matched, yielding the cost S*(Py, Q1) + AA(Py, Q1).
2. Py and @ are both ignored, yielding the cost I(P;) + I(Q1).

The cost-minimal choice is selected and stored in ~q 1, i.e. if P; and @)1 are
matched, ~q 1 is set to {{P1,Q1}}, if they are not matched, ~1 1 is set to 0.
The respective cost is stored in C7 ;. Both values, ~11 and C} 1, constitute
the cell My 1, i.e. cost and correspondence are stored in the matrix. For ease of
description, matrix cells My ; and M; o are assumed to be defined and to denote
zero cost and no correspondence. Remaining entries M; ; can be computed,
when all predecessors My j» have already been determined for all ¢ < i and
j' < j. To determine M; ;, or, equivalently, to solve the subproblem II; ;, all
cells My j» may need to be considered according to the proof of Theorem 2. For
clarity and ease of description, three cases of determining M; ; are distinguished:

Skip : M;_1; — M;; Advancing from M;_1 ; by introducing P; into the sub-
problem, but maintaining the correspondences ~;_1 ;, i.e. leaving P; un-
matched.

CiJ = Cz'—Lj + I(R)

Skip : M; ;1 — M;; Advancing from M; ;_1 by introducing @; into the sub-
problem, but maintaining the correspondences ~; ;_1, i.e. leaving ); un-
matched.

Ci,j = Ci,j_1 + I(Qj)

Match : M;_q j_1 — M;; Extending the correspondences represented by
M;_q j—1 by matching P7- and Qﬁ, i.e. the polyline obtained by con-
catenating Py, Py11,...,P; and the polyline obtained by concatenating
Qjr,Qjr41,...,Qj. For computing the cost-optimal n-to-m correspon-
dence, the values i’ = 1,...,7 and j' = 1,..., 7 need to be selected, such
that the summed up cost of the shape distance S* (P, Qﬁ), the polyline
concatenation G([Py, Py41,...,B]) and G([Qi, Qi 41, - .-, Qs]), the align-
ment consistency AA(Py, Qﬁ), and the cost Cy_y j_; is minimized.

~igoi=evi—1g—1 U{ Py P Qs Q)
Cij = S"(Py4,Qj5) + G([Py, ..., B]) + G([Qj,...,Q;]) + Cir—1j1—1
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Figure 5.12: Illustration to the extension made to the Dynamic Programming
scheme when matching sequences of polylines, [Py, P, P3| and [Q1,Q2]. As
could be caused by segmentation differences, the polyline ()2 corresponds to
P, and P3, thus, the optimal matching is P ~ Q1, P53 ~ Q2. When only
considering the best matching of the sub-sequences [Q1] and [Py, P»] (which is
an intermediate step in matching based on Dynamic Programming), it may be
optimal to match @1 to Pr3. To enable recovery from such faulty intermediate
result, the developed extension to the Dynamic Programming scheme is neces-
sary. Here, the association of P is reconsidered when the matching advances
to P3 and ()2, giving the correct correspondence Q2 ~ Ps3.

Of these three alternatives, the cost-otimal choice is selected. To evaluate
the matching step for obtaining M, ;, all concatenations Py for V=1,...,1
and, simultaneously, all concatenations Qﬁ for 7/ =1,...,7 need to be evalu-
ated. Thus, a single step results in a O(n - m) complexity. Roughly speaking,
determining the best subsequences allows to recover from faulty intermediate
results that are only apparent in a larger context (see Fig. 5.12). As there
are n - m cells to evaluate, the overall complexity is O(n? - m?) (see Corollary
3). Notably, the presented complexity is an upper bound—it is not yet clear

whether a more efficient equivalent algorithm exists.

As regards practical application, the implementation can exploit the hard
constraint in the grouping penalty G: if the grouping penalty increases to infin-
ity, no further grouping needs be considered. In computation of the matching
step, this means that the search of i',j' can be restricted. If i’ (or j’ respec-
tively) leads to an infinite grouping penalty, lower values of i’ (or j’ respectively)
do not need to be evaluated, saving computational costs. In typical situations,
where there are some polylines that are not allowed to be joined, i.e. that are
farer apart than 0.5 meter, only few alternatives for 7', 7/ need to be evaluated,
cutting the computational cost well below the worst case. The developed pro-
cedure has proved to be suitable to real world applications, in which typically
up to 10 — 20 features need to be correlated.

An example of the matching is depicted in Fig. 5.13 where information ex-
tracted from range finder data is matched against map information. The esti-
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Figure 5.13: Determining the correspondence of two configurations of polylines
(grey and black). Here, the estimated alignment is set to zero, i.e. the matching
assumed that both views are congruently aligned. Even this very poor estimate
of alignment does not disturb the matching (dashed lines). Consideration of
shape distance and constraints of circular order yields a robust matching.

mated alignment has been set to (0,0), i.e. the robot initially believed that both
configurations would line up in a direct manner. However, the real difference
in view poses (and simultaneously the true alignment) comprises a translation
of more than one meter. In other words, the supplied estimate of alignments is
of very poor quality. Note that polylines are correctly associated even though
potential correspondence partners are positioned much closer according to es-
timate. Nevertheless, the outlined matching technique masters the task. This
demonstrates the utility of a distinctive feature distance measure. Robustness
to poor estimates is achieved by strict observation of circular ordering and con-
sideration of shape similarity. In this regard, the developed matching advances
on existing techniques that mainly rely on position estimates (cf. Section 3.5).
In particular, the shape distance measure that dominates over positional infor-
mation derived from estimates allows for this improvement.

One question urges: will the algorithm described always determine a glob-
ally optimal correspondence? Unfortunately, the answer is no, maybe not. To
be more precise, it is unclear under which conditions the utilized edge weighting,
i.e. the term minimized in Eq. 5.9, fulfills the requirement of local optimality
(cf. Section 4.3.3). In presence of significant shape information, it is likely that
the requirement is satisfied—however, it appears infeasible actually to prove
it in terms of a general theorem—maybe it cannot be proved at all. Diffi-
culties of formal treatment arise from the high dimensionality of the problem
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space: polylines can adopt arbitrary shapes, can be positioned at arbitrary
places, and so on. To actually prove optimality of the practical implementa-
tion would require to gather all variations in one formal, tractable theory. In
this work, an empirical evaluation of the matching is performed in context of
a self-localization task in a known environment. The evaluation indicates that
the matching determines a plausible solution.

5.6.1 Obtaining an alignment estimate from shape analysis

For small polylines lacking of shape information, consideration of positional
information is indispensable to identifying their correspondence. However, for
complez polylines, matching purely based on shape distance is already capable
of plausible data association, as the shape distance measure is more dominant
and can exploit distinctive shape properties. This observation lays the founda-
tion to estimating the induced alignment from shape analysis. If one had two
corresponding polylines, one could compute the induced alignment and use this
as the estimation in the matching. To obtain a corresponding pair, matching
is extended to a two-step process. An additional matching phase is introduced,
which is performed without considering positional information at all, i.e. the
term AA(---) in Eq. 5.9 is ignored. Matching can correctly determine cor-
respondences of complex polylines. Then, the most reliable correspondence
of complex polylines is selected and used to determine the desired estimate.
Thereafter, the actual matching can be performed as has been described above.

Thus, the task is to define complexity of a polyline and reliability of a match-
ing. Note that complexity has already been issued in SHRIMP: curve evolution
in the shape extraction process relies on a relevance measure of vertices, which
measures the contribution of a single vertex to the overall shape information.
Put differently, the relevance measure determines the contribution of a single
vertex to the complexity of a polyline. It comes natural to also rely on this
model here. Vertex relevance can canonically be extended to complete poly-
lines by adding up the individual relevance measures for all vertices. This yields
the definition of polyline complexity for a polyline P comprising the vertices

b1, p2,--- 7pn7:

n—1

C(P):=> K(pi-1,pi,pit1) (5.10)
=2

Shape distance can be regarded to model reliability of a correspondence

"To account for environments presenting mostly straight obstacle boundaries, it is advanta-
geous to assign a complexity to straight lines as well. In the DCE-based complexity measure,
straight lines have a zero complexity, since they do not include inner vertices. Assigning a
complexity to straight lines (e.g. equal to a symmetrical corner with right angles and the
same curvature length), enables exploitation of salient straight lines in determination of the
alignment to be anticipated. When including straight lines, two non-parallel lines need to be
selected for determining translation and rotation.
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computationally. As stated in the above, naive formulation, the goal is to find
the correspondence incorporating high shape similarity (i.e. low shape distance)
and high complexity of the polylines. So, a straightforward realization of a
reliability measure is:

Q(P,Q)=C(P)+C(@Q) - 57(P,Q) (5.11)

Page et al. (2003) proposed an alternative approach to determining shape
complexity which evaluates the uniqueness of turning angles of a polyline using
statistical analysis with respect to a shape database. Since SHRIMP aims at
determining the reliability of a polyline correspondence, which is a property
of the individual polylines involved, the approach proposed in this dissertation
appears better suited. In contrast to an analysis based on information theory,
SHRIMP determines a shape to be complex, even if multiple shapes are con-
tained in the view that are similar. This is no problem for the matching, as the
circular ordering respected in the matching ensures a robust association.

In the experiments, it turned out that this definition worked well and does
not require further balancing between shape complexity and shape distance. To
illustrate the effectiveness of the two-step matching, refer to Fig. 5.14, where
two configurations of polylines are matched against each other without an a-
priori estimate of alignments. The polylines marked * denote the most reliable
correspondence. Observe that the feature ‘D’ is correctly matched to the feature
‘1’, even though features ‘A’, ‘B’, and ‘C’ are closer to ‘1’ at the starting point
(image (a)), and these features lack decisive shape information. In this example,
the developed matching succeeds correctly associating the configurations, which
true origins differ by more than one meter. This is a dramatical improvement
compared to the precision required by standard scan matching approaches which
typically rely on a hill-climbing strategy (e.g. Héhnel et al., 2002).

5.7 Alignment

The objective of alignment is determination of a two-sided mapping of two ref-
erence systems. Computation is based on a known correspondence of objects
described with respect to the reference systems. Here, observed polylines de-
scribed in a local coordinate system need to be aligned with their corresponding
map polylines, which are embedded in the absolute coordinate system of the
map. By relating the origin of the local coordinate system to the absolute
coordinate system, the robot pose can be inferred. Similarly to most other ap-
proaches for determination of the alignment(cf. Section 3.6), SHRIMP aims at
minimizing the incongruence of observation and map by determining an optimal
translation and rotation. In other words, alignment is performed as optimiza-
tion. In contrast to popular approaches of incremental alignment (cf. Section
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Figure 5.14: (a) Two configurations of shape features obtained from sensor
data (numbered 1-8 and A-K) are matched only with respect to the shape
distance measure. Observe that at this stage it is impossible to identify the
most plausible correspondence of polyline ‘1’. The most reliable match (marked
%) is consulted to infer an estimate for the configurations’ alignment. The final
matching can then be performed; correspondences found, and the two scans
aligned according to the estimation are shown in (b). Observe that the scans’
origins (marked by crosshairs) are farther apart than 1m (grid denotes 1lm
distance) and no odometry has been used to match the views.

3.5.4), a reliable correspondence of features is known before the alignment is
computed.

To determine the alignment, I adapt a scan matching technique originally
developed by Cox (1990) and improved by Gutmann (2000). The adapted ap-
proach is based on a scan point to line matching, i.e. points detected by the
range sensor are matched against model lines represented in the map. Dis-
tance of scan points and model lines is minimized by aligning the scan. Given
a correspondence of points and lines, the optimal alignment minimizing the
least square error can be computed in a closed form (cf. Gutmann, 2000). In
SHRIMP, mapping of scan points to polylines in the map is restricted by the
known correspondence of polylines. The mapping of points to map polylines
respects the determined correspondences.

Before starting the alignment process, map polylines participating in the
matching are expanded. When retrieving the view from the map, visible parts
of the boundary have been determined, while maintaining a link to the generat-
ing polyline in the map (see Section 5.3). If occlusion occurs, a single polyline in
the map corresponds to multiple polylines in the view. Put differently, polylines
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in the observation corresponding to a single generating map polyline represent
different fragments of the same polyline. Now, these fragments are expanded
to the full extent of the map polylines. This helps congruently aligning ob-
servation and map, if the map view does not provide full congruency with the
observation. Analogously to expanding map polylines, observed polylines are
expanded: if multiple polylines in the observation are jointly matched (i.e. con-
catenated), these polylines are linked to a single polyline. Linking ensures that
the order of fragments is maintained in alignment and merging, i.e. if one frag-
ments proceeds another with respect to circular order, and if both fragments
are matched to the same polyline, then linking the observed fragments ensures
that the fragments are aligned to parts of the map polyline, which also proceed
one another accordingly.

In a first step, corresponding polylines are aligned by aligning their end-
points using the technique described by Lingemann et al. (2004). This yields a
good approximation of the optimal solution and provides a solid starting point
for the incremental alignment according to Gutmann (2000).

For each polyline perceived, sample points are required for employing the
alignment technique described by Gutmann (2000). My actual implementation
utilizes a sampling distance of 1 cm, however, the concrete choice is not critical®.
Additionally, it is made sure that at least one sampling point lies on each of the
polyline’s line segments. Segments introduced by linking perceived polylines
are not sampled, as the links are purely artificial. Using these sampling points,
corresponding line segments of corresponding polylines are determined based
on proximity. For every sampling point, the nearest point contained in the
corresponding polyline is computed and the scan is aligned. The procedure
is repeated until convergence is detected, i.e. the alignment does not change
significantly any more.

Experiments indicate that this straightforward adaption of previous work
yields good results. The main difference to the original work is that alignment in
SHRIMP can reckon on a reliable correspondence determination. An exemplary
result of the alignment contrasted to the original work of Gutmann (2000) is
depicted in Fig. 5.15—as can be observed, the alignment is correctly determined.
In Fig. 5.16 the applicability of this alignment technique to complex contours
is demonstrated.

8In SHRIMP, I sample the perceived polyline rather than refer to the original data points
that let to extraction of the polyline. The technique described by Gutmann (2000) requires
knowledge of points and corresponding tangents of object surfaces. From the polyline repre-
sentation, tangents can easily and robustly be obtained.



160 Shape-based incremental mapping

(a) (b) (c)

Figure 5.15: (a) Two exemplary observations (marked as boxes and circles
respectively) obtained by a simulated LRF in a local frame of reference. (b)
The alignment of extracted lines obtained according to Gutmann (2000) is
stuck in a local minimum related to an erroneous matching of the marked
line segment. (c) The alignment of extracted shape information computed by
SHRIMPS relies on the shape-based matching and correctly aligns the scans.
Note that the observations depicted in (a) are interpreted slightly differently,
since SHRIMPS relies on shape extraction instead of line fitting.
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Figure 5.16: (a) Two polygonal contours (A,B) to be aligned; the cross denotes
the point of reference (b) Illustration of the alignment computed by SHRIMPS.
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5.8 Merging

The map is updated by merging observed polylines to corresponding map poly-
lines, and, by adding new observations emerging in the field of view.

Features in the observation that are not matched to map features are inter-
preted as newly observed features and are added to the map. Since very small
polylines do not display shape information that can be exploited in the match-
ing phase, these polylines may easily remain unmatched. This is particularly
the case, when remote fragments of an obstacle are visible. To avoid multiple
registrations of features, small polylines outside the immediate surrounding of
the robot are not registered in the map. The experimental system utilizes a
threshold of 10 cm in polyline diameter as minimum size and a radius of 2 meter
for defining the immediate surrounding of the robot. Both values have proven
reasonable in the experiments and are uncritical parameters.

The main task of the merging procedure is mediating between differing per-
ceptions of the same polyline in multiple observations and refining the polyline’s
appearance in the map. My approach to merging is related to the approach on
curve morphing suggested by Sebastian et al. (2003) (see also cf. Section 3.7).
The task of map merging in robot mapping differs from curve morphing, though.
In robot mapping, due to change of viewpoints, only some parts of polylines
may actually be visible and correspond. Hence, the morphing procedure can
only be applied to the overlapping, i.e. jointly visible part. For example, if a
larger fragment of an obstacle boundary is observed than is registered in the
map, only the jointly represented fragments can be merged. In SHRIMP cor-
responding polylines are decomposed into three parts: head, body, and tail (see
Fig. 5.17). The body part describes the jointly represented fragments. Head
and tail denote the remaining parts. Determination of head, body, and tail
exploits that the corresponding polylines have already been aligned. To deter-
mine the begin of head and tail parts, each polylines’ endpoint are mapped to
the nearest points on the other polyline (Fig. 5.17 (b)). If endpoints map to
endpoints, the polylines have a common dimension. Otherwise, the mapped
point marks the beginning of the head part (or tail part, respectively). For
improving robust detection of parts sharing the same dimension, but which are
not accurately aligned, a small tolerance is introduced when comparing points.

In accordance to the approach suggested by Sebastian et al. (2003), merging
of corresponding body parts would be performed by first determining sample
points on the contour, then matching these points using a DP scheme, and
finally balancing the sample points between their original position and the
position of their corresponding counterpart. As regards an adaption of this
approach to robot mapping, I applied some changes.

Sample points on the polyline extracted from observation have already been
determined to compute the alignment and are reused here. No sampling points
on the map polyline are determined in SHRIMP, but points corresponding to
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Figure 5.17: (a) Corresponding, aligned polylines. (b) Decomposition into head,
body, and tail parts; for illustration purposes, the polylines have been shifted
apart in (b).

Figure 5.18: Model polyline (dashed) and randomly generated distorted vari-
ants thereof (gray). The distorted variants are iteratively merged to the result-
ing polyline (solid black) which resembles the original model. The lower image
depicts the enlarged part that is marked in the upper image.
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the sample points of the observed polyline are determined by the matching. The
original work addresses shape recognition and, therefore, incorporates a com-
plex cost function that is minimized by adequately matching discrete points.
In the context of updating the map, corresponding polylines are both similar
and aligned. So, a much simpler weight function may be utilized which does
not require any balancing of parameters. In SHRIMP, I employ the same tech-
niques as for aligning observation and map: a proximity-based weight function
(Euclidean distance is used) and a point-to-polyline-segment matching. This
approach avoids further parameters, while at the same time it is not restricted
to association of discrete points, but discrete points from the observation are
mapped to arbitrary points of the map polylines. This avoids distortions intro-
duced by a fixed discretization. In other words, merging is performed in direct
continuation of alignment. In alignment, all sample points are simultaneously
moved to fit the configuration retrieved from the map most congruently. In
merging, the points are individually adapted to the map. Associated points are
balanced by a weighted average, whereby weighting is defined by the amount of
times a polyline has been sensed. The underlying idea is that repeated observa-
tion and merging increases the certainty in the appearance of a map polyline.
As a result, the shape of a polyline is stabilized the more often it is observed.
This technique is suitable to cancel out measurement noise in corresponding
polylines. Notably, this is not a stochastic sound modeling of measurement
noise. A sound treatment of noise in merging is not within the scope of my
work. Indeed, results indicate that this approach already provides good results.
In Fig. 5.18 the outcome of iteratively merging strongly distorted polylines is
demonstrated. Image (a) depicts a model curve (bold) that has been used to
randomly create distorted variants of the model (grayish polylines; one exem-
plary variant is highlighted). Iteratively merging 30 polylines, the outcome,
which is depicted in image (b), closely resembles the model polyline.

5.9 Summary & conclusion

In this Chapter, I have presented my approach to robot mapping, starting by
a characterization of plausible data integration. I have argued that plausibility
in mapping is shaped by plausibility in correspondence determination in every
respect. My requirements for plausible correspondence determination respond
to conclusions drawn in earlier Chapters and are realized in the presented com-
putational approach to matching. In summary, plausible data integration must
alm at minimizing a suitable feature distance measure, account for grouping
differences, respect mutual compatibility of associations, and respect confident
knowledge of configuration. These requirements are implemented in the compu-
tational model to robot mapping, named SHRIMP. It is an incremental map-
ping architecture that is centered on a matching algorithm that reflects the
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theoretical results described in the preceding Chapter.

A second, central component in SHRIMP is its specially designed shape
distance measure. This measure provides distinctive information about fea-
ture similarity and provides the basis that enables to disregard of estimates of
features locations, which are often unreliable, or may not be available when
relating observation to an external map. Shape distance computation is based
on state-of-the-art techniques stemming from object recognition. Studies on
shape similarity in the context of robot mapping® have allowed improvement of
shape distance measures and return enhancements to object recognition, which
is documented in Latecki et al. (2005b).

SHRIMP extends earlier work using polylines in a-priori manual world mod-
eling (e.g. Chatila & Laumond, 1985) by means of autonomous map acquisition
and improved self-localization. It improves recent approaches to map acquisi-
tion that extract polygonal lines from congruently aligned range finder data
(e.g. Veeck & Burgard, 2004), as SHRIMP addresses the full spectrum of
map construction, in particular correspondence determination on the basis of a
polyline-based map. SHRIMP provides a constructive validation of to the claim
of my thesis that shape information provides a solid basis to robust mapping.

To complement key techniques of matching, map representation, shape ex-
traction, alignment, and merging procedures have been described. Computer
implementations of all procedures involved in robot mapping are gathered in an
prototypical implementation termed SHRIMPS. In the next Chapter, an exper-
imental evaluation of SHRIMPS is presented for providing a proof-of-concept.

(Latecki et al., 2003; Wolter & Latecki, 2004; Wolter et al., 2004)
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Chapter 6

Evaluation

Grau, teurer Freund, ist alle Theorie,
Und griin des Lebens goldner Baum.

Goethe, Faust 1

In this Chapter, I present an evaluation of my approach to robot mapping.
Evaluation is performed in experiments using simulated and real-world sensor
data. In a first study, I present results from examining self-localization per-
formance. Self-localization performance is essentially governed by the perfor-
mance of correspondence determination, thus, providing good insight in results
achieved as regards one of my central objectives of developing a robust approach
to correspondence determination on the basis of shape analysis. Experiments
cover the standard task of relating observations to the robot’s internal map.
In addition, one setup employs an external, coarse map, to which the obser-
vations of the robot need to be related. This setting is included to evaluate
achievements as regards my research goal to advance robot navigation towards
utilizing externally supplied maps.

In a second study, mapping performance is investigated. This analyzes the
robustness to localization in partially unknown environments and the reliable
interplay of all functional components developed.

6.1 Implementation notes

SHRIMPS has been implemented according to the presentation in the previous
Chapter. The system comprises some parametric models. Referring to a unit
size of centimeters, the parameters have been used in the experiments (unless
noted otherwise) are as follows:
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parameter value description
Feature extraction:
Intermediate DCE threshold: 5.0 Section 5.4.2, pp. 135
Grouping threshold: 10.0 [cm] Section 5.4.1, pp. 134
Shape distance measure:
Arc length vs. curvature A1 :=0.025 Eq. 5.2, p. 142
Removal cost Ao :=25-10"° Eq. 5.3, p. 145
Matching:
Ignorance penalty: Ag 1= 5000 Eq. 5.6, p. 149
Alignment consistency measure: A4 := 1.0, Eq. 5.8, p. 152

)\5 :=6.0

Merging/ map update:
Min. size of polylines to add: 10.0 [cm] Section 5.8, p. 161

Suitable parameter values have been determined in experiments. The high
distinctiveness of the shape distance measure eases determining suitable param-
eters, as the matching is not sensitive to variations.

SHRIMPS has been implemented in Macintosh Common Lisp 5.0; reported
computing times refer to an Apple G5 dual 2.0Ghz! computer with 1GB of
memory. Computing times are marked by a superscript ‘A’, e.g. 1:30* minutes.

6.2 Case study self-localization

In this study, I evaluate self-localization performed by the functional com-
ponents view extraction, correspondence determination, and alignment. The
performance of my approach is compared against other approaches to self-
localization documented in the literature. The study considers standard self-
localization in a known environment as well as map-based localization using a
schematic overview map.

Schematic maps are coarse overview maps that omit unnecessary details
and simplify shapes and structures. Schematic maps have been considered to
provide a suitable basis for interaction of humans and robots, in particular as
regards robot instruction (Freksa et al., 2000b). Thus, schematic maps can
be regarded to be an important representative of external maps, which robots
should be able to utilize (cf. Section 1.1). This makes it interesting and relevant
to study the adequacy of localization techniques to handle schematic maps.
Experiments based on the schematic map address evaluation as regards my
research goal to devise techniques for correspondence determination that are
applicable to both, applications involving the internal map of the robot, and to
applications involving an external, maybe coarse map.

1Only one processor is used by the Lisp system
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Localization is evaluated in a simulated environment in which a virtual robot
equipped with a LRF moves. Trajectories are determined and according sensor
data is simulated. The data presents a 180° field of view and measurements
are distorted using Gaussian noise NV(0, 1), i.e. the true measurement is at a
probability of 95.5% within a tolerance of +2 ¢cm. Experiments are performed
in simulation to allow referring to ground truth in evaluation and to enable
systematical modification of the experimental setup, thereby gaining a better
insight in the capabilities of the methods.

To maintain the focus on spatial aspects, no stochastic models have been
employed. I am aware that virtually all practical implementations of robot
self-localization employ some stochastic model to address uncertainty and such
techniques appear necessary to allow recovering from false decisions made. Here,
only the the most plausible pose is determined instead of tracking a complete set
of potential poses and updating belief states. This evaluates the performance
of fundamental spatial information processing. The more reliable the single,
most plausible pose can estimate the robot’s true pose, the better an overall
localization system including uncertainty models would work (cf. the discussion
in Section 1.2). Moreover, incorporating a comprehensive uncertainty handling
introduces additional, non-spatial processes and would conceal the ability to
judge the performance of spatial representation and reasoning techniques to a
certain extent. This makes this study both legitimate and interesting.

6.2.1 Evaluation criteria

Localization is performed for a sequence of observations along a trajectory
through a test environment; the true map is provided to the localization meth-
ods. Differences between the true view pose and the view pose determined by
a localizing method serve as the basis for evaluation. Differences are averaged
for individual methods and compared. In addition, a proximity test is defined:
whenever the localization is performed with a difference from the true pose of
less than a fixed threshold, the proximity test is said to be passed. In localiza-
tion experiments involving an accurate map of the environment, the threshold
is set to 25° in orientation and 25 cm in position. In the experiment involving
a schematic map, the threshold is relaxed, since schematic maps are coarse and
differ from observation. Thus, localization with respect to a schematic map
yields coarser information, too. The proximity test with respect to a schematic
map utilizes a maximum difference in orientation of 45°, and of 50 cm in posi-
tion.

6.2.2 Methods compared

For the experiments a representative selection of state-of-the-art localization
methods utilizing different spatial representations and matching techniques has
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been selected. Their performance is compared against SHRIMPS’ localization
performance. The following methods have been chosen:

e Feature tracking based on histogram matching developed by Roéfer (2002)
and also employed by e.g. Jefferies et al. (2004c)

e Map-based localization by line matching described by Gutmann et al.
(2001); it relates to approaches by Cox (1990); Gutmann (2000); Lu &
Milios (1997)

o Iterative Closest Point (ICP) (Besl & McKay, 1992) used in connection
with occupancy grids and employed by e.g. Hiahnel et al. (2002); Thrun
et al. (2000b)

These methods constitute a reasonable spectrum as regards different map
representations and matching techniques. The first two approaches utilize ex-
tended features (lines) and the third is based on the very popular representation
of occupancy grids (cf. Section 2.1.3).

Rofer’s approach to feature tracking (Rofer, 2002) addresses localization by
matching consecutive observations against each other. Such an approach to self-
localization is referred to as feature tracking—it does not rely on an internal
map. However, the technique to determine correlations of observations is iden-
tical to map-based approaches. In feature tracking, the previous observation
is considered instead of an internal map. Rofer utilizes line features in his ap-
proach. Lines are extracted from LRF data using the generalization algorithm
described in (Musto et al., 1999) (see also Section 3.4.1). On the level of con-
figurational information, Rofer independently considers the orientation of the
lines and their position. Orientation of lines is jointly represented by means of
a histogram of directions. Similarly, histograms are employed for representing
the x- and y-coordinates of the lines in a local coordinate system. Localization
is performed by extracting lines from the LRF, by computing histograms, and
by correlating histograms of the current and previous observation. In a first
step, orientation histograms are correlated; this determines the robot’s turn-
ing angle. Then, the robot’s local coordinate system is rotated accordingly,
aligning the current local coordinate system with the previous one in terms of
orientation. In a second step, independent x- and y-histograms are correlated.
The correlation yields the robot’s translation. Both values are used to update
the robot’s pose.

Map-based localization by means of line models as originally developed by
Cox (1990) utilizes a uniform map representation that represents line features
in an absolute coordinate system. Gutmann (2000) extended Cox’ algorithm by
introducing a line detection for extracting lines from LRF data—the recursive
split line fitting is employed (see Section 3.4.1). Gutmann also introduced a
distance measure for line features, which simultaneously considers difference
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average average

movement  rotation total

between between distance
setup Fig. scans scans traveled
simple environment (A) | 6.1 (a) 11 mm 5.0° 24.32 m
simple environment (B) | 6.1 (b) 974 mm 49.2° 22.40 m
complex environment 6.4 11 mm 4.0° 43.03 m
complex environment 6.4 104 mm 30.6° 42.07 m
& schematized map

Table 6.1: Experimental setups used for evaluation of self-localization perfor-
mance

in line orientation and difference in line position. The matching is performed
indirectly by means of iterative alignment (see Section 3.5.4).

The third approach examined in this study is based on an occupancy grid
representation, which is the most commonly used representation (cf. Thrun
et al., 2005). To align observation and map, the Iterative Closest Point (ICP)
algorithm is employed (cf. Section 3.5.4). Similarly to the line-based local-
ization, matching and alignment in ICP is performed indirectly by iterative
alignment (see Section 3.5.4). The fundamental difference between ICP and
line-based localization according to Gutmann et al. (2001) lies in the underly-
ing spatial representation.

6.2.3 Experiments & discussion

The experiments were conducted in three settings: a simple environment dis-
playing only obstacles delimited by straight walls, a more complex environment
derived from a floor map containing arbitrary-shaped obstacles, and a setting
where localization in the complex environment has to be performed using a
coarse schematic map that causes the actual robot perception and map to dif-
fer significantly.

The methods listed in Section 6.2.2 have been implemented according to
the literature. Bins of width 2° are used for determination of rotation and 50
mm for position in the histogram-based localization. The resolution of 50 mm
has been used as grid size for occupancy grids in ICP. Results are presented in
the following Figures and discussed in the below.

In the results obtained for the simple test environment (A) (see Tab. 6.1,
Fig. 6.1, Tab. 6.2, and Fig. 6.2), it can be observed that most methods correctly
determined the robot’s trajectory; the depicted trajectories are printed on top
of the true trajectory. Only the histogram-based localization fails to resemble
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simple environment (A):

average deviation from true

Method position [cm] | heading [°] | proximity test [%]
histogram 155.1 1.2 0
ICP 10.0 1.2 97
line-based 1.2 0.5 100
SHRIMPS 2.0 3.0 94

simple environment (B):

average deviation from true

method position [cm] | heading [°] | proximity test [%]
histogram 215.1 54 30
ICP 18.5 1.68 87
line-based 128.2 11.5 48
SHRIMPS 1.9 1.27 100

complex environment:

average deviation from true

Method position [cm] | heading [°] | proximity test [%]
histogram 240.0 26.4 8
ICP 53.4 1.5 68
line-based 516.7 65 4
SHRIMPS 144 1.21 87
schematic map:
average deviation from true | relaxed

method position [cm] | heading [°] | proximity test [%]
histogram 212.8 26.5 14
ICP 223.4 25.9 50
line-based 183.6 16.6 30
SHRIMPS 55.3 3.3 86

Table 6.2: Tabular overview of localization results obtained
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(b)

Figure 6.1: Experimental settings A (left) and B (right) for the simple environ-
ment of size 8 x 11 m. The robot’s true path is depicted in black (triangles
denote robot orientation), trajectory as reconstructed from simulated odometry
readings is shown as dashed lines.

the robot’s path. Investigating deeper into this failure, it can be observed that
the method fails at places showing a high rotational symmetry like the two top
corners of the robot’s path.

The setup in the simple test environment (B) increases the distance traveled
between successive observations. Larger errors in odometry accumulate, so
this setting investigates the capability of methods to cope with unreliable pose
estimates. The results (see Tab. 6.2 and Fig. 6.3) indicate that in contrast
to setting (A) the line-based localization fails too. The estimated trajectory
is only correct until the robot reaches the top left corner. At this point, a
wrong correspondence of lines is determined, since lines are matched based on
a distance function relying on a pose estimate, which is not reliable here. ICP
can estimate the robot’s trajectory correctly, except from cutting the top right
corner. SHRIMPS handles the increased uncertainty without loss in localization
quality.

In the settings using the complex environment depicted in Fig. 6.4, differ-
ences of localization results become more apparent (see Fig. 6.6). Both lo-
calization methods relying on detection of lines in the LRF data, namely the
histogram-based tracking and the line-based matching, soon loose track of the
correct path, estimating no more than 8% of the trajectory close enough to
the true trajectory as regards the proximity test. At a first glance at Fig. 6.6
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() (d)

Figure 6.2: Resulting localization for the simple test environment A (see Tab.
6.1) plotted against true path (dashed line). (a) Histogram-based localization,
(b) ICP, (c) line-based, and (d) SHRIMPS
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Figure 6.3: Resulting localization for the simple test environment B (see Tab.
6.1) plotted against true path (dashed lines). (a) Histogram-based localization,
(b) ICP, (c) line-based, and (d) SHRIMPS
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(a) (b)

Figure 6.4: Results of the experimental settings for the complex environment
(see Tab. 6.2) of size 14 x 24 m. The environment is shown in (a), whereas (b)
depicts the schematized map used in one experiment.

(b), ICP seems to resemble the robot’s trajectory accurately. However, due to
susceptibility for local minima in the iterative alignment of the ICP process,
pose estimates often get stuck at locally optimal solutions. This results in an
average deviation of about 220cm from the true trajectory. However, ICP re-
covers when the robot moves on further. After all, 68% of the estimated poses
satisfy the proximity test. SHRIMPS achieves an average deviation from the
true trajectory of about 55cm, and 87% of estimated poses satisfy the proximity
condition.

Using LRF data corresponding to the complex environment, but providing a
simplified, schematized map for localization instead of the true map, simulates
wayfinding using an external overview map?. The schematic map has been
derived from the environment similar to the process described by Barkowsky
et al. (2000). Recall, in this setting the relaxed proximity test is applied, since
LRF data and schematic map differ significantly. Due to the large differences
between map and perception, most localization techniques fail. ICP meets the
proximity constraint in 50% of the estimated poses, whereas SHRIMPS passes
it in 86% of the cases. It estimates the path precisely until the robot enters the
last room in the top-left corner. The freestanding column in the top-left room

2Using an truly external map, the scale may be unknown. Here, no scaling of the map is
performed.
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Figure 6.5: Results obtained in the map-based localization experiment. Deter-
mined poses and true poses are plotted. (a) Histogram, (b) ICP, (c) line-based,
and (d) SHRIMPS



176 Evaluation

(d)

Figure 6.6: Results obtained in the localization experiment involving a
schematic map. Determined poses and true poses are plotted. (a) histogram,
(b) ICP, (c) line-based, and (d) SHRIMPS
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is erroneously linked to the top wall, which yields an overall shape of the room
that does not align with the schematic map and causes the deviation.

6.2.4 Discussion

Localization experiments have been carried out under conditions ranging from a
simple, idealized environment to a realistic one, and in connection to a schematic
map. In the simple environment (setup simple environment (A)), all techniques
yield reasonable results. Merely, histogram-based matching exposed difficulties
in handling views that present a high rotational symmetry. In real-world con-
ditions, such constellation are unlikely, though. When used in environments
presenting a dominant main direction and with good odometry, histogram-
based pose tracking is likely to give good results. Increasing the travel distance
between successive observations (setup simple environment (B)) increases the
effect of accumulating odometry errors. Some approaches are particular sensi-
tive to odometry errors and fail to handle these conditions. Histogram-based
matching appears to be dependent on reliable odometry and a significant over-
lap of scans; line-based matching appears to be sensitive to odometry errors
too. As there are only few lines, a single wrong correspondence has a strong
adverse effect to the iterative alignment procedure, which appears to be getting
stuck at sub-optimal solutions. In contrast, ICP, which considers correspon-
dences on the level of individual points, can recover from such errors. In the
realistic environment (setup complex environment) presenting hardly linear ob-
stacle outlines, line-based techniques fail; ICP and SHRIMPS handle the setup
reasonably. Evaluating the localization with respect to a schematic map, the
difference in performance between ICP and SHRIMPS becomes more apparent.
Considering the average differences between true trajectory and estimated one,
it can be concluded that only SHRIMPS is able to master this setting: poses
determined by shape-matching differ about 55 cm in average, whereas the pose
estimated by ICP differs by more than 2m in average (see Table 6.2).

To sum up, the experimental evaluation demonstrated the applicability of
SHRIMPS to standard map-based localization and to self-localization using a
schematic map. The experiments highlight that SHRIMPS performs compara-
bly well as often-used ICP-based localization relying on an internal map. In the
case of self-localization using a schematic map, SHRIMPS is still able to robustly
perform localization in most cases. The experiments support my conclusions
on spatial representations and reasoning techniques: a universal representation
of spatial information in combination with a sensible matching strategy pro-
vides the best means to master correspondence determination robustly. This
substantiates the claim of this thesis to advance robot mapping performance
by improving spatial information processing and to improve self-localization
towards capabilities required for exploiting external maps.
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Sensor data: Simulated LRF data

Travel distance: approx. 42 meter

# of scans: 400 (3840)

Odometry: unavailable (only available to GMAP-
PING)

Average robot 0.1 meter translation, 8.5° rotation (0.01

movement between meter, 1.7°)

scanning:

Table 6.3: Experimental setup of the simulated environment

6.3 Mapping experiments

In this Section, mapping experiments for evaluating SHRIMPS are described.
Experiments comprise setups using simulated data and real-world data. The
output of SHRIMPS is compared to the freely available GMAPPING software
(Grisetti et al., 2005), which provides an advanced extension to the popular
CARMEN software?. GMAPPING can be regarded to demarcate the state-of-
the-art in stochastic-based mapping. It comprises an occupancy grid represen-
tation, ICP-based scan matching, and particle filters to simultaneously track
different hypotheses of the robot’s pose. GMAPPING has been installed on
a Linux PC comprising a Pentium IV 2.66 Ghz processor and 512MB Ram.
Computing times of this program are indicated by a superscript ‘B’ to indicate
the referring computer clearly. GMAPPING is initialized using the parameter
file “fr079.5cm.ini” distributed with the software.

6.3.1 Mapping with simulated sensor data

In this experiment, a synthetic indoor environment of approximately 6 x 7
meter is used (see Fig. 6.7). A simulated robot moves along the path marked
in the image, collecting 400 laser scans similar to data as could be obtained
by a SICK laser range finder. The experimental setup is summarized in Tab.
6.3. The data presents a 180° field of view and measurements are distorted
using Gaussian noise N (0,1), i.e. the true measurement is at a probability
of 95.5% within a tolerance of 2 cm. Simulated sensor readings have been
processed by SHRIMPS and a map has been constructed (see Fig. 6.8); in
the experiment no odometry data has been used. The processing time took
approximately 2:15* minutes. The same scans have also been processed by
GMAPPING in 1:43% minutes; the result is depicted in Fig. 6.9 (a). However,
since GMAPPING requires odometry information, pose estimates for view poses

3Carmen—Carnegie Mellon Robot Navigation Toolkit is freely available from
http://carmen.sourceforge.net/
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Figure 6.7: Setup of the mapping experiment using simulated sensor data, the
environment measures approximately 6 x 7 meter. The grid denotes a distance

of 1 meter. The simulated robot traversed the path and collected 400 scans in
total.

have been supplied. Here, the true view poses are used. This means, by simply
superimposing the scans according to their “estimated” view poses, a congruent
map could be constructed. Of course, GMAPPING is not aware that true poses
are available.

Another data set has been created comprising 3840 scans in total. Here,
additional scans are determined for poses at equally spaced poses in between
the view poses in the first set and odometry information has been added. The
summarized setup is denoted in parentheses in Tab. 6.3. The data set has been
processed by GMAPPING in approximately 6 minutes. (see Fig. 6.9 (b)).

Discussion

In Fig. 6.8, the output of SHRIMPS is overlaid with the ground truth map. As
can be observed, the determined map accurately resembles the environment.
Unfortunately, the two round columns in the top left and top right corner show
some artifacts of polylines put on top of each other; this has been caused by
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Figure 6.8: Results of the mapping obtained with simulated data. Map com-
puted by SHRIMPS is superimposed on the ground truth map (dashed gray
lines).
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(a) (b)

Figure 6.9: Results of GMAPPING for mapping the simulated data. (a) Pro-
cessing the same 400 scans as processed by SHRIMPS. (b) Processing additional
scans corresponding to intermediate scan poses to provide a strong overlap be-
tween consecutive scans; in total, 3840 scans are processed.

occasionally not matching a perceived feature to the map, thereby establishing
a new map object. Further observations of these columns should allow the
matching and merging components to recover from this situation by detecting
the correspondence and merging the polylines together. In contrast to the upper
columns, the round column in the bottom left room is already appropriately
approximated by a single polyline spanning the part visible from the robot’s
path.

The same LRF data has been input to GMAPPING; the resulting map is
depicted in Fig. 6.9 (a). It clearly indicates a mapping failure. The reason for
this can be narrowed down to difficulties of processing consecutive scans, which
do not present a nearly complete overlap. To obtain a comparable output,
additional scans at intermediate view poses have been simulated. Despite the
perfect odometry supplied, the resulting map depicted in Fig. 6.9 (b) is of poorer
quality as the one obtained by SHRIMPS—several artifacts are apparent. To
conclude, SHRIMPS can outperform state-of-the-art mapping with occupancy
grids in a stochastic framework.

6.3.2 Mapping with real sensor data in a home environment

This experiment is based on real LRF data obtained in a home environment;
home environments present one important representative of working environ-
ments for future service robots. The environment regarded in this experiment is
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Sensor data: Sick-LMS LRF mounted on a Pioneer-2
robot

Travel distance: approx. 31 meter

# of scans: 41

Odometry: available

Average robot 0.75 meter translation, 56.6° rotation

movement between

scanning:

Table 6.4: Experimental setup of the home environment

most likely an ordinary representative of its class and it is challenging in many
regards. First, it is a crowded environment and most view poses only offer a
strongly restricted view as obstacles block sight. Matching needs to handle the
limited configuration information available and must reliably detect correspon-
dences of the few objects in sight. Second, various small objects are spread all
over the place and may only be visible to the sensor, if the sensor is located
close to the obstacle. This results in unpredicted occlusion. Similarly, complex
outlines of the obstacles (e.g. curtains, piled up clothing, ripped radiators) ap-
pear differently depending on the view pose and their appearance is particularly
sensitive to any misalignment of the sensor. To correlate observations under
these conditions correctly, careful determination of feature distance is essential.
A third difficulty of this setup is a large movement of the robot between two
consecutive scans, resulting in a small overlap of consecutive scans®. Many new
objects can emerge from one scan to the other. Matching needs to reliably de-
tect the few correspondences available and, at the same time, reliably disregard
newly emerged features.

The experimental setup is summarized in Tab. 6.4; two consecutive scans
are illustrated in Fig. 6.10. In this depiction, the scans are combined to one
coordinate system using odometry. The Figure illustrates the small amount of
overlap between consecutive scans. The scan depicted using black circles con-
tains some false readings, possibly caused by disturbance of the sensor related
to specific object surfaces.

In this experiment, two parameters of SHRIMPS have been changed:

Skip penalty: A3 := 10000 (see Eq. 5.6 on page 149)
Grouping threshold: 5.0 [cm]

The penalty for not matching an object has been increased to respond to sig-

4Unfortunately, some sensor data has been corrupted during transmission from the robot
to the computer recording the data. The unrecoverable loss of some sensor data caused
differences in view pose between remaining scans of up to three meters; odometry information
of reasonable quality is available.
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Figure 6.10: An overlay of two consecutive scans from the home environment
according to odometry; scan points from one scan are depicted as boxes, scan
points from the other scan as circles. View poses of the robot are indicated
by cross hairs; the grid denotes a distance of 1 meter. The scan depicted by
solid circles contains some measurement errors that do not correspond to any
obstacle in the environment, e.g. the solitary scan points in the upper and lower
left part of the image.

nificant differences in feature appearance. Using this parameter value, features
appearing less similar can also be matched. The grouping threshold has been
decreased, as there are many objects close to one another in this environment.
The map produced by SHRIMPS is depicted in Fig. 6.11; its computation
took about 114 seconds and it consists of 59 polylines with 238 points in total.
The same sensor data is also used as input to GMAPPING, the corresponding
output is depicted in Fig. 6.12; the computing time amounts to 418 seconds.

Discussion

By visual impression, the map computed by SHRIMPS resembles the true envi-
ronment; ground truth data to compare with is not available. This demonstrates
that correspondences between consecutive scans have been robustly determined.
Small artifacts resulting from undetected correspondences remain, though. For
example, a corner of a polyline is overlaid with another polyline displaying the
same shape (see fifth grid cell from the left, second from top in Fig. 6.11).

As regards the results obtained by GMAPPING, it can be observed in the
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Figure 6.11: Map of the home environment computed by SHRIMPS.

Figure 6.12: Map of the home environment computed by GMAPPING.
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Fig. 6.12 that the data is not congruently integrated. A precise analysis of the
failure of GMAPPING in this setup is not in the scope of my work, but the
output of the system repeatedly acclaimed a failure of scan matching. GMAP-
PING appears unable to cope with sequences of laser scans that do not present
very high degree of congruence, even though there are significant overlaps.

6.3.3 Data integration purely considering shape

In a third study, I return to the motivating example presented in the intro-
duction of this dissertation. I discussed in the motivation that exploitation
of spatial information is essential to robot mapping. In an example I demon-
strated that assembling scans can be easy to humans, if a salient object can be
identified on the scans. So far, no techniques in robot mapping can exclusively
rely on spatial information, but are dependent on reliable odometry informa-
tion, which provides suitable start estimates for data integration by iterative
alignment. In the following, I detail the computation performed by SHRIMPS
to process the four scans depicted in Fig. 1.2.

At the beginning, the internal map is empty and the first observation is
stored in the map, identifying the origin of the local coordinate system with
the origin of the map’s coordinate system. When the second scan is processed
by SHRIMPS, the map view is retrieved according to the previous robot pose,
i.e. the origin—this yields the same view as provided by the first observation.
Since no odometry is available, shape analysis is regarded to provide an esti-
mate for the alignment of scans (see Section 5.6.1). The two views are matched
disregarding the alignment consistency (cf. Eq. 5.9 on page 152), and the most
reliable correspondence is determined (cf. Section 5.6.1). Based on this corre-
spondence, the estimate of the alignment can be computed. Fig. 6.13 depicts
these steps, image (a) shows the matching obtained (the most reliable corre-
spondence is highlighted), and image (b) illustrates the estimated alignment by
arranging the views accordingly. In the following steps, the actual matching is
carried out, the observation is aligned to the map, corresponding observations
are merged, and unmatched polylines in the observation are registered in the
map. The actual matching is depicted in Fig. 6.13 (c), and the updated map
is depicted in Fig. 6.13 (d). This two-phase matching procedure is repeated for
the remaining observations, yielding the result presented in Fig. 6.14. As can
be seen, the output is similar to the manually determined solution (see Fig. 1.3
on page 26).

6.3.4 Discussion

Experimental evaluation of mapping tasks indicates that SHRIMPS indeed pro-
vides adequate means to tackle the mapping problem. In simulated and real
environments SHRIMPS has been demonstrated to provide good results. Fur-
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Figure 6.13: (a) Scan from Fig. 1.2-(a). (b) Scan from Fig. 1.2-(b). (c) First
matching and correspondence reliability (only matched polylines are depicted).
(d) Polylines aligned according the alignment derived from the most reliable
correspondence. (e) Actual matching (only matched polylines are depicted),
and (f) map after integrating the first two scans.
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Figure 6.14: The four scans depicted in Fig. 1.2 (page 26) assembled by
SHRIMPS, purely considering shape information.

thermore, it has been shown that SHRIMPS is potentially able to outperform
state-of-the-art approaches to mapping that comprise a full-fledged stochastic
model handling uncertainty, but less sophisticated methods for representing and
reasoning about spatial information. Thus, spatial information processing is es-
sential to the performance of mapping. It is thrilling future work (see Section
7.3.1) to integrate state-of-the-art uncertainty handling to spatial information
processing in SHRIMPS and to evaluate the performance.

In SHRIMPS, there are several components that need to be supplemented
for real-world application to address the full spectrum of difficulties, e.g. han-
dling of uncertainty, implementation of loop closing techniques, etc. In its
present form, the SHRIMP architecture presents adequate means to tackle the
core problem, which is correspondence determination, even succeeding in unfa-
vorable situations like when missing on odometry to provide position estimates.
Dynamics in populated environment are not addressed in this thesis, but re-
main an important ingredient to real-world application. Object maps such as
utilized in the proposed SHRIMP architecture are regarded to provide good
means to approach this topic (cf. Thrun (2002) or see Section 2.1.4).

6.4 Summary & conclusion

In this Chapter, I have presented experiments for evaluating the performance of
SHRIMPS. Experiments are performed for self-localization using internal and
one external, coarse map and for mapping in unknown environments.

In the experiments on self-localization poses computed by SHRIMPS have
been compared to results obtained by other techniques for localization. Stochas-
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tic frameworks for handling uncertainty have been masked out in the experi-
ments. Tests have been performed in simulated environments to provide a
ground truth. The evaluation shows that SHRIMPS performs equally well as
other approaches in standard localization tasks. If pose estimates (odometry)
are of poor quality, SHRIMPS maintains its self-localization performance. In
a second study the performance of localization with respect to an external
(coarse) schematic map has been examined. It turns out that SHRIMPS is able
to master this task in contrast to all other methods analyzed.

In the experiments on mapping, SHRIMPS has been confronted with simu-
lated and real-world environments. In both cases, the mapping procedure has
performed well. However, to yield performance suitable for real applications,
some techniques need to be introduced. Primarily, techniques for propagating
accumulating pose uncertainty and techniques for detecting and addressing am-
biguity in the matching are required. In principal, such techniques are known,
but, nevertheless, their integration is a non-trivial task that exceeds the scope
of my work.

To conclude, the experimental evaluation indicates that shape-based robot
mapping is a suitable approach which in its present form already allows im-
proving on state-of-the-art techniques. Adapting techniques to handle different
hypotheses and to correct for accumulating localization and registration errors
in cyclic paths presents itself as a promising step to achieve a comprehensive
mapping system applicable to general real-world environments.
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Chapter 7
Conclusion & outlook

In liehter varwe stat der walt,
der vogele schal nu donet,
div wunne ist worden manichvalt;
des meien tugende chronet
senide liebe; wer were alt,
da sih div ¢it so schonet?
her meie, iv ist der bris gecalt!
der winder si gehonet!
Carmina Burana, CB 138a

At this point, I summarize my approach, summarize the results achieved,
and evaluate the contribution of this dissertation on shape-based robot mapping
to current research. Additionally, I elaborate on further research directions that
respond to questions raised in this work, and I discuss research tasks that benefit
from the results of this dissertation.

7.1 Summary of the dissertation and its contribution

Outlining the robot mapping task, I have exposed its key challenges. Of those,
this thesis addresses spatial representation and reasoning techniques underly-
ing robot mapping. A sensible approach to robot mapping demands an ade-
quate spatial representation and sophisticated reasoning techniques to tackle
the central correspondence problem. One characteristic of robot mapping is
the requirement of handling uncertain information and of mediating between
conflicting knowledge, for instance between multiple, but differing observations
of the same physical entity. Resolving conflicts involves ambiguities and com-
plicates a definition of robot mapping in terms of a precise computational goal.

In this dissertation, the term plausibility in data integration is introduced
to seize the computational goal of mapping. I have argued that plausible in-
tegration of observations must focus on spatial knowledge, attending more to
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abstract, confident knowledge than to uninterpreted estimates derived from un-
certain sensor data. Matching techniques addressing the correspondence prob-
lem must be empowered to handle relaxed prerequisites on input data, e.g.
inaccuracy of sensor data. This can be achieved by improving the spatial rep-
resentation underlying robot mapping, and by advancing matching techniques.
An exemplary task of integrating observations illustrated that it is essential to
utilize spatial information inherent in the observations. By exploiting spatial
knowledge, the influence of pose estimates derived from odometry can be re-
duced. This allows for a relaxation of requirements posed on the reliability of
pose estimates in terms of availability as well as accuracy, ultimately leading
to independency from odometry. As odometry information is often unreliable,
gaining independence of it is a desirable goal. Robustness against poor pose es-
timates and the capability of mastering the correspondence problem by purely
regarding spatial information inherent in the observations also supports utiliza-
tion of external maps, e.g. floor plans.

A generalized interpretation of robot mapping is proposed in this disserta-
tion, which covers a wider range of tasks than the typical interpretation of a
single robot integrating information obtained from its own sensors. Robot map-
ping can naturally be extended to include a wider range of knowledge sources,
such as external overview maps or communication with fellow robots. To ad-
vance robot mapping towards such a generalized interpretation, I have taken
a first step by aiming at the design of spatial representation and reasoning
techniques that allow a robot to relate its spatial knowledge to external maps.

The scenario covered in this dissertation is the acquisition of spatial knowl-
edge in indoor environments using a high-quality range sensor (a laser range
finder) as primary sensor. This setup is relevant to practical applications like
service robots for home or office usage, while at the same time it puts the focus
on intelligent information processing, as one can easily abstract from technical
issues. The central claims of my thesis are that (a) improved spatial representa-
tion and reasoning techniques can be designed using shape analysis originating
from the field of visual object recognition, and that (b) a robust and efficient
matching algorithm can be designed based on shape analysis and spatial reason-
ing. To address my research questions, I have analyzed relevant approaches in
two regards: by the representation of spatial information, and by the realization
of functional components.

To analyze spatial representations, I have distinguished three layers: fea-
ture representation, configuration representation, and map organization. On
the level of feature representation, I have linked approaches originating from
the field of robotics to shape representation techniques related to visual object
recognition. From my review, I have concluded that shape can constitute a
well-founded map representation and I committed myself to forming such rep-
resentation and developing reasoning processes that empower robot mapping



7.1 Summary 191

on such basis. Polygonal lines that capture the boundary of navigable space
can be employed as map features. They offer means to represent arbitrary en-
vironments compactly, and to enable mediating between sensor data and an
object-centered representation, which is most adequate to higher level reason-
ing processes. Shape distance measures developed for retrieval applications in
computer vision context can be transferred to the robot mapping domain and
support identification of features in the matching. Generally, a universal rep-
resentation of the boundary of navigable space supports linking the internal
representation of a robot to external maps like floor plans.

Examining functional components, I have identified and analyzed the tasks
view acquisition (feature extraction), matching, aligning (localization), and
merging (map update). I have compared my view on robot mapping focus-
ing on these functional components to a perspective centering on uncertainty
handling and subordinating functional components to means of reasoning about
uncertainty. Statistical techniques are widely employed to handle uncertain in-
formation. From evaluating properties of computationally tractable statistical
frameworks, I have derived inherent complications of approaches subordinating
spatial reasoning to a statistical framework. In response, I have argued for mak-
ing the functional components dealing with spatial information the key point
in robot mapping.

The central functional component is matching, which correlates observa-
tion and internal map, establishing correspondences on the level of features.
Placing state-of-the-art techniques to matching in the context of graph theory
and combinatorial optimization, I have advanced the problem formulation by
introducing homomorphic matchings, which are mappings between two sets of
features that adhere to constraints over features. By introducing constraints
into the matching, confident, qualitative information can be modeled.

I have posed matching as the task of finding a homomorphic matching with
respect to confident information about feature configurations that is optimal to
feature-intrinsic information, such as feature similarity that models plausibility
of feature correspondence. In terms of the developed graph matching technique,
features are modeled as vertices and feature-intrinsic information is modeled as
an edge weighting. Matching is posed as the task of identifying the correspon-
dence relation of vertices that is optimal with respect to the edge weighting.
By basing this new formulation of the correspondence problem on hypergraphs,
n-to-m correspondences are expressible. This is an important step towards
utilization of extended geometric primitives as map features, since multiple as-
sociations of a single feature appear necessary to address inescapable grouping
differences in feature extraction. I have proposed exploitation of robust quali-
tative ordering of extended features in the matching by introducing it as side
condition into the matching. I have showed that matchings which are homo-
morphic with respect to ordering information constitute a tractable problem
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class, and I have derived an algorithm to solve such problems. The algorithm
relates graph matching to Dynamic Programming techniques originating from
operations research.

Based on the conceived matching technique, I have developed a new ap-
proach to the correspondence problem that is based on a shape distance measure
modeling shape similarity. The developed shape distance measure is especially
tailored to robust recognition of simple shapes that lack of informative shape in-
formation. Polylines extracted from range finder data comprise a comparatively
high level of noise as compared to shape information available. By encapsu-
lating an existing, solid shape distance measure in a process that searches for
supporting shape information in a noisy polyline, a new shape distance measure
is obtained that allows for robust recognition under the challenging conditions
faced in robot mapping. The shape distance measure provides decisive infor-
mation to the matching, facilitating an efficient and robust solution to the
correspondence problem, which is neither depended on the availability of pose
estimates nor on a specific quality thereof. Moreover, the matching enables the
feature extraction to be independent of parameters, as is can be adapted by the
hypergraph matching and the shape distance measure.

Centering an incremental mapping architecture on the developed matching
component, I have described a comprehensive computational model of shape-
based mapping, termed SHRIMP. Besides matching, it comprises functional
components for feature extraction, alignment (localization), and map update
(merging). FEach of these components is realized by bringing together ap-
proaches developed in the research areas of computer vision and robotics.

For obtaining a proof-of-concept, my approach is evaluated in experiments.
The results achieved in a case study on self-localization demonstrate that the
developed techniques can outperform state-of-the-art techniques. The capa-
bility of relating the robot’s perception to an external, coarse floor plan is
evaluated, showing that SHRIMP is empowered to relate spatial information
across different levels of granularity. Mapping experiments demonstrate that
SHRIMP allows for a robust integration of observations to a compact survey
map based on shape information. To sum up, the experiments indicate that
the shape-based map representation and the reasoning processes developed in
this dissertation provide a sound basis for realizing an advanced robot mapping
system.

Currently, the field of robot mapping is dominated by engineering approaches
that make intense use of statistical filters. My approach differs from these ap-
proaches in that it is more abstract and cognitively motivated—it focuses on
spatial representation and reasoning techniques. I acknowledge principles of
visual similarity and of grouping rather than pursuing to determine optimal
data integration with respect to a statistical model. Thus, my shape analysis
techniques constitute an alternative to approaches developed. In the domain
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of robotics, explicit matching is often avoided by integrating matching with
alignment to a combined, iterative algorithm that identifies physical entities
mainly by their estimated position. In my approach, the correspondence prob-
lem is addressed explicitly. An analytical solution is proposed that combines
cognitively motivated similarity of shape features with qualitative spatial in-
formation. The approach establishes a close connection between the research
areas spatial cognition, robotics, and visual object recognition—this connection
has not been thoroughly investigated yet and encourages future research. Chal-
lenges in robot mapping are substantially characterized by uncertainty in infor-
mation available—uninterpreted use of sensor information is not possible, since
for instance measurement errors accumulate and distort the mapping process
increasingly. Uncertainty may be tackled in two ways: by aiming at engineer-
ing away uncertainty or by aiming at devising techniques robust to uncertainty.
Robotics commonly adopts the first alternative and develops stochastic rea-
soning techniques that can shift uncertain data to a level of sufficient detail,
given that real-world processes can be captured in a computationally tractable
stochastic model. In contrast, my approach facilitates a robust handling of
uncertain information by employing an adequate level of abstraction. In this
dissertation I argued that robust spatial reasoning directly addresses uncer-
tainty, whereas stochastic techniques provide means to address the effects of
uninterpreted use of uncertain information. Since an informative interpretation
of sensor data that is independent of uncertainty may not be achievable, but
alternative interpretations may need to be evaluated, combining these comple-
mentary approaches is an important future research task.

Results achieved in this dissertation also has an impact outside the domain
of robot mapping: the developed shape distance measure can be generalized
(Latecki et al., 2005b) and is well-suited to tasks in visual object recognition.
The matching algorithm is a new contribution to the formulation of the corre-
spondence problem relevant to a wide range of navigational tasks, but can also
be applied to more general matching tasks.

7.2 Evaluation of the achievements

To evaluate the achievements of this dissertation with respect to my research
question, I reconsider my thesis and the initial claims raised in the introduction.

1. A connection exists between mapping using range information
and visual object recognition on the level of shape information.

Reviewing spatial representations underlying robot maps, I compared fea-
ture representation employed in robotics and shape representation techniques
originating from visual object recognition. It turned out that spatial represen-
tations capturing the navigability of space have a counterpart in shape rep-
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resentation techniques. Occupancy grid representations are basically bitmap
images and both scan matching and image retrieval techniques can be based
on the Hausdorff distance for comparing representations. Roadmap represen-
tations represent routes extracted from range data similar to skeleton-based
shape representations. Similar feature extraction processes are used too. Rep-
resentations of the boundary of navigable space correspond to boundary-based
shape representations, polylines can serve as a adequate representation in both
domains—however: techniques operating on poylines like e.g. recognition pro-
cesses have been researched in visual object recognition exclusively. My disser-
tation transfers state-of-the-art shape analysis on the basis of polylines to robot
mapping and advances these techniques.

Shape information plays a central role in my approach to robot mapping.
The spatial representation underlying SHRIMP is based on polylines which
represent shape information. Shape analysis in terms of a shape distance mea-
sure is applied to approach shape similarity computationally, providing decisive
information to the central matching component in SHRIMP.

Besides tackling the correspondence problem, shape analysis is also involved
in aligning perception and map. In alignment, a connection between robotics
and visual object recognition has been shown too, as similar alignment tasks
are studied in the context of visual object recognition. To approach the merg-
ing problem of combining polylines that correspond to the same physical en-
tity, shape transformation techniques have been adapted which originate from
an object recognition application. These links which are realized in SHRIMP
demonstrate the close connection of the research fields visual object recogni-
tion/ computer vision and robot mapping.

2. A spatial representation based on shape information is well-suited
to robot mapping and navigation and it allows utilizing external
maps.

An object-centered representation can be regarded as the most adequate rep-
resentation to robot mapping, as compact representations provide a solid foun-
dation to efficient algorithms. Object maps provide good means to tackle robot
mapping in its full generality, given that the employed primitives allow an ade-
quate representation of any potential working environment (cf. Section 2.1.4).
I respond to this discussion by employing universal geometric primitives based
on shape information which are extractable from widely employed range find-
ers. Polylines can be employed to represent the boundary of navigable space
adequately and, hence, provide valuable information to navigation in a compact
manner. The evaluation demonstrates that this approach is indeed adequate
to robot mapping. It even provides solid means to extend today’s robot ca-
pabilities towards desired communicational skills, as has been investigated in
the self-localization experiments relating realistic simulation of perception to a
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schematic map that significantly differs from the true environment. The match-
ing is challenged by relating fine-grained perception to a coarse, schematic map.
In the SHRIMP architecture, matching relies on a robust feature distance mea-
sure and on robust qualitative ordering information about extended objects.
This empowers SHRIMP to successful and robust self-localization.

3. Sophisticated shape analysis originating from the field of com-
puter vision can be transferred to the robot mapping domain.

Shape provides rich, distinctive information. It is of high importance to object
recognition in the field of computer vision and can be regarded as the most
informative single attribute of an object with respect to recognizing it. Sophis-
ticated shape analysis techniques originating in this area laid the foundation
to develop the sensitive shape distance measure that is particularly robust to
noise and allows even vague shape information to be exploited. Evaluating
shape complexity and shape similarity allows the matching to adhere from un-
reliable odometry information.

4. An analytical, efficient, and robust approach to the correspon-
dence problem can be designed on the basis of spatial reasoning and
shape analysis.

The matching technique utilized in the developed SHRIMP approach relies on
theoretical foundations of balanced hypergraph matching that can be expressed
as an extended Dynamic Programming task. The distinctive shape distance
measure can be assumed to meet the requirements of applying the theoretical
results for determining an optimal correspondence with respect to the compu-
tationally modeled plausibility of data integration. Distinctiveness of the shape
distance measure essentially influences the matching, though in first matter not
in terms of computational complexity but to disregard not plausible feature
associations. However, upon a closer look application of my theoretical results
requires means to reliably detect correspondences based on feature-intrinsic
properties. In principle, shape distance measures can fulfill this premise. As
an ultimate consequence, cost-optimal n-to-m matching can be performed by
efficient analytical means which can be applied to online mapping tasks. Thus,
shape distance significantly contributes to efficiency of the matching as well.
The compactness of a shape-based representation, i.e. just few polylines are
sufficient to represent a typical perception, is another ingredient to efficient
matching. Decreasing the overall amount of features to associate cuts down the
overall computational cost as well.

5. Sophisticated matching strategies substantially attack the corre-
spondence problem and allow for robust self-localization in context
of relazed requirements on input data. In particular, the absence of
odometry information can be mastered.
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The experimental evaluation, in particular the case study on self-localization
using an external schematic map indicates that SHRIMP achieves robust local-
ization. Experimental settings not providing odometry information are mas-
tered by SHRIMP reliably, which is a significant improvement over existing
approaches. Robot mapping is the task of determining the most plausible map
given observations made.

Computational modeling of plausibility means describing common knowl-
edge about space in terms of computational models, which is a central objective
of spatial cognition research (Freksa, 2004). Learning and incorporating mod-
els that reflect a human’s understanding of plausible maps can help to improve
robot mapping towards human capabilities while at the same time making the
robot’s performance more transparent to human users. Besides computation-
ally modeling the characteristics of plausible data integration, spatial cognition
is involved with qualitative reasoning techniques that I have introduced in the
robot mapping task, namely by describing homomorphic matching with respect
to the circular order of extended objects. The qualitative constraints empower
an efficient analytical approach to the correspondence problem. It remains an
challenging research question, which additional spatial relations provide solid
means to enhance matching algorithms in terms of tractable problem classes.

7.3 Looking ahead

This dissertation presents an alternative approach to robot mapping, focusing
on the design of a shape-based spatial representation and on the development
of reasoning techniques, in particular with respect to an analytical and robust
approach to the correspondence problem. Interesting research questions have
been raised that address potential enhancements and complements. Addition-
ally, some current research tasks receive new input from the results achieved in
this work.

In the field of robot mapping several questions remain to be answered for
reaching the ultimate goal of a general, fully autonomous mapping by mobile
robots that is suitable to a wide range of applications and that also empowers
a robot to communicate with fellow robots or humans about its surroundings.
The evaluation of SHRIMP indicates that the developed techniques provide
solid means for further approaching this goal. In the following, I discuss some
particular relevant and promising future steps.

7.3.1 Addressing ambiguities introduced by uncertainty

Challenges of robot mapping are characterized by inescapable uncertainty in
sensor data. This dissertation addresses uncertainty by devising spatial reason-
ing techniques that are robust to uncertain information. As has been discussed
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in Section 1.2, this is an alternative to approaches primarily aiming at reducing
uncertainty by means of stochastic reasoning frameworks. These alternatives
are not competing, but complement one another. Uninterpreted utilization of
uncertain information introduces conflicts. Resolving these conflicts introduces
ambiguities that can be handled by stochastic reasoning frameworks. Sensible
interpretation of spatial information already avoids some conflicts and thereby
reduces ambiguity, as fewer alternatives appear plausible in the context of a
more comprehensive data analysis. Combining the advanced spatial reasoning
techniques developed in this dissertation with state-of-the-art techniques for
handling ambiguities introduced by interpreting uncertain information, a sig-
nificant improvement of robustness in robot mapping appears to be possible.
This would demarcate one important step towards suitability for reliable real-
world application. In the following, I briefly discuss a few starting points for
combining these alternative approaches.

As I have argued, a fully stochastic approach to mapping that subordinates
spatial information processing to a computationally tractable stochastic model
appears questionable to provide a suitable basis. Stochastically modeling all
dimensions of uncertainty is unlikely to be possible. It appears more appropriate
to me, introducing stochastic processes for handling ambiguities into the distinct
functional components of robot mapping.

Stochastic reasoning provides a solid basis to correct for measurement noise.
Given that a system can be described by linear process models, the extended
Kalman filter provides sound means to propagate and to reason about Gaus-
sian noise. The main deficit of approaches relying on Kalman filters is that
the correspondence of observed features needs to be known with certainty. A
straight-forward matching algorithm, e.g. using nearest neighbor techniques,
does often not provide a suitable basis for application of Kalman filters (cf.
Neira & Tardés, 2001). The matching techniques developed in this dissertation
empower a robust correspondence determination that can enable the applica-
tion of Kalman filter techniques. A second complicating aspect of Kalman filters
is their efficiency that can exceed time constraints for online mapping. Kalman
filters bear a quadratic computational complexity of the filter update with re-
spect to the number of features in the map. Decreasing the amount of features
registered in a map (e.g. by advancing the map representation to extended
geometric primitives like polylines) significantly decreases the overall computa-
tional cost. Only few distinct polylines are required to represent comparatively
complex environments, as individual polylines are very expressive.

As a consequence of interpreting uncertain sensor data, any interpreted
information must also be considered uncertain information. In its ultimate
consequence regarding the proposed SHRIMP architecture, this means that the
result of the matching is uncertain too. For handling residual uncertainty in the
matching, multi-hypothesis tracking appears applicable, which is closely related
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to particle filters. Regarding shape similarity of related polylines and regarding
the degree of compatibility of related configurations can serve as a basis for
evaluating the likelihood individual of hypotheses about alternative matching
outcomes. This information can be derived from the central matching equation
underlying SHRIMP (Eq. 5.9 on p. 152), considering the value the right-hand
side expression yields for a specific correspondence relation. The outlined ap-
proach decomposes the overall uncertainty in sensor data into uncertainty in
the matching and uncertainty of measured positions, which is referred to as the
technique of Rao-Blackwellization (cf. Section 3.1).

Unfortunately, deriving a sound computational modeling is far from being
trivial. It appears challenging to derive a model of residual uncertainty in ex-
tracted polylines on the basis of sensor data, even if a noise model of the sensor
is known. Techniques need to be devised for propagating uncertainty in poly-
lines along matching, alignment, and merging. To track multiple hypotheses
stemming from uncertain matching, the matching algorithm would need to be
extended from computing only the most plausible correspondence to computing
all correspondences that appear sufficiently plausible. These correspondences
need to be processed individually and their consequences need to be tracked.
As hypotheses branch, a naive approach would lead to combinatorial explosion.
So, sophisticated techniques to accomplish suitable hypotheses tracking need
to be devised.

In summary, directly addressing uncertainty in perception and map is advan-
tageous to master real-world problems robustly which is required for realizing
practical applications. Devising suitable techniques for addressing uncertainty
in SHRIMP can rely on extensive research on stochastic modeling for robot
mapping, but this step appears not to be a straight-forward application of ex-
istent techniques. Instead, introducing methods for handling uncertainty into
SHRIMP is more likely a challenging endeavor. Though, I am convinced that
this step appears necessary to advance robot mapping to real-world applica-
tions, while at the same time allowing for integration of abstract reasoning to
robots that rely on an object-centered representation as is offered by SHRIMP
and which appear necessary for synthesizing versatile service robots.

7.3.2 Map-based communication

Often, robots should not act purely autonomously, but interact with humans
as well. Most importantly, robots need to be enabled to receive orders from
humans. Robot instruction involves communication of spatial information. In
principal, there are many ways to establish such a communication. Though it
seems natural that the methods that govern human-human interaction should
also be applied to interaction with robots. In first matter, natural language
serves this purpose in human-human interaction. Even though it is a desir-
able long-term goal to set up communication of humans with robots in natural
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language, this is a research topic in its own right, going well beyond natural lan-
guage understanding (see e.g. Fischer & Moratz, 2001; Ligozat, 2000; Moratz
& Tenbrink, 2003). Apart from general difficulties in natural language process-
ing, the design of a natural language interface still poses unanswered research
questions, as human users are unsure about how to address a specific robot,
about which reference system to use, and what kind of commands (e.g. step-
by-step instructions vs. goal-based instructions) to choose (Fischer & Moratz,
2001; Moratz & Tenbrink, 2003).

Maps also provide suitable and established means of communication but ap-
pear easier to handle; Freksa et al. (2000a) argued for utilization of schematic
maps for robot instruction. One can communicate spatial information by indi-
cating locations on a map. For example, to instruct a service robot to move to a
specific place, the target location can be selected on an input device displaying
a map.

Some foundations have already been provided by this work. The proposed
matching provides means to handle schematic maps with respect to localization.
The developed shape distance measure does not rely on a fixed level of granular-
ity but allows to bridge between fine-grained perception and coarse map infor-
mation. We have already outlined some techniques that allow a schematic map
to be interpreted in terms of executable robot commands (Wolter & Richter,
2004). However, these are just two aspects in the overall task. Schematic maps
commonly employed in human-human interaction comprise a rich repertoire of
symbols or spatial relations which need to be adequately interpreted by the
robot. Beyond instructing a robot to move to a specific location, the robot
should also be able to use the external map as basis for its internal map, sup-
plementing and refining it where more detailed information is available through
observation.

7.3.3 Multi-robot mapping

Multi-robot mapping can be regarded to be a special case of map-based commu-
nication that is of practical importance. Robots communicate their individual
maps to gather a joint, comprehensive view. In principle, multiple robots can
more efficiently explore environments and faster provide map information to
human users. For example, in robot rescue scenarios robots are employed to
gather information in order to guide human rescuers. So far, multi-robot map-
ping has been extensively studied in situations where the relative start pose of
the individual robots are known or can be derived by the robots observing one
another. Knowledge about relative start positions eases the problem and allows
to extend existing single-robot approaches (see Thrun, 2001). However, requir-
ing this knowledge can be a severe limitation in some situation. For example,
all robots would need to start from either known places or the robots need to
be simultaneously present to observe one another.
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Figure 7.1: Exemplary result of shape-based map merging. To the left (top
and bottom image), two partial maps constructed independently by two robots
are depicted. From one map, a descriptive shape is extracted (top right im-
age). A similar shape is searched for in the other robot’s map. Based on the
correspondence found, both partial maps can be merged (bottom right image).

To address multi-robot mapping generally, one requires means to correlate
partially constructed maps. In other words, matching needs to be extended
from determination of observation-to-map correspondences to map-to-map cor-
respondences. Determination of map-to-map correspondences and integration
of corresponding parts is commonly referred to as map merging or map fusion.
Extending matching techniques results in a dramatic increase of the computa-
tional burden, as there many more potential correspondences to consider and
no estimate of map alignment is available like it is in incremental mapping.
Therefore, map merging is a hard and yet unsolved problem. Importance of a
sophisticated feature handling in merging maps has been stressed by Konolige
et al. (2003).

In this spirit, shape-based object maps can be regarded to provide solid
means to tackle the problem. In a proof-of-concept study we evaluated the
utility of shape information (Latecki et al., 2005a). The central recognition
algorithm is based on shape analysis, in particular on shape similarity consider-
ation by means of a shape distance measure and on shape complexity. The idea
behind shape-based map merging is to define a cognitively motivated search
strategy that overcomes the immense search space. The set of potential cor-
respondences is traversed by starting with the most salient shapes. There are



7.3 Looking ahead 201

typically only few potential correspondence partners for a salient object that
need to be inspected in detail. This allows to limit the overall computational
cost.

First experimental results obtained by the outlined idea are illustrated
in Fig. 7.1. The experiments indicate that the approach is promising, but,
many open research questions remain. Most importantly, given that a—in
some sense—plausible correspondence of polylines has been determined, sen-
sible means to align the remaining map need to be formulated that take into
account residual uncertainty in the map. For example, banana-shaped maps
of straight corridors are a typical phenomenon of incremental mapping. Even
though the most plausible map may not resemble the true environment well,
estimates about the residual uncertainty may exist. Knowledge about uncer-
tainty allows the robot to agree to a map presenting a different appearance of
the same corridor, given that sensible techniques to relate the two representa-
tions exists. However, aligning two maps containing differently bend corridors
in any naive manner would not allow detection this correspondence. To de-
velop suitable techniques that allow determination of correspondences in an
efficient manner pose great challenges. Relating uncertain information in terms
of coarser qualitative spatial relations and advancing on exploitation of quali-
tative spatial information in matching processes could be a promising starting
point.

7.3.4 Advancing on matching techniques

Introducing qualitative information into the matching facilitated a robust and
efficient approach to the correspondence problem. Ordering information as
utilized in SHRIMP is unlikely to be the only source of confident knowledge
valuable to exploit though. Ordering information is handy due to the simplic-
ity of handling binary constraints which can also be utilized in the matching
frameworks using association graphs. However, many spatial information is
expressed in terms of ternary relations, relating one objects in relation to the
relative position of other objects (Freksa & Rohrig, 1993). Ternary qualitative
calculi can also present valuable spatial information that could and should be
exploited in terms of interpretation as confident knowledge to improve model-
ing of plausible data integration, while at the same time facilitating an efficient
matching. It is yet unclear how such ternary calculi can most appropriately be
integrated into the matching.

Matching has been advanced directly to address different outcomes of the
grouping process by introducing n-to-m matches whereby sequences of features
are re-grouped and matched. Joining of features currently cannot be performed
if two features relate to a single physical entity but are separated in the view
due to occlusion, i.e. an additional feature between the two other ones is de-
tected. To address the full bandwidth of occlusion, a more general approach
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to mapping needs to developed. Such approach would allow unanticipated oc-
clusion to be handled. However, it could turn out that extending the matching
increases computational complexity beyond limits of feasibility. In my pro-
posed approach, occlusion is primarily addressed by anticipating the occlusion.
When retrieving a view from the map, polylines are trimmed according to the
occlusion expected. Expectation is derived from an pose estimate by retriev-
ing the anticipated view from the internal map. If the map view resembles
the observation, the occlusion is handled by the robust matching and the map
update. However, if a robot that does not provide odometry measurements
moves a large distance between sensing, visibility can change dramatically. A
similar situation occurs, if the environment is altered by placing a new object
in front of another, partially occluding the rear one. In such situations, the
developed matching technique is not capable of deriving the interpretation that
an unexpectedly emerged object partially occludes another.

Besides these practical considerations it appears necessary further to explore
the theoretical properties of the matching, relating the developed techniques to
current research in graph theory and combinatorial optimization. Bipartite
graph matching is known to be closely connected to network flow problems
(Loncaric, 1998): can this relation be generalized to accommodate matching in
generalized hypergraphs? If so, what are the implications?

To conclude, there are still important research questions to answer with
respect to a deep understanding of matching, its computational modeling, and
its complexity.

7.3.5 Handling dynamics

Real-world environments often display dynamics, as people or other robots are
moving around. Not addressing dynamics in robot mapping renders any appli-
cation to general real world environments impossible. Unfortunately, handling
dynamics is a very hard problem and has not been solved yet. Common tech-
niques for handling dynamics aim at filtering out moving objects (e.g. Fox et al.,
1999) from the sensor data. A severe complication of dynamic environments
is their effect on stochastic techniques for handling uncertain information: the
recursive Bayes filter requires maps to be constant in time in order to derive a
computational approach (cf. Section 3.1). However, this is no longer the case
in dynamic environments. Approaches relying on object maps are claimed to
provide a suitable basis for addressing dynamics, if features in the map corre-
spond to moving real-world objects—see Thrun (2002) or refer to the discussion
in Section 2.1.4. The present dissertation provides a map representation that
meets this condition. A clue to handling dynamics is that, if map objects and
physical entities in the environment correspond, one could assign motion mod-
els to map features to estimate their position in future observations. At a first
glance, this appears to be an uncomplicated extension to mapping procedures
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(a) (b) (c)

Figure 7.2: (a) Map computed by SHRIMPS, the current robot pose is denoted
by the crosshairs. The grid denotes a distance of 1 meter. (b) A person passes
by the robot (marked area). (c¢) The maps becomes corrupt, if dynamics are
not handled.

relying on object maps, but determination and handling of motion models does
not constitute the true problem. Rather, moving people appear different in sen-
sor readings while they are moving. The challenge is to track an object, whose
appearance is changing. This requires to balance the in matching between
congruence of expected position and congruence of shape. By clearly differenti-
ating these factors in the matching (see Eq. 5.9), the developed techniques can
provide a solid foundation.

Most importantly, the classification of an object not to move must be reli-
able. If, for example, a robot would relate its position to an object erroneously
regarded as a static one, then the robot would infer to be moving by itself with
the same speed as the observed object truly moves. As a result, the mapping
procedure is significantly disturbed. This is exemplified in Fig. 7.2. Image (a)
depicts a map autonomously constructed by SHRIMPS from 845 scans recorded
at the Universitit Bremen by the autonomous wheelchair ROLLAND! (Lanke-
nau & Rofer, 2001). At this point, a human passes by the robot (image (b)) and,
by integrating few successive scans such that they are aligned to the moving
object, the map is distorted (image (c)).

Interpretation of dynamics in the presence of uncertainty is particularly
difficult. Observe that state-of-the-art techniques for handling uncertainty rely
on a static world assumption (see Section 3.1.2) and, hence, cannot be applied
to dynamic environments.

IThe robot is equipped with a LRF facing backwards. Sensor data has been kindly supplied
by Thomas Réfer.
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7.3.6 Retrieving shape information from 3D sensor data

Three-dimensional, fine-grained spatial knowledge provides rich, distinctive in-
formation that can be exploited to disambiguate places. For example, if a robot
equipped with a single laser range finder moves around a cafeteria, it perceives
mainly legs of chairs and tables—similar to a human moving in the woods. Per-
ceptions crowded with similar objects complicate matching and can even hinder
a reliable operation. However, if the robot would be granted a 3D view of its
surrounding it could exploit more salient, discriminative features of the envi-
ronment, e.g. memorize the outline and position of table tops rather than the
position of individual legs. Such 3D views can be acquired using rotating laser
range finders (Surmann et al., 2003). The discussed example suggests that
information derived from 3D data can be valuable, and it also demonstrates
that the information required is often still of 2D nature. Dependable feature
extraction can therefore aim at detecting suitable 2D shapes in 3D data. Such
approach has two advantages: first, sound techniques for 2D mapping can be
extended to benefit from richer 3D information to reduce ambiguity. Second,
the resulting representation remains compact and does not require to represent
and interrelate complex 3D configurations.

7.4 Closing remarks

At a first sight it is remarkable, yet even surprising, that a problem that spe-
cific and that closely connected to practical applications as robot mapping is
keeping a research community occupied for more than two decades. However,
investigating deeper into robot mapping, it becomes apparent that robot map-
ping is by far not a concrete technical challenge, but it involves several fun-
damental research problems: designing adequate representations of real-world
environments, developing means for communication, and devising techniques
for reasoning about spatial, temporal, and uncertain information, to name but
a few. Truly mastering robot mapping requires solutions to these fundamental
problems,which are addressed in various disciplines related to Artificial Intel-
ligence research. In particular with respect to tasks involving interaction with
humans, further disciplines contribute too.

Robot mapping is one central problem of building truly autonomous robots.
It is no self-contained endeavor, but it is thoroughly animated by the tasks a
robot needs to carry out and which rely on the map. As a complicating fact,
many potential robot applications that require autonomous acquisition of maps
are not yet explored, let alone understood. As of today, successful mobile robot
applications remain restricted to fairly constrained scenarios. Helpful, versatile
service robots need to master arbitrary environments, though. Maintaining a
usable map is difficult in many regards and requires consideration of objects
frequently changing their position, of appearance of new objects, and of other
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objects vanishing. On top of that, handling dynamics is unavoidable. Versatile
service robots that meet these requirements are desired and such robots have
fired the imagination of science fiction authors, but their realization still remains
largely unsolved and involves techniques yet unknown.

Thus, there is more to robot mapping than the concrete technical chal-
lenge. Understanding how a suitable representation of one’s surroundings can
be learned is one fundamental research problem. Robot mapping is closely con-
nected with potential applications and needs to be considered in the context
of these applications. Fundamental research questions of representation, rea-
soning, and interaction need to be addressed. To truly solve the mapping task
requires an understanding of all disciplines contributing to the solution of these
questions. This makes robot mapping an interdisciplinary endeavor and its ob-
jective grows with new robot applications desired. So, it might very well take
another while before (if at all?) this research chapter can be closed eventually.
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Appendix A

Publications resulting from
this work

Parts of this research have already let to the following peer-reviewed publica-
tions:

e Longin Jan Latecki, Rolf Lakdmper, and Diedrich Wolter (2003). Shape
similarity and visual parts, In: Proceedings of the 11th International Con-
ference on Disrecte Geometry for Computer Imagery (DGCI), Naples,
Italy
To this article I have contributed a discussion about the close connection
between processing shape information in visual applications and robot
mapping; my first experiments on mapping are presented.

e Longin Jan Latecki, Rolf Lakdmper, Xinqu Sun, and Diedrich Wolter
(2004). Building polygonal maps from laser range data, In: Proceedings of
the ECAI-workshop cognitive robotics (CogRob), Patrick Doherty (eds.),
pp- 56-62, Valencia, Spain
This article presents mapping experiments that have been conducted using
earlier versions of the shape analysis techniques presented in this work; I
contributed description and evaluation of shape extraction and matching.

e Diedrich Wolter and Kai-Florian Richter (2004). Schematized maps for
robot guidance, In: Proceedings of the ECAI-workshop cognitive robotics
(CogRob), Patrick Doherty (eds.), pp. 71-76, Valencia, Spain
In this article, I described spatial representation and reasoning techniques
that appear suitable to instruct an autonomous mobile robot using a
schematic map as medium.

e Diedrich Wolter and Longin Jan Latecki (2004). Shape matching for robot
mapping, In: Proceedings of 8th Pacific Rim International Conference on
Artificial Intelligence (PRICAI), Chengqi Zhang, Hans W. Guesgen, and
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Publications resulting from this work

Wai K. Yeap (eds.), pp. 693-702, LNAI Vol. 3157, Auckland, New Zealand

In this article I describe the two-phase correspondence determination that
allows disregarding odometry information purely by shape analysis.

Diedrich Wolter, Longin Jan Latecki, Rolf Lakdmper, and Xinqu Sun
(2004). Shape-based robot mapping, In: KI 2004: Advances in Artificial
Intelligence, Proceedings of the 27th German Conference in AI (KI-2004),
Susanne Biundo, Thom Frithwirth, and Giinther Palm (Eds.), pp. 439-
452, LNAT Vol. 3238,Ulm, Germany

In this article, the incremental mapping architecture and its components
are described.

Longin Jan Latecki, Rolf Lakdmper, and Diedrich Wolter (2005). Incre-
mental multi-robot mapping. In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS)

The article presents results of a proof-of-concept study showing that shape
analysis provides promising means to tackle map merging in multi-robot
mapping; I contributed to the algorithm of correspondence determination.

Longin Jan Latecki, Rolf Lakdmper, and Diedrich Wolter (2005). Partial
optimal shape similarity, Image Vision Computing Journal, 23:2, pp. 227
- 236

This article describes an approach to shape similarity generalizing the
shape similarity measure developed in this work; I contributed the specific
formulation of partial optimal similarity for matching range information
and demonstrated that the same technique can also be applied in the
context of visual object recognition to recognizing shapes in coarse pixel
images.

Longin Jan Latecki, Rolf Lakdmper, Xinqu Sun, and Diedrich Wolter
(2005). Geometric robot mapping, In: Proceedings of the 12th Interna-
tional Conference on Discrete Geometry for Computer Imagery (DGCI),
Poitiers, France, 2005

This article presents merging techniques for map construction; I con-
tributed by providing matched shape information autonomously derived
from sensor data.

Diedrich Wolter, Christian Freksa, and Longin Jan Latecki. Towards a
Generalization of Self-Localization, In M. E. Jefferies and W. K. Yeap,
editors, Robot and Cognitive Approaches to Spatial Mapping, Springer-
Verlag, accepted contribution

This article analyses spatial representations and reasoning for self-locali-
zation in a generalized context; I present some of the results of the case-
study on self-localization detailed in this dissertation.



209

Bibliography

Altermatt, M., Martinelli, A., Tomatis, N., & Siegwart, R. (2004). SLAM with
corner features based on a relative map. In Proceedings of the IROS-200.

Ambler, A. P., Barrow, H. G., Brown, C. M., Burstall, R. M., & Popplestone,
R. J. (1973). A versatile computer-controlled assembly system. In Proceedings
of the Internatoinal Joint Conference on Artificial Intelligence, (pp. 298-307).

Arkin, M., Chew, L., Huttenlocher, D., Kedem, K., & Mitchell, J. S. B. (1991).
An efficiently computable metric for comparing polygonal shapes. I[EFE
Transactions on Pattern Analysis and Machine Intelligence, 13.

Arulampalam, S., Maskell, S., Gordon, N., & Clapp, T. (2001). A tutorial on
particle filters for on-line non-linear/non-gaussian bayesian tracking. IEEE
Transactions on Signal Processing.

Austin, D. J. & McCarragher, B. J. (2001). Geometric constraint identification
and mapping for mobile robots. Robotics and Autonomous Systems, 35:59-76.

Bachelder, I. A. & Waxman, A. M. (1994). Mobile robot visual mapping and
localization: a view-based neurocomputational architecture that emulates
hippocampal place learning. Neural networks; Special issue: models of neu-
rodynamics and behavior, 7(6-7):1083-1099.

Bailey, T. (2002). Mobile Robot Localization and Mapping in Extensive Outdoor
Environments. Ph.D. thesis, University of Sidney, Department of Aerospace,
Mechanical, and Mechatronic Engineering.

Bailey, T., Nieto, J., & Nebot, E. (2006). Consistency of the FastSLAM algo-
rithm. In Proceedings of the 2006 IEEE International Conference of Robotics
and Automation, (pp. 424-429). Orlando, Florida, USA.

Baker, C., Morris, A., Ferguson, D., Thayer, S., Whittaker, C., Omohundro,
Z., Reverte, C., Whittaker, W., Hahnel, D., & Thrun, S. (2004). A campaign
in autonomous mine mapping. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA).



210 BIBLIOGRAPHY

Barkowsky, T., Berendt, B., Egner, S., Freksa, C., Krink, T., Rohrig, R., &
Wulf, A. (1994). The REALATOR: How to construct reality. In Proceedings
of the ECAI’'94 Workshop of Spatial and Temporal Reasoning.

Barkowsky, T., Latecki, L. J., & Richter, K.-F. (2000). Schematizing maps:
Simplification of geographic shape by discrete curve evolution. In C. Freksa,
W. Brauer, C. Habel, & K. Wender (eds.), Spatial Cognition II - Integrating
Abstract Theories, Empirical Studies, Formal Methods, and Practical Appli-
cations, (pp. 41-53). Springer; Berlin.

Bartoli, M., Pelillo, M., Siddiqi, K., & Zucker, S. W. (2000). Attributed tree
homomorphism using association graphs. In Proceedings of the 15th Interna-
tional Conference on Pattern Recognition (ICPR’00), vol. 2.

Basri, R., Costa, L., Geiger, D., & Jacobs, D. (1998). Determining the similarity
of deformable shapes. Vision Research, 38.

Bauer, H. (1991). Wahrscheinlichkeitstheorie. de Gruyter, 4. ed.
Bellman, R. (1957). Dynamic Programming. Princeton University Press.

Bennewitz, M., Burgard, W., & Thrun, S. (2002). Using EM to learn motion
behaviors of persons with mobile robots. In Proceedings of International
Conference on Intelligent Robots and Systems (IROS).

Berendt, B., Barkowsky, T., Freksa, C., & Kelter, S. (1998). Spatial represen-
tation with aspect maps. In C. Freksa, C. Habel, & K. F. Wender (eds.),
Spatial Cognition — An interdisciplinary approach to representing and pro-
cessing spatial knowledge, (pp. 313-336). Springer; Berlin.

de Berg, M., van Kreveld, M., Overmars, M., & Schwarzkopf, O. (2000). Com-
putational Geometry. Algorithms and Applications. Springer-Verlag.

Berge, C. (1970). Sur certains hypergraphes generalisant les graphes bipar-
tites. In P. Erdés, A. Rény, & V. Sés (eds.), Combinatorial Theory and its
Applications I. Colloq. Math. Soc., North Holland, Amsterdam.

Besl, P. & McKay, N. (1992). A method for registration of 3D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239-256.

Biedermann, I. (1987). Recognition-by-components: A theory of human image
understanding. Psychological Review, 94(2):115-117.

Blum, H. (1967). A transformation for extracting new descriptors of shape.
In W. Walthen-Dunn (ed.), Models for the Perception of Speech and Visual
Form. MIT press.



BIBLIOGRAPHY 211

Blum, H. & Nagel, R. N. (1978). Shape description using weighted symmetric
axis features. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 10:167-180.

Bober, M. (2001). Mpeg-7 visual shape descriptors. IEEE Transactions on
Circuits and Systems for Video Technology, 11(6):716-719.

Bober, M., Kim, J. D., Kim, H. K., Kim, Y. S., Kim, W.-Y., & Muller, K.
(1999). Summary of the results in shape descriptor core experiment. Tech.
rep. MPEG-7, ISO/IEC JTC1/SC29/WG11/ MPEG99/M4869.

Bomze, I. M., Budinich, M., Pardalos, P. M., & Pelillo, M. (1999). The maxi-
mum clique problem. Technical Report Series in Computer Science CS-99-1,
Dipartimento di Informatica, Universita Ca’ Foscari di Venezia.

Bosse, M., Newman, P., Leonard, J., Soika, M., Feiten, W., & Teller, S. (2003).
An atlas framework for scalable mapping. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA’ 03), vol. 2, (pp.
1899-1906).

Burgard, W., Cremers, A., Fox, D., Hahnel, D., Lakemeyer, G., Schulz, D.,
Steiner, W., & Thrun, S. (1999a). Experiences with an interactive museum
tour-guide robot. Artificial Intelligence, 114(1-2):3-55.

Burgard, W., Fox, D., Jans, H., Matenar, C., & Thrun, S. (1999b). Sonar-based
mapping with mobile robots using EM. In Proceedings of the International
Conference on Machine Learning.

Buschka, P. (2006). An Investigation of Hybrid Maps for Mobile Robots. Ph.D.
thesis, Orebro University, Institutionen for teknik.

Castellanos, J. & Tardéds, J. (2000). Mobile Robot Localization and Map Build-
ing: A Multisensor Fusion Approach. Boston, MA: Kluwer Academic Pub-
lishers.

Chatila, R. & Laumond, J.-P. (1985). Position referencing and consistent world
modeling for mobile robots. In In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA’85), (pp. 138-145).

Cheng, K. (1986). A purely geometric module in the rat’s spatial representation.
Cognition, 23:149-178.

Choset, H., Konukseven, I., & Burdick, J. (1996). Mobile robot navigation:
issues in implementing the generalized voronoi graph in the plane. In 1996
IEEE/SICE/RSJ International Conference on Multisensor Fusion and Inte-
gration for Intelligent Systems, New York, NY, USA, (pp. 241-248). IEEE.



212 BIBLIOGRAPHY

Choset, H., Walker, S., Eiamsa-Ard, K., & Burdick, J. (2000). Sensor-based
exploration: Incremental construction of the hierarchical generalized voronoi
graph. International Journal of Robotics Research, 19(2):126-148.

Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavrakij, L.,
& Thrun, S. (2005). Principles of Robot Motion - Theory, Algorithms, and
Implementations. MIT-Press.

Cortelazzo, G., Mian, G. A., Vezzi, G., & Zamperoni, P. (1994). Trade-
mark shape description by string-matching techniques. Pattern Recognition,
27(8):1005-1018.

Cox, I. & Leonard, J. (1994). Modeling a dynamic environment using a bayesian
multiple hypothesis approach. Artificial Intelligence, 66:311—344.

Cox, I. J. (1990). Blanche: Position estimation for an autonomous robot vehicle.
In I. J. Cox & G. Wilfong (eds.), Autonomous Robot Vehicles, (pp. 221-228).
Springer-Verlag.

Denis, M. (1997). The description of routes: A cognitive approach to the
production of spatial discourse. Cahiers Psychologie Cognitive, 16(4):409—
458.

Dimitrov, P., Phillips, C., & Siddiqi, K. (2000). Robust and efficient skeletal
graphs. In Proc. of Conference on Computer Vision and Pattern Recognition.
Hilton Head, South Carolina.

Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H., & Csorba, M.
(2001). A solution to the simultaneous localization and map building (SLAM)
problem. IEEE Transactions of Robotics and Automation.

Djugash, J., Singh, S., & Corke, P. I. (2005). Further results with localization
and mapping using range from radio. In International Conference on Field

& Service Robotics (FSR '05).

Dong, T. (2005). Recognizing variable spatial environments — the theory of
cognitive prism. Ph.D. thesis, Universitdt Bremen.

Doucet, A., de Freitas, J., Murphy, K., & Russell, S. (2000). Rao-Blackwellised
particle filtering for dynamic Bayesian networks. In Proceedings of the Con-
ference on Uncertainty in Artificial Intelligence (UAI).

Duda, R. & Hart, P. (1972). Use of hough transform to detect lines and curves
in pictures. Communications of the ACM, 15(1):11-15.

Duda, R. & Hart, P. (1973). Pattern classification and scene analysis. Wiley,
New York.



BIBLIOGRAPHY 213

Elfes, A. (1989). Occupancy Grids: A Probabilistic Framework for Robot Per-
ception and Navigation. Ph.D. thesis, Department of Electrical and Computer
Engineering, Carnegie Mellon University.

Fischer, K. & Moratz, R. (2001). From communicative strategies to cognitive
modelling. In Proceedings of the First International Workshop on ’Epigenetic
Robotics’.

Forsberg, J., Larsson, U., & Wernersson, A. (1995). Mobile robot navigation
using the range-weighted hough transform. IEEFE Robotics € Automation
Magazine, 21:18-26.

Forsman, P. (2001a). Feature based registration of 3D perception data for
indoor and outdoor map building. In Int. Conference on Field and Service
Robotics. Helsinki, Finland.

Forsman, P. (2001b). Three-dimensional localization and mapping of static
environments by means of mobile perception. Ph.D. thesis, Helsinki university
of technology.

Forsman, P. & Halme, A. (2004). Feature based registration of range images
for mapping of natural outdoor feature based registration of range images for
mapping of natural outdoor. In Second International Symposium on 3D Data
Processing, Visualization and Transmission (3DPVT’04), (pp. 542-549).

Fox, D., Burgard, W., & Thrun, S. (1999). Markov localization for mobile
robots in dynamic environments. Journal of Artificial Intelligence Research,
11:391-427.

Frank, A. (1992). Qualitative spatial reasoning about distances and directions
in geographic space. Journal of Visual Languages and Computing, 3:343-371.

Franz, M. O., Scholkopf, B., Mallot, H. A., & Biilthoff, H. H. (1998). Learning
view graphs for robot navigation. Autonomous Robots, 5:111 — 125.

Freksa, C. (1991). Conceptual neighborhood and its role in temporal and spatial
reasoning. In M. Singh & L. Travé-Massuyes (eds.), Decision Support Systems
and Qualitative Reasoning, (pp. 181 — 187). North-Holland, Amsterdam.

Freksa, C. (1992). Temporal reasoning based on semi-intervals. Artificial Intel-
ligence, 54(1):199-227.

Freksa, C. (2004). Spatial cognition — an Al perspective. In de Mantaras &
Saitta (2004).

Freksa, C. & Rohrig, R. (1993). Dimensions of qualitative spatial reasoning. In
Proceedings of the III IMACS International Workshop on Qualitative Rea-
soning and Decision Technologies - QUARDER’93, (pp. 483-492).



214 BIBLIOGRAPHY

Freksa, C., Moratz, R., & Barkowsky, T. (2000a). Robot navigation with
schematic maps. In E. P. et al. (ed.), Intelligent Autonomous Systems 6.
IOS Press, Amsterdam.

Freksa, C., Moratz, R., & Barkowsky, T. (2000b). Schematic maps for robot
navigation. In C. Freksa, W. Brauer, C. Habel, & K. Wender (eds.), Spatial

Cognition II: Integrating Abstract Theories, Empirical Studies, Formal Meth-
ods, and Practical Applications, vol. 1849 / 2000, (pp. 100-114). Springer.

Frese, U. (2005). Treemap: An o(logn) algorithm for simultaneous localization
and mapping. In C. Freksa (ed.), Spatial Cognition IV, (pp. 455 — 476).
Springer Verlag.

Galton, A. & Meathrel, R. (1999). Qualitative outline theory. In Proceedings
of the Internatoinal Joint Conference on Artificial Intelligence.

Gonzélez-Banos, H. & Latombe, J.-C. (2001). Robot navigation for automatic
model construction using safe regions. In D. Rus & S. Singh (eds.), Ezper-
imental Robotics VII, vol. 271 of Lecture Notes in Control and Information
Sciences, (pp. 405 — 416). Springer-Verlag.

Gonzélez-Banos, H., Mao, E., Latombe, J., Murali, T., & Efrat, A. (1999).
Planning robot motion strategies for efficient model construction. In Robotics
Research — The FEight International Symposium. Salt Lake City (UT), USA.

Gottfried, B. (2005).  Shape from Positional-Contrast — Characterising
Sketches with Qualitative Line Arrangements. Ph.D. thesis, Universitat Bre-
men.

Grimson, W. E. L. (1990). Object Recognition by Computer: The Role of Geo-
metric Constraints. Cambridge (MA), USA: MIT Press.

Grisetti, G., Stachniss, C., & Burgard, W. (2005). Improving grid-based SLAM
with Rao-Blackwellized particle filters by adaptive proposals and selective re-
sampling. In In Proceeding of the IEEFE International Conference on Robotics
and Automation (ICRA).

Gutmann, J.-S. (2000). Robuste Navigation autonomer mobiler Systeme. Ph.D.
thesis, University of Freiburg. (in German).

Gutmann, J.-S. & Konolige, K. (1999). Incremental mapping of large cyclic
environments. In International Symposium on Computational Intelligence in
Robotics and Automation (CIRA ’99).

Gutmann, J.-S. & Schlegel, C. (1996). Amos: Comparison of scan matching
approaches for self-localization in indoor environments. In Proceedings of the
1st Buromicro Workshop on Advanced Mobile Robots (Eurobot’96).



BIBLIOGRAPHY 215

Gutmann, J.-S., Weigel, T., & Nebel, B. (2001). A fast, accurate and robust
method for self-localization in polygonal environments using laser range find-
ers. Advanced Robotics, 14(8):651-667.

Héahnel, D. (2004). mapping with mobile robots. Ph.D. thesis, University of
Freiburg.

Héahnel, D., Schulz, D., & Burgard, W. (2002). Map building with mobile robots
in populated environments. In Proceedings of International Conference on
Intelligent Robots and Systems (IROS’02).

Héahnel, D., Burgard, W., Fox, D., & Thrun, S. (2003). An efficient FastSLAM
algorithm for generating maps of large-scal cyclic environments from raw laser

range measurements. In Proceedings of the Conference on Intelligent Robots
and Systems (IROS).

Héahnel, D., Burgard, W., Fox, D., Fishkin, K., & Philipose, M. (2004). Map-
ping and localization with RFID technology. In n Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA).

Hermer, L. (1997). Internally coherent spatial memories in a mammal. Neu-
roreport, 8:1743—-1747.

van Hoeve, W. (2001). The alldifferent constraint: A survey. In Sizth Annual
Workshop of the ERCIM Working Group on Constraints. Prague.

Hu, M. K. (1962). Visual pattern recognition by moment invariants. IRE
Transactions on Information Theory, 8:179-187.

Huang, W. H. & Beevers, K. R. (2005). Topological map merging. International
Journal of Robotics Research, 24(8):601-613.

Huttenlocher, D., Klandermann, G., & Rucklidge, W. (1993). Comparing dis-
tances using the hausdorff distance. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15:850-863.

Jahne, B. (1997). Digitale Bildverarbeitung. Springer-Verlag, 4 ed.

Jefferies, M., Yeap, W., Smith, L., & Ferguson, D. (2001). Building a map
for robot navigation using a theory of cognitive maps. In Proc. IASTED In-
ternational Conference on Artificial Intelligence and Applications. Marbella,
Spain.

Jefferies, M. E. & Yeap, W. K. (2001). The utility of global representations
in a cognitive map. In Proceedings of the Conference on Spatial Information

Theory (COSIT).



216 BIBLIOGRAPHY

Jefferies, M. E., Baker, J., & Wang, W. (2003). Robot cognitive mapping — a
role for a global metric map in a cognitive mapping process. In Workshop on
Robot and Cognitive Approaches to Spatial Mapping.

Jefferies, M. E., Cosgrove, M., Baker, J. T., & Yeap, W. (2004a). The corre-
spondence problem in topological metric mapping — using absolute metric
maps to close cycles. In Proceedings of the Eighth International Conference

On Knowledge-based Intelligent Information and Engineering Systems, (pp.
232 — 239).

Jefferies, M. E., Cree, M., Mayo, M., & Baker, J. T. (2004b). Using 2D an 3D
landmarks to solve the correspondence problem in cognitive robot mapping.
In C. Freksa, M. Knauff, B. Krieg-Briickner, B. Nebel, & T. Barkowsky
(eds.), Spatial Cognition IV. Reasoning, Action, Interaction: International
Conference Spatial Cognition, vol. LNAI 3343, (pp. 434-454).

Jefferies, M. E., Weng, W., Baker, J. T., & Mayo, M. (2004c). Using context to
solve the correspondence problem in simultaneous localisation and mappin.
In C. Zhang & H. W. G. W. K. Yeap (eds.), PRICAI 2004: Trends in Ar-
tificial Intelligence: 8th Pacific Rim International Conference on Artificial
Intelligence, vol. LNCS 3157 / 2004, (pp. 664—672). Auckland, New Zealand:
Springer-Verlag.

Jensfelt, P. & Kristensen, S. (1999). Active global localisation for a mobile robot
using multiple hypothesis tracking. In Proceedings of the IJCAI Workshop
on Reasoning with Uncertainty in Robot Navigation, (pp. 13-22). Stockholm,
Sweden.

Kalman, R. E. (1960). A new approach to linear filtering and prediction prob-
lems. Transactions of the ASME—Journal of Basic Engineering, (pp. 35-45).

Kim, Y.-S. & Kim, W.-Y. (1998). Content-based trademark retrieval system
using visually salient features. Journal of Image and Vision Computing,
16(12):931-940.

Kimia, B. B., Tannenbaum, A., & Zucker, S. W. (1990). Toward a computa-
tional theory of shape: An overview. In Proceedings of the First Furopean
Conference on Computer Vision. Antibes, France.

Koenderink, J. & van Doorn, A. (1979). The internal representation of solid
shape with respect to vision. Biological Cybernetics, 32:211 — 216.

Koenig, S. & Simmons, R. G. (1996). Passive distance learning for robot naviga-
tion. In In Proceedings of the International Conference on Machine Learning,
(pp. 266-274).



BIBLIOGRAPHY 217

Kolesnikov, A. & Franti, P. (2005). Data reduction of large vector graphics.
Pattern Recognition, 38(3):381-394.

Konolige, K., Fox, D., Limketkai, B., Ko, J., , & Stewart, B. (2003). Map merg-
ing for distributed robot navigation. In In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), (pp. 212—
217).

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval
Research Logistic Quarterly, 2:pp. 83-97.

Kuipers, B. (2000). The spatial semantic hierarchy. Artificial Intelligence,
119:191-233.

Kuipers, B. & Byun, Y.-T. (1991). A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations. Journal of Robotics
and Autonomous Systems, 8:47-63.

Lankenau, A. & Rofer, T. (2001). A safe and versatile mobility assistant. [EEE
Robotics and Automation Magazine, 8(1):29 — 37.

Larsen, R. & Eiriksson, H. (2001). Robust and resistant 2D shape alignment.
Tech. Rep. 17/2001, Technical University of Denmark, Informatics and Math-
ematical Modelling, Lyngby, Denmark.

Latecki, L. J. & Lakdmper, R. (1999). Convexity rule for shape decomposition
based on discrete contour evolution. Computer Vision and Image Under-
standing, 73.

Latecki, L. J. & Lakdmper, R. (2000). Shape similarity measure based on
correspondence of visual parts. IEEE Trans. Pattern Analysis and Machine
Intelligence, 22(10).

Latecki, L. J. & Lakémper, R. (2006a).
URL http://knight.temple.edu/~shape/issUsage.html ISS database —
the electronic Plcture RObot ‘epiro’.

Latecki, L. J. & Lakamper, R. (2006b). Polygonal approximation of laser range
data based on perceptual grouping and EM. In IEEE International Confer-
ence on Robotics and Automation (ICRA). Orlando, Florida, USA.

Latecki, L. J. & Rosenfeld, A. (2002). Recovering a polygon from noisy data.
Computer Vision and Image Understanding (CVIU), 86(3):1-20.

Latecki, L. J., Ghadially, R.-R., Lakdmper, R., & Eckhardt, U. (2000a). Con-
tinuity of the discrete curve evolution. Journal of Electronic Imaging, 9(3).



218 BIBLIOGRAPHY

Latecki, L. J., Lakdmper, R., & Eckhardt, U. (2000b). Shape descriptors for
non-rigid shapes with a single closed contour. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition. Hilton Head Island,
South Carolina.

Latecki, L. J., Lakdmper, R., & Wolter, D. (2003). Shape similarity and vi-
sual parts. In Proceedings of the 11th International Conference on Discrete
Geometry for Computer Imagery (DGCI), Naples, Italy.

Latecki, L. J., Lakdmper, R., & Wolter, D. (2005a). Incremental multi-robot
mapping. In Proceedings of IROS-2005.

Latecki, L. J., Lakdmper, R., & Wolter, D. (2005b). Partial optimal shape
similarity. Image and Vision Computing Journal, 23(2):227 — 236.

Latombe, J.-C. (1991). Robot Motion Planning. Norwell (MA), USA: Kluwer
Academic Publishers.

Laumond, J.-P. (1983). Model structuring and concept recognition: Two as-
pects of learning for a mobile robot. In Proceedings of the International joint
conference on Artificial Intelligence (IJCAI), (pp. 108-120).

Lee, D. T. & Drysdale, R. L. (1981). Generalization of Voronoi diagrams in the
plane. SIAM Journal on Computing, 10(1):73 — 87.

Leonard, J., Durrant-Whyte, H., & Cox, I. (1992). Dynamic map building for
an autonomous mobile robot. International Journal of Robotics Research,
11(4):89—96.

Leonard, J. J., Newman, P. M., Rikoski, R. J., Neira, J., & D.Tardés, J. (2001).
Towards robust data association and feature modeling for concurrent map-
ping and localization. In Proceedings of the 10th International Symposium of
Robotics Research (ISRR’2001). Lorne, Victoria, Australia.

Ligozat, G. (2000). From language to motion, and back: Generating and using
route descriptions. In N. Christodoulakis (ed.), Natural Language Process-
ing. Proceedings of the 2nd International Conference, (pp. 328-345). Berlin:
Springer.

Lingemann, K., Surmann, H., Niichter, A., & Hertzberg, J. (2004). Indoor and
outdoor localizations for fast mobile robots. In Proceedings of International
Conference on Intelligent Robots and Systems (IROS).

Loncaric, S. (1998). A survey of shape analysis techniques. Pattern Recognition,
31(8):983-1001.

Lovasz, L. (1986). Matching Theory. Elsevier Science Ltd.



BIBLIOGRAPHY 219

Lu, F. & Milios, E. (1997). Robot pose estimation in unknown environments
by matching 2D range scans. Journal of Intelligent and Robotic Systems.

Mallot, H. A., Biilthoff, H. H., Georg, P., Schélkopf, B., & Yasuhara, K. (1995).
View-based cognitive map learning by an autonomous robot. In Proceedings
of the International conference on Artificial Neural Networks (ICANN 2),
(pp. 381-386).

de Méntaras, R. L. & Saitta, L. (eds.) (2004). Proceedings of the 16th Eureo-
pean Conference on Artificial Intelligence, ECAI’2004, including Prestigious
Applicants of Intelligent Systems, PAILS 2004, Valencia, Spain, August 22-27,
2004. 10S Press.

Margules, J. & Gallistel, C. R. (1988). Heading in the rat: determination by
environmental shape. Animal learning and behaviour, 16(4):404-410.

Marques, J. S. & Abrantes, A. J. (1997). Shape alignment — optimal initial
point and pose estimation. Pattern Recognition Letters.

Matsumoto, Y., Ikeda, K., Inaba, M., & Inoue, H. (1999). Exploration and map
acquisition for view-based navigation in corridor environment. In Proceedings
of the International conference on Field and Service Robotics, (pp. 29-31).
Pittsburgh (PA), USA.

Meathrel, R. & Galton, A. (2000). Qualitative representation of planar out-
lines richard meathrel and antony galton. In Proceesings of the European
Conference on Artifical Intelligence (ECAI).

van der Merwe, R., Doucet, A., & de Freitas E. Wan, N. (2000). The unscented
particle filter. Advances in Neural Information Processing Systems, 8(351—
357).

Mokhtarian, F. & Mackworth, A. K. (1992). A theory of multi-scale, curvature-
based shape representation for planar curves. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14(8):789-805.

Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002). FastSLAM:
A factored solution to the simultaneous localization and mapping problem.
In Proceedings of the AAAI National Conference on Artificial Intelligence.
Edmonton, Canada: AAAL

Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2003). FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization and
mapping that provably converges. In Proceedings of IJCAL



220 BIBLIOGRAPHY

Moratz, R. & Freksa, C. (1998). Spatial reasoning with uncertain data us-
ing stochastic relaxation. In W. Brauer (ed.), Proceedings of Fuzzy-Neuro-
Systems ’98, (pp. 106-112). St. Augustin: Infix.

Moratz, R. & Tenbrink, T. (2003). Instruction modes for joint spatial reference
between naive users and a mobile robot. In Proceedings of the IEEE Inter-
national Conference on Robotics, Intelligent Systems and Signal Processing
(RISSP 2003). Changsha, Hunan, China. Special Session on New Methods
in Human Robot Interaction.

Moratz, R. & Tenbrink, T. (2006). Spatial reference in linguistic human-robot
interaction: Iterative, empirically supported development of a model of pro-
jective relations. Spatial Cognition and Computation. In press.

Moratz, R., Renz, J., & Wolter, D. (2000). Qualitative spatial reasoning about
line segments. In W. Horn (ed.), ECAI 2000 Proceedings of the 14th European
Conference on Artificial Intelligence. 10S Press, Amsterdam.

Moravec, H. P. & Elfes, A. E. (1985). High resolution maps from wide angle
sonar. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA).

Museros, L. & Escrig, M. T. (2004). A qualitative theory for shape representa-
tion and matching for design. In de Méntaras & Saitta (2004), (pp. 858-862).

Musto, A., Stein, K., Eisenkolb, A., & Rofer, T. (1999). Qualitative and quan-
titative representations of locomotion and their application in robot naviga-
tion. In Proceedings of International Joint Conference on Al (IJCAI), (pp.
1067-1073).

Neira, J. & Tardds, J. D. (2001). Data association in stochastic mapping using
the joint compatibility test. IEEE Transactions on robotics and automation,
17(6):890-897.

Nieto, J. L., Guivant, J. E.,; & Nebot, M. (2004). The HYbrid metric maps
(HYMMSs): A novel map representation for DenseSLAM. In In Proceedings
of the IEEFE International Conference on Robotics and Automation (ICRA).

Page, D. L., Koschan, A. F., Sukumar, S. R., Roui-Abidi, B., & Abidi, M. A.
(2003). Shape analysis algorithm based on information theory. In Proceedings
of the IEEFE International Conference on Image Processing (ICIP03), vol. 1,
(pp. 229-232).

Palmer, S. E. (1999). Vision science—photons to phenomenology. MIT press.

Pavlidis, T. (1978). A review of algorithms for shape analysis. Computer
Graphics and Image Processing, 7:243-258.



BIBLIOGRAPHY 221

Pavlidis, T. (1995). A review of algorithms for shape analysis. In Document
image analysis, (pp. 145-160). Los Alamitos, CA, USA: IEEE Computer
Society Press.

Pelillo, M. (1998). A unifying framework for relational structure matching. In
14th International Conference on Pattern Recognition (ICPR’98), vol. 2.

Pfister, S. T., Roumeliotis, S. I., & Burdick, J. W. (2003). Weighted line fitting
algorithms for mobile robot map building and efficient data representation.
In Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA).

Rafflin, C. & Fournier, A. (1996). Learning with a friendly interactive robot for
service tasks in hopsital environments. Autonomous Robots, 3(4):399-414.

Randell, D. A., Cui, Z., & Cohn, A. G. (1992). A spatial logic based on regions
and “Connection”. In Proceedings of KR92.

Reiss, T. H. (1993). Recoginizing planar objects using invariant image features.
Springer-Verlag.

Remolina, E. & Kuipers, B. (2004). Towards a general theory of topological
maps. Artificial Intelligence, 152:47-104.

Rofer, T. (2002). Using histogram correlation to create consistent laser scan
maps. In Proceedings of the IEEE International Conference on Robotics Sys-
tems (IROS-2002).

Roumeliotis, S. & Bekey, G. (2000). Bayesian estimation and kalman filtering:
A unified framework for mobile robot localization. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), (pp.
2985-2992). San Francisco (CA), USA.

Rucklidge, W. J. (1996). Locating objects using the Hausdorff distance. Tech.
rep., Xerox Palo Alto Research Center.

Rucklidge, W. J. (1997). Efficiently locating objects using the hausdorff dis-
tance. International Journal of Computer Vision, 24(3):251 — 270.

Sack, D. & Burgard, W. (2003). A comparison of methods for line extraction
from range data. In Proceedings of the 5th IFAC Symposium on Intelligent
Autonomous Vehicles (IAV).

Schlieder, C. (1993). Representing visible locations for qualitative navigation.
In N. Piera-Carrete & M. Singh (eds.), Qualitative reasoning and decision
technologies, (pp. 523-532).



222 BIBLIOGRAPHY

Schlieder, C. (1994). Qualitative shape representation. In Spatial conceptual
models for geographic objects with undetermined boundaries. Taylor & Francis.

Schlieder, C. (1995). Reasoning about ordering. In Proceedings of the 3rd
International Conference on Spatial Information Theory (COSIT).

Scholkopf, B. & Mallot, H. A. (1995). View-based cognitive mapping and path
planning. Adaptive Behavior, 3(311-348).

Se, S., Lowe, D., & Little, J. (2002). mobile robot localization and mapping with
uncertainty using scale-invariant visual landmarks. International Journal of
Robotics Research, 21(8):735-758.

Sebastian, T. B., Klein, P. N., & Kimia, B. B. (2003). On aligning curves.
Pattern Analysis and Machine Intelligence, 25(1):116-125.

Shokoufandeh, A., Marsic, 1., & Dickinson, S. J. (1999). View-based object
recognition using saliency maps. Image and Vision Computing, 17:445 —
460.

Siddiqi, K., Bouix, S., Tannenbaum, A., & Zucker, S. W. (1999a). The
hamilton-jacobi skeleton. In Proc. of International Conference on Computer
Vision. Corfu, Greece.

Siddiqi, K., Shokoufandeh, A., Dickinson, S. J., & Zucker, S. W. (1999b).
Shock graphs and shape matching. International Journal of Computer Vi-
sion, 35(1):13-32.

Skiadopoulos, S. & Koubarakis, M. (2005). On the consistency of cardinal
directions constraints. Artificial Intelligence, 163(1):91-135.

Smith, R., Self, M., & Cheeseman, P. (1990). Estimating uncertain spatial
relationships in robotics. In I. Cox & G. Wilfong (eds.), Autonomous Robot
Vehicles, (pp. 167-193). Springer-Verlag.

Smith, R. C. & Cheeseman, P. (1986). On the representation and estimation of
spatial uncertainty. International Journal of Robotics Research, 5(4):56—68.

Stachniss, C. (2006). Ezxploration and Mapping with Mobile Robots. Ph.D.
thesis, Universitat Freiburg.

Stachniss, C. & Burgard, W. (2003a). Exploring unknown environments with
mobile robots using coverage maps. In In Proceedings of the International
Conference on Artificial Intelligence (IJCAI), (pp. 1127-1132). Acapulco,
Mexico.



BIBLIOGRAPHY 223

Stachniss, C. & Burgard, W. (2003b). Mapping and exploration with mobile
robots using coverage maps. In In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), (pp. 476-481). Las
Vegas, NV, USA.

Stachniss, C. & Burgard, W. (2003c). Using coverage maps to represent the
environment of mobile robots. In In Proceedings of the European Conference
on Mobile Robots (ECMR), (pp. 59-64). Radziejowice, Poland.

Stachniss, C., Hahnel, D., & Burgard, W. (2004). Exploration with active loop-
closing for FastSLAM. In Proc. of the IEFE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

Stein, K. (2003). Qualitative Reprasentation und Generalisierung von Bewe-
gungsverldufen. Ph.D. thesis, Institut fiir Informatik der Technischen Uni-
versitdt Miinchen. In German.

Surmann, H., Niichter, A., & Hertzberg, J. (2003). An autonomous mobile
robot with a 3d laser range finder for 3d exploration and digitalization of

indoor environments. Journal of Robotics and Autonomous Systems, 45(3—
4):181-198.

Teague, M. R. (1980). Image analysis via the general theory of moments. Jour-
nal of the Optical Society of America, 70:920-930.

Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot
navigation. Artificial Intelligence, 99(1):21-71.

Thrun, S. (2000). Probabilistic algorithms in robotics. AI Magazine, 21(4):93—
109.

Thrun, S. (2001). A probabilistic online mapping algorithm for teams of mobile
robots. International Journal of Robotics Research, 20(5):335-363.

Thrun, S. (2002). Robotic mapping: A survey. In G. Lakemeyer & B. Nebel
(eds.), Exploring Artificial Intelligence in the New Millenium. Morgan Kauf-
mann.

Thrun, S., Biicken, A., Burgard, W., Fox, D., Frohlinghaus, T., Henning, D.,
Hofmann, T., Krell, M., & Schmidt, T. (1998a). Map learning and high-
speed navigation in RHINO. In D. Kortenkamp, R. Bonasso, & R. Murphy
(eds.), Al-based Mobile Robots: Case Studies of Successful Robot Systems.
MIT Press.

Thrun, S., Fox, D., & Burgard, W. (1998b). A probabilistic approach to con-
current mapping and localization for mobile robots. Machine Learning.



224 BIBLIOGRAPHY

Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A., Dellaert,
F., Fox, D., Hahnel, D., Rosenberg, C., Roy, N., Schulte, J., & Schulz, D.
(2000a). Probabilistic algorithms and the interactive museum tour-guide
robot minerva. International Journal of Robotics Research, 19(11):972-999.

Thrun, S., Burgard, W., & Fox, D. (2000b). A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3D mapping. In Pro-

ceedings of the IEEE International Conference on Robotics and Automation
(ICRA). San Francisco, CA: IEEE.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. MIT-Press.

Tsang, E. (1993). Foundations of Constraint Satisfaction. London: Academic
Press.

Tversky, A. (1977). Features of similarity. Psychological Review, 84(4):327-352.

Ullman, J. D. (1976). An algorithm for subgraph isomorphism. Journal of the
ACM, 23(1):31—42.

Veeck, M. & Burgard, W. (2004). Learning polyline maps from range scan data
acquired with mobile robots. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

Veltkamp, R. C. (2001). Shape matching: Similarity measure and algorithms.
In Proceedings of Shape Modelling International, (pp. 188-197).

Wagner, T., Visser, U., & Herzog, O. (2004). Egocentric qualitative spatial
knowledge representation for physical robots. Robotics and Autonomous Sys-
tems, 49:25—42.

Wallgriin, J. O. (2002). Ezploration und Pfadplanung fir mobile Roboter
basierend auf Generalisierten Voronoi-Graphen. Master’s thesis, University
of Hamburg.

Wallgriin, J. O. (2005). Autonomous construction of hierarchical Voronoi-based
route graph representations. In C. Freksa, M. Knauff, B. Krieg-Briickner,
B. Nebel, & T. Barkowsky (eds.), Spatial Cognition IV. Reasoning, Action,
Interaction: International Conference Spatial Cognition 2004, vol. 3343 of
Lecture Notes in Artificial Intelligence, (pp. 413-433). Berlin, Heidelberg,
New York: Springer.

Wang, Y., Makedon, F., Ford, J., & Huang, H. (2004). A bipartite graph
matching framework for finding correspondences between structural elements
in two proteins. In 26th Annual International Conference IEEE Engineering
in Medicine and Biology Society.



BIBLIOGRAPHY 225

Werner, S., Krieg-Briickner, B., & Herrmann, T. (2000). Modelling naviga-
tional knowledge by route graphs. In C. Freksa, W. Brauer, C. Habel, &
K. F. Wender (eds.), Spatial Cognition II — Integrating Abstract Theories,
Empirical Studies, Formal Methods, and Practical Applications, vol. LNAI
1849, (pp. 295 — 317). Springer-Verlag.

Wertheimer, M. (1925). Uber Gestalttheorie. Philosophische Zeitschrift fiir
Forschung und Aussprache, 1:39-60. Transcription of a presentation at the
Kant-Gesellschaft, Berlin 17th December, 1924.

Wolter, D. & Latecki, L. J. (2004). Shape matching for robot mapping. In
C. Zhang, H. W. Guesgen, & W. K. Yeap (eds.), Proceedings of 8th Pacific
Rim International Conference on Artificial Intelligence (PRICAI-04). Auck-
land, New Zealand.

Wolter, D. & Richter, K.-F. (2004). Schematized aspect maps for robot guid-
ance. In P. Doherty (ed.), Proceedings of the workshop cognitive robotics
(CogRob).

Wolter, D., Latecki, L. J., Lakdmper, R., & Sun, X. (2004). Shape-based
robot mapping. In Proceedings of the 27th German conference on Artificial
Intelligence (KI-2004).

Yeap, W. & Jefferies, M. (1999). Computing a representation for the local
environment. Artificial Intelligence, 107.

Yeap, W. K. & Jefferies, M. E. (2000). On early cognitive mapping. Spatial
Cognition and Computation, 2(2):85-116.

Zahn, C. T. & Roskies, R. Z. (1972). Fourier descriptors for planar closed
curves. IEEE Transactions on Computers, 21:269-281.

Zhang, D. & Lu, G. (2002). Generic fourier descriptor for shape-based image
retrieval. In Proceedings of the IEEFE International Conference on Multimedia
and Ezpo (ICME 02), vol. 1, (pp. 425-428).

Zhang, K. & Shasha, D. (1989). Simple fast algorithms for the editng distance
between trees and related problems. SIAM Journal on Computing, 18(6):1245
— 1262.



