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Abstract

This dissertation investigates methods for improving visual representation learning by optimizing

attention mechanisms and information selection strategies within deep learning models. Standard

approaches often process images independently and compress them into single global descriptors,

limiting performance on tasks requiring contextual understanding or fine-grained detail, and can

be susceptible to shortcut learning. This work proposes and evaluates techniques that address these

limitations by leveraging inter-example context, developing efficient multi-vector representations,

and explicitly controlling attention. The research utilizes Convolutional Neural Networks (CNNs),

Vision Transformers (ViTs), and Graph Neural Networks (GNNs) and targets improvements in

image classification (single and multi-label) and fine-grained image retrieval.

Four primary contributions are detailed: (1) CNN2Graph, a hybrid CNN-GNN framework

using cross-attention over a bipartite graph connecting image batches to learnable proxies and

fixed anchors, designed to integrate dataset-level context into image classification efficiently and

inductively. (2) DMCAC, a self-supervised image retrieval method that aligns representation

learning with the retrieval task by conditioning training on database interactions, employing

distributional divergence minimization between augmented query views relative to the database

and a cross-attention classification mechanism. (3) Using Register Tokens as an efficient

multi-vector image representation method for fine-grained retrieval that supplements the ViT

‘[CLS]‘ token with specialized register tokens. This allows us to internally discover

Region-of-Interest (ROI) tokens derived from attention patterns. We otimizine performance

versus computational cost using a late-interaction framework. (4) Object-Focused Attention

(OFA), a training technique for ViTs that adds an auxiliary loss based on semantic segmentation

masks to penalize attention to non-object regions, aiming to reduce shortcut learning, improve

out-of-distribution robustness, and enhance object shape representation without increasing

inference complexity.



The results demonstrate that managing attention and information flow—through context

integration, multi-vector feature selection, and explicit object focus—yields visual representations

with improved performance, robustness, and efficiency. This research provides methodologies

and principles for advancing visual representation learning, particularly for complex models and

tasks.
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Introduction

The ability of machines to perceive and interpret the visual world is a cornerstone of modern

artificial intelligence, underpinning transformative technologies from autonomous navigation and

medical diagnostics to robotics and large-scale content retrieval. At the heart of this capability

lies visual representation learning—the process of transforming raw, high-dimensional pixel data

into compact, structured, and semantically meaningful feature representations, or embeddings.

The quality of these representations is paramount; effective embeddings capture the essence of

visual content, invariant to nuisance factors like lighting or viewpoint, and directly dictate the

performance ceiling for downstream tasks such as classification, detection, segmentation, and

retrieval [1, 2]. While the deep learning revolution has enabled the automatic discovery of

powerful hierarchical features, superseding traditional hand-crafted approaches, significant

challenges remain in developing representations that are simultaneously accurate, robust,

efficient, and semantically grounded.

This dissertation addresses several critical limitations inherent in contemporary visual

representation learning methodologies. A prevalent paradigm involves processing images as

independent and identically distributed (i.i.d.) samples, often compressing the entirety of an

image’s complex visual information into a single global feature vector, such as the ubiquitous

‘[CLS]‘ token in Vision Transformers (ViTs) [2]. While computationally convenient, this

approach suffers from two major drawbacks. First, the i.i.d. assumption ignores the rich

contextual information present across examples within datasets or specific databases, failing to

leverage inter-example relationships that could enhance discrimination [3, 4]. Second, the

single-vector representation acts as an information bottleneck, particularly detrimental for

fine-grained tasks that demand sensitivity to subtle, localized details [5]. While using denser

representations, like the full set of patch tokens from a ViT, can alleviate the bottleneck, it

introduces prohibitive computational and storage costs, rendering it impractical for large-scale

applications [5].

Furthermore, powerful models like ViTs exhibit vulnerabilities to shortcut learning [6]. They

1



can achieve high performance on training data by exploiting spurious correlations—such as

associating objects with specific background textures—rather than learning the intrinsic, causal

properties of the objects themselves [7, 8, 9, 10]. This reliance on superficial cues leads to brittle

models that fail to generalize reliably to out-of-distribution (OOD) scenarios where these

correlations break down [11]. Compounding these issues, a disconnect often exists between the

objectives used during representation learning (e.g., generic metric learning losses) and the

specific requirements of the downstream task, particularly evident in image retrieval where

models are seldom trained with direct interaction with the target database [4].

This dissertation contends that a central pathway to overcoming these limitations lies in the

strategic selection and utilization of information, primarily orchestrated through the principled

application and control of attention mechanisms. We hypothesize that significant improvements

in representation quality, robustness, and efficiency can be achieved by carefully managing what

information a model attends to, how this attention is structured across different scopes (within

images, across examples), and how the attention process itself can be explicitly guided towards

semantically meaningful content.

To investigate this hypothesis, this work presents a cohesive suite of four research studies, each

developing and evaluating novel frameworks centered on attention and information selection:

1. Leveraging Inter-Example Context: We first challenge the independent processing

paradigm by introducing methods that incorporate broader context. The CNN2Graph

framework [3] integrates dataset-level structural information into image classification using

a hybrid CNN-GNN architecture, learnable proxies, and cross-attention over a dynamically

constructed bipartite graph. Subsequently, the DMCAC framework [4] aligns

representation learning specifically for image retrieval by conditioning a self-supervised

objective on interactions with a target database during training, using divergence

minimization and cross-attention classification.

2. Enhancing Intra-Image Detail with Efficiency: Addressing the single-vector bottleneck

for fine-grained tasks, the Augmenting CLS approach [5] develops an efficient
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multi-vector representation. It augments the standard ViT ‘[CLS]‘ token with specialized

register tokens (found to capture part-level features) and novel Region-of-Interest (ROI)

tokens discovered automatically by leveraging the ViT’s internal self-attention patterns,

enabling richer representations without the cost of dense methods.

3. Explicitly Controlling Attention for Robustness: To combat shortcut learning and

enhance semantic grounding, the Object-Focused Attention (OFA) framework [11]

introduces an auxiliary loss during ViT training. Guided by semantic segmentation masks,

this loss explicitly penalizes attention allocated to non-object regions, encouraging

object-centric processing, improving OOD robustness, and fostering better shape

understanding, all without added inference cost.

Through rigorous empirical evaluation on standard benchmarks for image classification

(single and multi-label) and image retrieval, these studies collectively demonstrate the efficacy of

principled attention and information management. The subsequent chapters detail these

contributions: Chapter 1 provides a review of the relevant literature and foundational concepts.

Chapter 2 presents the CNN2Graph and DMCAC frameworks focusing on attention across

examples. Chapter 3 details the Augmenting CLS approach for attention within images. Chapter

4 describes the OFA framework for controlling attention. Finally, Chapter 5 synthesizes the

findings, discusses overarching principles, acknowledges limitations, outlines future research

directions, and offers concluding remarks on the significance of this work for advancing visual

representation learning.
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Chapter 1

Literature Review

1.1 Motivating Representation Learning

1.1.1 Importance of Visual Representation Learning

The automated interpretation of visual information stands as a fundamental pillar of modern

artificial intelligence, enabling machines to perceive, understand, and interact with the world in

ways previously confined to biological systems. The capacity to distill meaningful patterns from

raw visual data—ranging from simple object recognition in photographs to the intricate analysis

of dynamic scenes in videos—forms the bedrock for transformative applications across diverse

domains. Autonomous vehicles rely on visual understanding for navigation and safety, medical

imaging analysis leverages it for diagnostics, robotics depends on it for manipulation and

interaction, and content-based search engines utilize it to organize and retrieve vast visual

archives. Central to these advancements is the field of visual representation learning, a discipline

focused on developing methods to transform high-dimensional, raw pixel data into

lower-dimensional, structured, and semantically rich feature representations, often termed

embeddings.

The goal is to create representations that capture the essence of the visual content, preserving

critical semantic information while exhibiting invariance to nuisance variables such as
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fluctuations in lighting, changes in viewpoint, scale differences, or background clutter. The

efficacy of any downstream visual task, be it classification, detection, segmentation, or retrieval, is

intrinsically linked to the quality of the underlying visual representations. A well-learned

representation facilitates simpler, more effective decision-making by subsequent modules,

whereas a poor representation can irrevocably hinder performance. Historically, visual features

were often hand-crafted, requiring significant domain expertise and engineering effort. The deep

learning revolution, however, ushered in an era of learned representations, where hierarchical

features are automatically discovered from data, leading to unprecedented performance gains. As

the volume of visual data generated continues to explode, the development of powerful, efficient,

and robust methods for visual representation learning remains a critical frontier in computer

science research.

1.1.2 Target Visual Tasks

The research presented in this thesis evaluates the proposed representation learning strategies

primarily through the lens of several core visual tasks. A principal focus is image classification, a

fundamental task concerned with assigning a categorical label to an input image from a

predefined set of classes [3, 11]. This encompasses both the standard single-label scenario, where

each image belongs to exactly one class, and the more complex multi-label image classification

setting, where an image may contain objects or concepts belonging to multiple classes

simultaneously [11]. Multi-label classification introduces challenges related to modeling label

correlations and handling a potentially vast output space.

Another significant area of investigation is content-based image retrieval [4, 5]. The objective

here is to search through a large-scale database and identify images that are semantically similar

to a given query image. Effective retrieval often hinges on capturing subtle, fine-grained visual

distinctions that differentiate closely related object subcategories or specific instances. This

demands representations that encode not just coarse object categories but also nuanced details

regarding shape, texture, and spatial configuration. While the principles and methods developed
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have broader implications for other visual understanding problems, these specific

tasks—classification (single and multi-label) and retrieval—serve as the primary experimental

platforms for assessing the quality and effectiveness of the learned representations.

1.1.3 Central Role of Attention and Information Selection

Early paradigms in visual representation learning, particularly those dominated by Convolutional

Neural Networks (CNNs), often adopted a holistic processing approach. Features were extracted

through stacked convolutional and pooling layers, with pooling mechanisms providing a degree of

spatial invariance but also potentially discarding valuable information. While highly successful,

these architectures could face limitations in efficiently identifying and utilizing the most critical

information within an image, especially in cluttered scenes or when dealing with tasks requiring

fine-grained analysis where subtle local details matter. The fixed receptive fields and static

aggregation strategies inherent in many CNN designs could restrict their ability to adaptively

focus on task-relevant features.

A significant shift occurred with the adaptation of the Transformer architecture [12] for visual

tasks, leading to the development of Vision Transformers (ViTs) [2]. A key element of the

Transformer’s success is its attention mechanism. In the context of vision, attention allows the

model to dynamically compute the relevance of different input components—typically image

patches—when constructing a representation. Instead of treating all parts of the input equally, the

model learns to assign varying degrees of importance, effectively focusing its computational

resources on the most informative parts of the visual scene relative to the task at hand. This

dynamic, context-dependent weighting provides a powerful mechanism for information filtering

and selection.

This thesis posits that the strategic selection and utilization of information, primarily

orchestrated through attention mechanisms, is a central theme for advancing visual representation

learning. We contend that significant improvements in representation quality, robustness, and

efficiency can be achieved by carefully controlling what information a model attends to and how
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this attention is deployed. Our research explores this theme across different scopes: investigating

attention within individual images to pinpoint salient regions or discriminative features,

examining attention across different examples to harness contextual information from datasets or

databases, and developing methods to explicitly control the attention process itself to align with

semantic priors or task objectives. By optimizing the flow and focus of information, we aim to

build representations that are not only accurate but also more interpretable and resilient.

1.2 Foundational Concepts

1.2.1 Key Architectures (CNNs, ViTs, GNNs)

The methodologies explored in this thesis are situated within the landscape of modern deep

learning architectures for vision, primarily engaging with three key architectural families:

Convolutional Neural Networks (CNNs): For a significant period, CNNs [1] stood as the de

facto standard for a wide array of computer vision tasks. Their architecture, characterized by

layers of learnable convolutional filters applied across spatial dimensions, excels at capturing local

patterns and spatial hierarchies. Key operations like convolution (for feature extraction), activation

functions (introducing non-linearity), and pooling (for downsampling and spatial invariance) allow

CNNs to learn increasingly abstract features, from edges and textures in early layers to object parts

and complete objects in deeper layers. Although ViTs have challenged their dominance in some

areas, CNNs remain highly relevant due to their efficiency, strong inductive biases for visual data,

and proven effectiveness. They often serve as robust backbone networks for feature extraction or

are integrated into hybrid models, as demonstrated in our CNN2Graph framework which utilizes a

CNN encoder [3].

Vision Transformers (ViTs): Representing a paradigm shift, ViTs [2] adapt the Transformer

architecture [12], originally designed for sequence processing in NLP, to visual inputs. The core

idea involves partitioning an image into a sequence of non-overlapping patches, linearly

embedding these patches, adding positional information (positional embeddings) to retain spatial
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awareness, and then processing this sequence through standard Transformer encoder blocks. The

cornerstone of the Transformer block is the self-attention mechanism, which allows every patch

to attend to every other patch, enabling the model to capture global dependencies and long-range

interactions within the image from the outset. While ViTs have achieved state-of-the-art results,

often surpassing CNNs on large datasets, they typically lack the strong spatial inductive biases of

CNNs, requiring substantial training data or sophisticated regularization techniques. A significant

portion of this thesis focuses on dissecting, leveraging, and refining the attention mechanisms

within ViTs to enhance their representational power and robustness [11, 4, 5].

Graph Neural Networks (GNNs): GNNs constitute a class of neural networks specifically

designed to operate on data structured as graphs [13, 14, 15]. They learn representations for nodes

(and potentially edges or entire graphs) by iteratively aggregating information from their local

neighborhoods through a process often referred to as message passing. In each layer, a node

updates its representation based on its own current state and the aggregated representations of its

neighbors. This iterative aggregation allows GNNs to capture complex relational information and

dependencies within the graph structure. In the context of computer vision, GNNs provide a

natural framework for moving beyond the traditional assumption of independent data points.

They can be employed to explicitly model relationships between images within a dataset,

potentially capturing similarities, differences, or other structural patterns that are ignored by

methods processing images in isolation. Our CNN2Graph research leverages GNNs precisely for

this purpose, constructing a graph to integrate dataset-level context into the classification

process [3].

1.2.2 Attention Mechanisms

Attention mechanisms are not merely components but fundamental computational primitives

enabling the dynamic information routing central to many modern architectures, including those

explored in this thesis:

Self-Attention: This mechanism, the linchpin of the Transformer architecture [12] and thus
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ViTs [2], allows elements within a single sequence (e.g., image patches) to interact and influence

each other’s representations. Computationally, for each element (patch), self-attention calculates

three vectors: a Query (Q), a Key (K), and a Value (V), typically through linear projections of the

input representation. The attention score between two elements is computed based on the similarity

(often dot product) between the Query vector of the attending element and the Key vector of the

attended-to element. These scores are then normalized (usually via softmax) to form attention

weights, which are used to compute a weighted sum of the Value vectors of all elements. The

result is an updated representation for each element that incorporates information from across the

entire sequence, weighted by learned relevance. This allows ViTs to model global context and

intricate spatial relationships within an image effectively. Our work explores both leveraging the

emergent properties of self-attention for feature discovery [5] and explicitly guiding it for improved

robustness [11].

Cross-Attention: While self-attention operates within a single set of inputs, cross-attention

models interactions between two distinct sets of inputs. One set provides the Query vectors, while

the other provides the Key and Value vectors. Similar to self-attention, attention weights are

computed based on Q-K similarities, and these weights are used to aggregate the Value vectors

from the second set. This mechanism allows information to be selectively transferred or

integrated from one modality or source to another. For instance, in our CNN2Graph

framework [3], cross-attention relates input image representations (Queries) to learnable class

proxy vectors (Keys/Values) to integrate class-level information. In our DMCAC retrieval

method [4], cross-attention relates query image representations to retrieved database item

representations, enabling the query representation to be conditioned on the database context and

facilitating classification based on retrieved items.

1.2.3 Relevant Learning Paradigms

The process of learning effective visual representations is guided by the choice of learning

paradigm and associated objective functions. Several paradigms are pertinent to the work in this
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thesis:

Supervised Learning: This remains the most established paradigm, relying on datasets where

inputs (images) are paired with explicit ground-truth labels (e.g., object categories). The model

learns a mapping from input to output by minimizing a loss function that measures the

discrepancy between its predictions and the true labels, typically using cross-entropy for

classification tasks. Supervised learning can achieve high performance when large labeled

datasets are available. However, the cost and effort involved in acquiring such large-scale

annotations represent a significant bottleneck. Several methods explored in this thesis incorporate

supervised components: CNN2Graph [3] and DMCAC [4] use cross-entropy loss for

classification aspects, and the Object-Focused Attention (OFA) framework employs an auxiliary

supervised loss derived from semantic segmentation masks to guide attention learning [11].

Metric Learning: Instead of directly predicting labels, metric learning focuses on learning an

embedding space where the distance between representations reflects the semantic similarity of

the corresponding inputs. The goal is to structure the embedding space such that similar items are

clustered together while dissimilar items are pushed apart. This is particularly relevant for tasks

like image retrieval [5, 4]. Common techniques include:

• Contrastive Loss: Operates on pairs of examples, pulling positive pairs (similar items, e.g.,

same class or different augmentations of the same image) closer in the embedding space and

pushing negative pairs (dissimilar items) farther apart [16].

• Triplet Loss: Considers triplets of examples: an anchor, a positive (similar to anchor), and a

negative (dissimilar to anchor). The loss enforces that the distance between the anchor and

the positive is smaller than the distance between the anchor and the negative by at least a

predefined margin [17].

Effective metric learning often requires careful sampling strategies to select informative pairs or

triplets.

Self-Supervised Learning (SSL): This paradigm offers a powerful alternative for learning
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representations from large amounts of unlabeled data. SSL methods generate their own

supervisory signals directly from the input data. One major family of SSL techniques relies on

data augmentation, training the model to be invariant to certain transformations. For example,

different augmented views of the same image are generated, and the model is trained to produce

similar embeddings for these views, often using a contrastive loss objective [4]. Another family

involves pretext tasks, where the model is trained to solve an auxiliary task that requires

understanding the data structure, such as predicting masked or corrupted portions of the input

(e.g., Masked Autoencoders [18]) or predicting the relative spatial location of patches. By solving

these self-generated tasks, the model learns rich, transferable visual features without manual

labels. Our DMCAC method leverages an augmentation-based SSL approach, uniquely

conditioning the invariance objective on interactions with a database [4].

1.3 Motivation and Thesis Structure

1.3.1 Identifying Research Gaps

The pursuit of more effective visual representations is driven by limitations inherent in existing

methodologies. Despite remarkable progress, several key challenges persist, forming the primary

motivation for the research presented in this thesis.

Firstly, many conventional approaches, especially those rooted in early CNNs, adhere to an

independent example processing paradigm. Images are typically fed through the network one by

one, assuming they are independent and identically distributed (i.i.d.). This overlooks the rich

contextual information that might exist across examples within a dataset or a specific database

relevant to a task like retrieval [3, 4]. Learning representations in isolation prevents the model

from exploiting inter-example relationships, relative comparisons, or global dataset statistics that

could enhance understanding and discrimination.

Secondly, the prevalent use of single global descriptors for representing complex visual inputs

poses a significant limitation. Compressing the entirety of an image’s semantic content into a single
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vector, such as the [CLS] token commonly extracted from ViTs, inevitably leads to information

loss [5]. While sufficient for coarse categorization, this bottleneck hinders performance on tasks

demanding fine-grained understanding or localization, where subtle details, object parts, and their

spatial arrangements are critical.

Thirdly, while using denser representations, such as the full set of patch tokens from a ViT,

can mitigate the single-vector bottleneck, it introduces substantial computational and storage

costs. Storing and performing similarity comparisons on potentially hundreds of

high-dimensional vectors per image becomes intractable for large-scale applications like

web-scale image retrieval [5]. This necessitates the development of methods that can efficiently

select or construct a compact yet highly informative set of vectors that captures the richness of the

visual content without prohibitive overhead.

Fourthly, Vision Transformers, despite their representational power, exhibit a vulnerability to

shortcut learning and a lack of robustness [11]. They can learn to rely on spurious correlations

within the training data—associating objects with specific background textures or artifacts, for

instance—rather than learning the intrinsic properties and shape of the objects themselves [6]. This

reliance on superficial cues leads to brittle models that fail to generalize well to out-of-distribution

(OOD) data or adversarial perturbations where these spurious correlations are broken. Enhancing

the robustness and semantic grounding of ViTs requires mechanisms that explicitly encourage

attention towards meaningful object regions and discourage reliance on background or texture

shortcuts.

Finally, a disconnect often exists between the training objectives used for representation

learning and the downstream task, particularly in image retrieval [4]. Models are frequently

trained using generic metric learning losses on curated datasets, without direct interaction with

the target database they will be deployed against. This mismatch can lead to suboptimal

performance, as the learned representations may not be perfectly aligned with the characteristics

and distribution of the specific database used at test time. Bridging this gap by incorporating

database context during training yields significant performance improvements.
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Chapter 2

Attention Across Examples: Leveraging

Dataset and Database Context

2.1 Motivation: Beyond Independent Processing

The dominant paradigm in visual representation learning has long relied on processing images as

independent entities, often assuming they are drawn i.i.d. from some underlying distribution. As

discussed in Chapter 1, this approach, while simplifying model design and training,

fundamentally overlooks the rich tapestry of contextual information and inter-example

relationships present within any large collection of visual data, such as a training dataset or a

target retrieval database [3, 4]. Ignoring this context imposes significant limitations. Models

trained under the i.i.d. assumption may struggle to capture relative similarities and differences,

fail to adequately model the underlying class distributions or dataset biases, and learn

representations that are suboptimal for downstream tasks inherently involving comparison or

interaction, such as few-shot learning or large-scale retrieval. For instance, understanding the

subtle distinctions between bird species might be enhanced by comparing an image not just to an

abstract class prototype, but also to other specific bird images within the dataset. Similarly,

optimizing a representation for retrieving items from a specific e-commerce database might
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benefit from learning features that are discriminative within the context of that particular database

during training, rather than relying on generic features learned in isolation.

This section details two distinct research thrusts from this thesis that directly confront the

limitations of independent processing by introducing mechanisms for attending to information

across examples. The unifying hypothesis is that enriching an image’s representation with

information gleaned from its surrounding context—whether that context is derived from curated

representatives of the dataset or from dynamically relevant items within a database—yields

representations that are more discriminative, robust, and better aligned with specific downstream

objectives. We first explore the CNN2Graph framework, which leverages static dataset context

via graph structures and learnable proxies to enhance image classification. Subsequently, we

delve into the DMCAC framework, which focuses on dynamic database conditioning during

training to learn representations specifically tailored for the demands of image retrieval. Both

methodologies prominently feature cross-attention as the core mechanism facilitating the crucial

information exchange between individual examples and their broader context, demonstrating the

power of looking beyond the single image.

2.2 Incorporating Dataset Context via Graphs (CNN2Graph)

The CNN2Graph framework [3] was conceived to explicitly leverage inter-example relationships

for improving standard image classification, moving beyond the limitations of traditional CNNs

that process images independently. A key motivation was to overcome persistent challenges in

applying graph-based methods to unstructured image data. Prior attempts often relied on

constructing k-Nearest Neighbor (KNN) graphs based on initial image features, a process that is

typically non-differentiable, hindering end-to-end learning. Furthermore, such methods often

operated transductively, requiring test examples to be present during training, or faced significant

computational hurdles for inductive inference on new examples, as adding a node required costly

comparisons to the entire training set. CNN2Graph aimed to provide an end-to-end differentiable
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framework capable of inductive inference while effectively integrating dataset-level context.

Figure 2.1: CNN2Graph Forward Pass Diagram. Illustrates the connection between batch images,
the CNN encoder, the bipartite graph construction involving anchors (L) and proxies (P), and the
GNN/Attention module.

2.2.1 Method: CNN-GNN Framework and Bipartite Graph Construction

At its core, CNN2Graph utilizes a hybrid architecture. A standard CNN (e.g., ResNet [1]) serves as

the initial feature extractor ϕ, mapping input images to an embedding space RF . The novelty lies

in the subsequent processing stage, where a Graph Neural Network (GNN) module operates on a

dynamically constructed graph to refine these initial embeddings by incorporating dataset context.

Critically, instead of attempting to build a potentially complex and non-differentiable graph

among all images, CNN2Graph constructs a simple complete bipartite graph for each mini-batch.

This graph connects the embeddings of the images within the current batch (Ebatch = ϕ(Xbatch)) to

a fixed, pre-defined proxy set. This proxy set acts as a compact, learnable summary of the entire

dataset’s class structure and consists of two distinct types of elements:

• Learnable Proxy Vectors (P ): A collection of c learnable vectors, P ∈ Rc×F , where c is the

total number of classes. Each vector Pk is initialized randomly and trained with the objective

of becoming a representative embedding for class k. These proxies have the flexibility to
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learn abstract class concepts optimized for the downstream task.

• Fixed Anchor Examples (L): A set containing c specific image examples drawn from the

training set, with one example li uniformly sampled from each class i:

L = {li ∈U X i : X i ⊆ X}, i = 1, . . . , c (2.1)

(Eq. (2.1) in [3]) These anchor images, passed through the same encoder ϕ to get embeddings

Eanchors = ϕ(L), provide stable, data-grounded reference points for each class. They help

ground the learnable proxies and provide concrete examples for structuring the embedding

space.

The nodes processed by the GNN module for a given mini-batch are thus the union of the batch

image embeddings, the learnable proxy vectors, and the anchor embeddings:

Nodes = Ebatch ∪ P ∪ Eanchors. The graph structure is simply a complete bipartite connection

between the batch nodes (Ebatch) and the proxy set nodes (P ∪ Eanchors). This design offers key

advantages: the graph structure is fixed and independent of the specific image features in the

batch, ensuring the construction is fully differentiable. Moreover, inductive inference is trivial: a

new test image embedding is simply connected to the same trained proxy set (P ∪ Eanchors)

without needing any comparisons to the training data, making node insertion an O(1) operation

relative to graph construction.

2.2.2 Attention & Learning: Cross-Attention Aggregation and Combined

Loss

Information flow between the batch images and the proxy set across the edges of the bipartite

graph is mediated by cross-attention mechanisms within the GNN aggregation step. The purpose

of attention here is crucial: given that the proxy set contains representatives for all classes, an

image embedding should selectively attend more strongly to the proxy set elements
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Figure 2.2: CNN2Transformer Cross-Attention Module. Shows how image embeddings (Queries)
attend separately to anchor embeddings and proxy vectors (Keys/Values) before aggregation
(Adapted from).

corresponding to its own class (or related classes) rather than aggregating information uniformly.

This selective aggregation allows the model to refine the initial image embedding with relevant

class-level context. Two specific attention mechanisms were implemented and compared:

• GAT-style Attention: Adapting the Graph Attention Network mechanism [15], the relevance

e(hi, hj) of a proxy set element hj to an image embedding hi is calculated via a learned

projection and scoring function:

e(hi, hj) = aTLeakyReLU(W[hi||hj]) (2.2)

Here, W projects the concatenated embeddings, and aT scores the result. These scores are
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normalized using softmax to produce attention weights α, which are then used to compute

a weighted sum of projected proxy set element representations, yielding the updated image

embedding.

• Transformer-style Cross-Attention: Leveraging the standard attention mechanism from

Transformers [12], the batch image embeddings Xemb = Ebatch serve as the Queries (Q).

The anchor embeddings Lemb = Eanchors and proxy vectors P separately provide the Keys

(K) and Values (V ) in two distinct cross-attention modules. This computes context vectors

derived from anchors (Lmha) and proxies (Pmha):

Lmha = Softmax
(
(WqXemb)(Wk1Lemb)

T

√
d

)
(Wv1Lemb) (2.3)

(Eq. (2.3) in [3])

Pmha = Softmax
(
(WqXemb)(Wk2P )T√

d

)
(Wv2P ) (2.4)

(Eq. (2.4) in [3]) The final output representation zout for each image is typically formed by

aggregating (e.g., concatenating or summing) its original embedding Xemb with these

context vectors Lmha and Pmha, effectively enriching the initial representation with

information gleaned from relevant class anchors and proxies.

The training of the entire system—CNN backbone, GNN attention mechanism, and learnable

proxies—is driven by a carefully constructed combined loss function. This loss aims not only to

achieve accurate classification but also to ensure the proxy set learns discriminative and stable class

representations, preventing issues like proxy collapse where the learnable vectors become unused

or redundant. The loss comprises two main parts:

• First, a standard cross-entropy classification loss (Lce) is applied to the final output

embeddings (X ′) of the batch images after GNN aggregation. Crucially, this loss is also

applied independently to the anchor embeddings (Eanchors) and the learnable proxy vectors
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Figure 2.3: Diagram of cross-entropy loss (top-left), contrastive loss (top-right), and our combined
loss (bottom). We use standard cross-entropy loss along with an adapted contrastive loss where we
compute losses between training examples and a set of proxies and anchors which are uniformly
distributed by class.

(P ), each associated with their ground-truth class label. This direct classification objective

forces the anchors and proxies to reside in regions of the embedding space suitable for

linear classification according to their assigned class:

Lclassification = Lce(X
′) + Lce(L) + Lce(P ) (2.5)

(Eq. (2.5) in [3])

• Second, to further structure the latent space and explicitly manage the relationships between

images, anchors, and proxies, several contrastive-style loss terms are incorporated. We adapt

the triplet loss [17], generally defined as:

Ltriplet(s, g, n) = max(||f(s)− f(g)||22 − ||f(s)− f(n)||22 + α, 0) (2.6)

where f(s), f(g), and f(n) are the embeddings of a source (anchor), a positive example, and

a negative example, respectively, and α is a margin. We also use the contrastive loss [16],
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defined for a pair (x1, x2) as:

Lcontrastive(x1, x2) = (1− Y )
1

2
D2 + (Y )

1

2
{max(0, α−D)}2 (2.7)

where D = ||f(x1)−f(x2)||2, Y = 1 if x1, x2 are similar (same class) and Y = 0 otherwise,

and α is a margin.

Based on these, we define the following specific loss terms.

– Lat = Ltriplet(L,X,X): Encourages images (X) to be closer to anchors (L) of the same

class than to anchors of different classes.

– Lpt = Ltriplet(P,X,X): Encourages images (X) to be closer to proxies (P ) of the same

class than to proxies of different classes.

– Lap = Ltriplet(L, P, P ): Encourages proxies (P ) to be close to anchors (L) of the same

class, using the stable anchors to guide the learning of the proxies.

– Lp = Lcontrastive(P ): Applies a standard contrastive loss (Eq. 10 in [3]) directly between

pairs of proxy vectors (P ), enforcing a minimum separation between proxies assigned

to different classes and explicitly counteracting collapse.

The total training objective is the sum of these components:

Ltotal = Ltotal contrastive + Lclassification (2.8)

(Eq. (2.8) in [3]). This multi-faceted loss function works synergistically: the classification terms

drive discriminability, while the contrastive terms organize the latent space structure and ensure

the stability and relevance of the proxy set elements. (The evolution of the embedding space under

these losses can be visualized via UMAP plots 2.4.
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Figure 2.4: UMAP visualization of embedding space evolution during CNN2Transformer training
on CIFAR-10. Shows initial state, intermediate state, and final state where anchors (X) and proxies
(triangles) cluster with image embeddings according to class.

2.2.3 Key Aspects: End-to-End Learning, Inductive Inference, and

Scalability

The CNN2Graph framework presents a significant step forward by enabling end-to-end

differentiable learning of image representations that incorporate dataset context. Unlike methods

requiring separate, potentially non-differentiable steps for graph construction or context

integration, CNN2Graph allows the CNN feature extractor, the GNN attention mechanism, and

the learnable proxies to be optimized jointly through standard backpropagation. This holistic
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optimization is crucial for learning features that are well-suited for both initial extraction and

subsequent contextual refinement.

Furthermore, the design ensures efficient inductive inference. Because the proxy set

(P ∪ Eanchors) is fixed after training, classifying a new, unseen test image only requires passing it

through the trained CNN backbone and then performing a single GNN aggregation step involving

connections to this fixed proxy set. There is no need to compare the test image to the entire

training dataset or rebuild complex graph structures, making the approach scalable for

deployment.

Perhaps most importantly, the framework provides an effective mechanism for capturing both

fine-grained example-level features (learned by the CNN) and broader class-level context

(mediated through attention over the proxy set). The empirical results confirmed the benefits of

this contextual integration, showing improved classification accuracy over baseline CNNs.

The comparative analysis of GAT-style versus Transformer-style attention yielded a critical

insight regarding scalability. While both attention mechanisms allowed for context integration,

the Transformer cross-attention demonstrated markedly superior performance and stability as the

dataset complexity increased, particularly on the large-scale ImageNet-1k benchmark. The GAT-

based model showed a significant drop in performance compared to its baseline in this setting,

whereas the Transformer-based model provided consistent improvements. This suggests that the

standard scaled dot-product attention, perhaps due to its ability to handle larger neighborhoods

more effectively or its query-dependent nature, provides a more robust and scalable mechanism for

aggregating information across examples in this framework. This finding has broader implications

for architectural choices when designing models that need to integrate information across diverse

sets of elements. (Detailed performance comparisons are provided in Table 2.1.
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Method CIFAR-10 CIFAR-100 STL-10 SVHN ImageNet-1k

ResNet18 Baseline 94.1 77.0 95.4 95.3 69.4
CNN2GNN (ResNet18) 95.5±0.4 74.8±0.8 95.7±0.2 96.6±0.6 60.1±1.0
CNN2Tfmr (ResNet18) 95.8±0.2 77.4±0.2 95.7±0.2 96.4±0.2 71.1±0.4

ResNet34 Baseline 95.2 79.3 95.9 95.6 73.0
CNN2GNN (ResNet34) 96.4±0.4 77.9±0.9 96.9±0.3 97.0±0.3 61.0±0.8
CNN2Tfmr (ResNet34) 96.7±0.4 80.1±0.5 97.2±0.2 96.5±0.1 75.4±0.2

Table 2.1: Validation accuracy comparison of baseline ResNets, CNN2GNN, and
CNN2Transformer across datasets. Demonstrates accuracy improvements and highlights the better
scalability of CNN2Transformer on larger datasets like ImageNet-1k.

2.3 Conditioning Representations on Database Context

(DMCAC)

Moving from the goal of improving general classification using dataset context (CNN2Graph) to

the specific challenge of image retrieval, the DMCAC (Divergence Minimization with

Cross-Attention Classification) framework [4] was developed. The core motivation stems from a

critical observation: most methods for learning retrieval-oriented representations train the encoder

using objectives (like contrastive or triplet losses on class labels, or self-supervised invariance to

augmentations) that are disconnected from the actual retrieval process. These methods learn a

general notion of similarity but do not explicitly optimize the representations for ranking or

retrieval against the specific database that will be used in the downstream application. This

potential mismatch between the training environment and the deployment scenario can lead to

suboptimal retrieval performance, as the learned features might not be maximally discriminative

within the specific distribution and characteristics of the target database. DMCAC proposes a

paradigm shift by directly incorporating interaction with a database during the training loop,

aiming to learn representations that are explicitly conditioned on and optimized for retrieval

within that database context.

23



2.3.1 Method: Joint Query-Database Learning via Self-Supervision

DMCAC operationalizes this database conditioning through a novel training procedure that

simulates retrieval within the training loop. It requires partitioning the training data into two sets:

a training query set (DQ) and a training database set (DD). Importantly, the classes represented in

these training sets are disjoint from those used during evaluation, ensuring that the model learns

generalizable representations rather than memorizing specific database items. The central

learning principle is self-supervised: the model learns by enforcing consistency among multiple

augmented views of a query image, but this consistency is measured relative to their interaction

with the training database.

The process unfolds as follows: First, the embeddings for all images in the training database

DD are computed using the current state of the encoder ϕnew (typically a ViT [2]) and stored:

ZD = ϕnew(DD) ∈ RD×F (Eq. 3 in [4]). These database embeddings ZD are periodically updated

(e.g., every few epochs) to reflect the evolving encoder, balancing stability with responsiveness.

During a training step, a query image q ∈ DQ is selected, and A different augmented views

(XA) are generated (including the original image). These views are embedded by the encoder:

ZA = ϕnew(XA) ∈ RA×F (Eq. 5 in [4]). The embeddings ZA (and ZD) are typically ℓ2-normalized.

The crucial training-time retrieval step then occurs. For each query view embedding zi ∈ ZA,

its k nearest neighbors within the database embeddings ZD are identified. This retrieval can be

performed exhaustively (full retrieval, Eq. 6 in [4]) if ZD is small enough to fit in GPU memory,

providing complete gradient information from the database. However, for scalability to large

databases, approximate retrieval using efficient libraries like FAISS [19] is employed. In the

approximate case, the indices Si of the top-k neighbors for each view i are retrieved. The union of

these indices across all A views,

Sunion =
A⋃

j=1

Sj (2.9)

(Eq. (2.9) in [4]), collects all database items considered relevant to any of the query views. The

corresponding embeddings for these unique indices are fetched from ZD to form the dynamic,
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query-specific database context set Zunion
S ∈ RT×F , where T = |Sunion|. It is this set Zunion

S that

forms the basis for the novel loss calculations in DMCAC. (The overall data flow is depicted in

2.5).

Figure 2.5: DMCAC Data Flow for Frobenius Loss Computation. Illustrates query augmentation,
encoding, index retrieval from the database based on query views, union of retrieved indices,
fetching corresponding database embeddings, and calculating the JS Divergence / Frobenius Loss.

2.3.2 Novel Objectives: Divergence Minimization and Cross-Attention

Classification

The core innovations of DMCAC lie in its loss functions, which explicitly leverage the retrieved

database context Zunion
S to guide representation learning:

• Frobenius Loss for Divergence Minimization (Lfrob): This objective replaces the standard

SSL goal of simply minimizing the distance between augmented view embeddings (ZA).

Instead, it enforces consistency between the views based on how they relate to the database

context. The underlying intuition is that different perspectives (augmentations) of the same

underlying query image should perceive the database similarity landscape in a consistent

manner. Operationally, the similarity between each query view zi ∈ ZA and all retrieved

database embeddings Zunion
S is computed, forming a similarity matrix P = ZA · (Zunion

S )T

(Eq. 9 in [4]). Applying softmax row-wise yields P ′, where each row P ′
i is a probability
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distribution reflecting the relative similarity of view i to the T database items in Zunion
S .

DMCAC then minimizes the divergence between these similarity distributions for all pairs

of views (i, j). The Jensen-Shannon (JS) divergence, a symmetric measure of distributional

difference, is used:

Lij = JS(P ′
i ||P ′

j) =
1

2
KL(P ′

i ||M) +
1

2
KL(P ′

j||M), where M =
P ′
i + P ′

j

2
(2.10)

(Eq. (2.10) in [4]) The final loss term Lfrob is the Frobenius norm of the matrix L containing

these pairwise JS divergences:

Lfrob =

√√√√ A∑
i=2

i−1∑
j=1

L2
ij (2.11)

(Eq. (2.11) in [4]) By minimizing this divergence, the encoder ϕnew is trained to produce

representations that are not only invariant to augmentations but, more importantly, exhibit

consistent ranking or similarity patterns when interacting with the database. This implicitly

optimizes features relevant for retrieval within that specific database context.

• Cross-Attention Classification (CAC) Loss (Lcac): A significant challenge in SSL based

purely on augmentation invariance is the potential for representation collapse, where the

model learns trivial solutions (e.g., mapping all inputs to a single point). DMCAC

introduces the CAC loss as a powerful mechanism for semantic grounding and collapse

prevention, again leveraging the database context. The core idea is to test whether the

retrieved database neighbors Zunion
S contain enough semantic information to determine the

class of the original query view z. This is achieved using cross-attention: z acts as the

Query, while the retrieved neighbors Zunion
S provide the Keys and Values.

Q,K, V = Wqz,WkZ
union
S ,WvZ

union
S (2.12)
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(Eq. (2.12) in [4]) The output of the cross-attention module is a new representation z′ for the

query:

z′ = Softmax
(
QKT

√
F

)
V (2.13)

(Eq. (2.13) in [4]) This z′ can be interpreted as a database-conditioned representation of the

query, effectively a projection of z onto a basis dynamically defined by its nearest neighbors

in the database Zunion
S . This context-aware representation z′ is then fed through a linear

classifier and trained using a standard cross-entropy loss Lcac based on the ground-truth

class label of the original query q (Eqs. 18–19 in [4]). The significance of CAC is twofold:

First, it forces the encoder ϕnew to learn representations such that the retrieved neighbors

Zunion
S are semantically informative about the query’s class. If the neighbors are irrelevant,

classifying z′ correctly becomes impossible. This implicitly pushes the encoder towards

retrieving semantically relevant items, directly benefiting the retrieval task. Second, it

provides a strong supervisory signal based on ground-truth class labels, effectively

preventing the representational collapse that can plague pure invariance-based SSL. (The

CAC mechanism is illustrated in 2.6.

Optionally, a standard cross-entropy loss Lce (Eqs. 14–15 in [4]) can be applied directly to the

original view embeddings z ∈ ZA. The final objective combines these terms:

Ltotal = βfrobLfrob + βceLce + βcacLcac (2.14)

(Eq. (2.14) in [4]) While equal weighting (β = 1) proved effective, ablation studies confirmed that

both the divergence minimization (Lfrob) and the cross-attention classification (Lcac) components

are essential contributors to the final performance, highlighting the synergistic benefit of ensuring

both retrieval consistency and semantic grounding through database interaction. (Ablation results

are presented in Table 2.2).
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Method Betas Arch In-Shop R@k
[βfrob, βce, βcac] 1 10 20 30

ProxyAnchor - Inc-BN 91.5 98.1 98.8 99.1
Hyp-DINO - ViT 92.4 98.4 98.9 99.1

DMCAC-DeiT [1,1,1] DeiT-S 91.1 98.5 98.8 99.1
DMCAC-ViT [1,1,1] ViT(IN21k) 92.7 98.2 98.9 99.3
DMCAC-DeiT [1,1,0] DeiT-S 91.0 98.3 98.5 98.9
DMCAC-ViT [1,1,0] ViT(IN21k) 92.4 98.3 98.7 99.3
DMCAC-DeiT [0,1,1] DeiT-S 90.2 97.9 98.2 98.4
DMCAC-ViT [0,1,1] ViT(IN21k) 91.9 96.9 97.2 97.8

Table 2.2: Ablation study on DMCAC loss components using the In-Shop dataset. Comparing
different weightings for βfrob, βce, βcac. Shows that removing either Lfrob (βfrob = 0) or Lcac

(βcac = 0) significantly degrades performance compared to the full loss or removing only Lce.

2.3.3 Key Aspects: Retrieval Alignment and Database Conditioning

Effectiveness

DMCAC’s primary contribution lies in its novel approach to aligning the representation learning

process explicitly with the downstream task of image retrieval. By simulating retrieval within

the training loop and conditioning the learning objectives on the interaction between queries and

the database, DMCAC moves beyond context-free representation learning. The learned features

are inherently tuned for discriminability and ranking within the context of the target database

distribution, addressing the potential mismatch present in traditional methods.

The experimental results robustly validate the effectiveness of this database conditioning

strategy. The combination of minimizing distributional divergence across views (relative to the

database) and classifying queries based on their database neighbors (CAC) proves highly

effective. DMCAC achieves state-of-the-art performance on multiple standard image retrieval

benchmarks, including CUB-200, Cars-196, In-Shop Clothes, and Stanford Online Products,

often outperforming prior methods based on contrastive learning or sophisticated metric learning

losses, especially when employing ViT architectures.

Furthermore, the framework demonstrates practical viability by performing competitively in

both the full retrieval setting (offering complete gradient information) and the more scalable
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Figure 2.6: DMCAC Cross-Attention Classification (CAC) Mechanism. Shows how a query
embedding attends to its retrieved database neighbors (Keys/Values) to produce a database-
conditioned representation z′, which is then classified using cross-entropy loss.

approximate retrieval setting using FAISS [19]. The performance difference between the two was

found to be relatively minor, suggesting that the core benefits of database conditioning can be

achieved even when using approximate nearest neighbor search during training, making the

approach applicable to very large databases as shown in Table 2.3

2.4 Synthesis: Value of Attending Across Examples

The two frameworks detailed in this section, CNN2Graph and DMCAC, provide compelling

evidence for the value of attending across examples in visual representation learning. By

explicitly designing mechanisms that allow information to flow between individual data points
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Dataset Method R@1 R@2 R@4 R@8

CUB-200 DMCAC-DeiT 78.4 87.0 92.3 95.0
DMCAC-ViT 86.2 92.0 94.7 96.7
DMCAC-DeiT-FR 78.6 87.2 93.0 95.5
DMCAC-ViT-FR 86.8 92.3 94.9 96.7

Cars-196 DMCAC-DeiT 84.4 89.2 94.9 97.5
DMCAC-ViT 88.5 93.9 96.7 98.1
DMCAC-DeiT-FR 84.8 89.2 94.9 97.5
DMCAC-ViT-FR 89.2 94.0 97.0 97.9

Table 2.3: Comparison of approximate retrieval (default) vs. full retrieval (FR) during training on
CUB-200 and Cars-196. Full retrieval offers slightly better performance but approximate retrieval
remains highly competitive and scalable.

and a broader context, both approaches successfully overcome limitations associated with

processing images in isolation. They demonstrate that incorporating inter-example relationships

leads to representations that are demonstrably richer, more robust, and better aligned with

downstream tasks.

While both leverage cross-attention as a core mechanism for information exchange, they

differ significantly in the nature of the context utilized and their primary application focus.

CNN2Graph employs a static, curated dataset context embodied by learnable proxies and fixed

anchors, primarily aiming to improve image classification by infusing representations with

class-level structural information derived from the entire dataset. Its strengths lie in its end-to-end

differentiability, efficient inductive inference, and its structured approach to modeling class

relationships via the bipartite graph.

In contrast, DMCAC utilizes a dynamic, query-specific database context obtained through

retrieval during training, specifically targeting the enhancement of image retrieval performance.

By conditioning self-supervised learning objectives (divergence minimization) and a novel

classification scheme (CAC) on the retrieved database neighbors, it directly aligns representation

learning with the nuances and distribution of the target database. Its innovation lies in bridging

the gap between training and retrieval deployment.

Together, these studies highlight the versatility and power of cross-example attention.
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Method Dim Architecture CUB-200 In-Shop Cars-196 Stanford Online Products
1 2 4 8 1 10 20 30 1 2 4 8 1 2 4 8

NSoftmax [20] 512 R50 61.3 73.9 83.5 90 86.6 97.5 98.4 98.8 84.2 90.4 94.4 96.9 78.2 90.6 96.2 -
ProxyNCA++ [21] 512 R50 69.0 79.8 87.3 92.7 90.4 98.1 98.8 99.0 86.5 92.5 95.7 97.7 80.7 92.0 96.7 98.9
A-BIER [22] 512 GoogleNet 57.5 68.7 78.3 86.2 93.1 95.1 96.9 97.5 82.0 89.0 93.2 96.1 74.2 86.9 94.0 97.8
ABE [23] 512 GoogleNet 60.6 71.5 79.8 87.4 87.3 96.7 97.9 98.2 85.2 90.5 94.0 96.1 76.3 88.4 94.8 98.2
SM [24] 512 GoogleNet 56.0 68.3 78.2 86.3 90.7 97.8 98.5 98.8 83.4 89.9 93.9 96.5 75.3 87.5 93.7 97.4
Proxy-Anchor [25] 512 Inception-BN 68.4 79.2 86.8 91.6 91.5 98.1 98.8 99.1 86.1 91.7 95.0 97.3 79.1 90.8 96.2 98.7
SoftTriple [26] 512 Inception-BN 65.4 76.4 84.5 90.4 - - - - 84.5 90.7 94.5 96.9 78.6 86.6 91.8 95.4
HORDE [27] 512 Inception-BN 66.8 77.4 85.1 91.0 90.4 97.8 98.4 98.7 86.2 91.9 95.1 97.2 80.1 91.3 96.2 98.7
XBM [28] 512 Inception-BN 65.8 75.9 84.0 89.9 89.9 97.6 98.4 98.6 82.0 88.7 93.1 96.1 79.5 90.8 96.1 98.7
MS [29] 512 Inception-BN 65.7 77.0 86.3 91.2 89.7 97.9 98.5 98.8 84.1 90.4 94.0 96.5 78.2 90.5 96.0 98.7
HTL [30] 512 Inception-BN 57.1 68.8 78.7 86.5 80.9 94.3 95.8 97.2 81.4 88.0 92.7 95.7 74.8 88.3 94.8 98.4
IRT R [31] 384 DeiT-S 76.6 85.0 91.1 94.3 91.9 98.1 98.7 98.9 - - - - 84.2 93.7 97.3 99.1
Sph-DeiT [32] 384 DeiT-S 76.2 84.5 90.2 94.3 89.6 97.2 98.0 98.4 81.7 88.6 93.4 96.2 82.5 92.9 97.1 99.1
Sph-DINO [32] 384 ViT 78.7 86.7 91.4 94.9 90.1 97.1 98.0 98.4 86.6 91.8 95.2 97.4 82.2 92.1 96.8 98.9
Sph-ViT [32] 384 ViT(IN21k) 85.1 90.7 94.3 96.4 90.4 97.4 98.2 98.6 81.7 89.0 93.0 95.8 82.1 92.5 97.1 99.1
Hyp-DeiT [32] 384 DeiT-S 77.8 86.6 91.9 95.1 90.5 97.8 98.5 98.9 86.4 92.2 95.5 97.5 83.3 93.5 97.4 99.1
Hyp-DINO [32] 384 ViT 80.9 87.6 92.4 95.6 92.4 98.4 98.9 99.1 89.2 94.1 96.7 98.1 85.1 94.4 97.8 99.3
Hyp-ViT [32] 384 ViT(IN21k) 85.6 91.4 94.8 96.7 92.5 98.3 98.8 99.1 86.5 92.1 95.3 97.3 85.9 94.9 98.1 99.5
DMCAC-DeIT 384 DeiT-S 78.4 87.0 92.3 95.0 91.1 98.5 98.8 99.1 84.4 89.2 94.9 97.5 84.2 93.6 97.4 99.1
DMCAC-ViT 384 ViT (IN21k) 86.2 92.0 94.7 96.7 92.7 98.2 98.9 99.3 88.5 93.9 96.7 98.0 86.3 95.2 97.5 99.5

Table 2.4: Recall@k metrics comparing across state-of-the-art methods on the CUB-200, In-Shop,
Cars-196, and Stanford Online Products datasets. DMCAC (ours) performs competitively across
architectures and outperforms all previous methods in several settings.

Whether the context is a curated set of class representatives or dynamically retrieved database

items, allowing representations to be shaped by their relationship to other relevant examples

provides a potent inductive bias. It enables models to learn features that capture not only the

intrinsic content of an image but also its relative position and significance within a larger semantic

landscape, ultimately leading to more effective and task-aware visual understanding. The

construction of interaction pathways (graphs, retrieval) and the application of attention

mechanisms (cross-attention) emerge as key enablers for unlocking the benefits of looking

beyond individual data points.
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Chapter 3

Attention Within Images: Discovering and

Utilizing Informative Regions and Tokens

3.1 Motivation: Enhancing Representations with Localized

Details

The previous chapter highlighted the benefits of incorporating context from across different

images. We now turn our attention inward, focusing on the challenge of effectively capturing the

rich information contained within a single image. As established earlier, the common practice of

representing an entire image using a single global feature vector, such as the [CLS] token from a

Vision Transformer (ViT), imposes a severe information bottleneck [5]. This compression is

particularly detrimental for tasks that hinge on fine-grained visual distinctions. While a global

vector might adequately capture the general category of an image (e.g., ”bird,” ”car”), it often

fails to preserve the subtle, localized details necessary to differentiate between closely related

subcategories (e.g., ”sparrow” vs. ”finch”) or specific object instances, which is the core

challenge in fine-grained image retrieval. The averaging or pooling inherent in creating a single

descriptor tends to wash out the very features—unique patterns, specific parts, local

textures—that are critical for making these fine distinctions.
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Recognizing this limitation, various approaches have explored multi-vector representations.

Early computer vision techniques utilized local invariant features detected around keypoints (e.g.,

SIFT [33]) or features extracted from salient image regions identified by specialized algorithms

[34, 35]. While demonstrating the value of local information, these methods often relied on

hand-crafted features or separate detection modules that were not integrated into end-to-end deep

learning pipelines. More contemporary deep learning approaches have involved using features

from multiple layers of a CNN or employing region proposal networks to identify and represent

distinct image parts. Within the ViT framework, the most direct multi-vector approach is to utilize

the embeddings associated with all the input image patches. This dense representation

theoretically captures the maximum amount of local information available to the model.

However, its practical application, especially in large-scale retrieval systems containing millions

or billions of images, is severely constrained by the prohibitive computational and storage costs

[5]. Storing hundreds of high-dimensional patch vectors per image results in massive index sizes,

and the complexity of comparing all query patch vectors against all database patch vectors during

search becomes computationally infeasible.

This creates a critical gap: there is a need for representation-learning techniques that can

capture essential localized details for fine-grained tasks but do so efficiently, avoiding both the

information loss of single global vectors and the intractability of dense patch representations.

Furthermore, an ideal solution would achieve this without resorting to complex, external modules

for region detection or saliency prediction, instead leveraging the inherent capabilities of the

representation learning model itself. The work presented in this section [5] directly addresses this

challenge by proposing a novel framework for constructing efficient, yet powerful, multi-vector

representations by augmenting the standard [CLS] token with a small, carefully selected set of

informative tokens derived entirely from the internal structure and learned patterns of the ViT

itself.
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Figure 3.1: Histogram of most similar token types in database images for query [CLS] tokens
(COCO dog class). Shows that query [CLS] tokens are often most similar to database register
tokens, motivating their use in retrieval.

3.2 Multi-Vector Representations via Internal Discovery

(Augmenting the CLS Token)

The core proposition of the work detailed in [5] is that the limitations of the single [CLS] token

can be overcome not by incorporating all available patch tokens, but by strategically augmenting

it with a compact set of additional, specialized tokens. The selection and generation of these

tokens are designed to capture diverse and complementary information—global context, salient

parts, and localized details—relevant for fine-grained discrimination. A key innovation is that this

token discovery process is performed internally, harnessing the emergent properties and attention

patterns within a specific ViT architecture, DINOv2-reg [36], thereby obviating the need for

external detection or segmentation modules often employed in prior part-based or region-based

approaches.
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3.2.1 Leveraging DINOv2-reg and Register Tokens

The architectural foundation for this method is the DINOv2-reg ViT model [36]. A notable

feature of this architecture is the inclusion of a small number (R) of extra learnable tokens,

termed register tokens (tr), processed alongside the standard [CLS] token (tcls) and the image

patch tokens (tp). In the original DINOv2-reg work, these registers were introduced primarily as

”attention sinks”—their purpose was theorized to be attracting and isolating attention patterns

associated with image artifacts or potentially irrelevant background information, thus yielding

cleaner, more object-focused attention maps for the [CLS] token. Consequently, the

recommendation was to discard these register tokens for any downstream tasks.

However, a crucial insight motivating the work in [5] was the empirical observation that these

register tokens, far from merely capturing noise, emergently learn to represent semantically

meaningful concepts, often focusing on distinct objects or salient object parts within the image.

Instead of being discarded, they represent a potentially valuable source of complementary

information. Analysis on retrieval tasks revealed that the similarity between a query’s [CLS]

token and a relevant database image’s register token was frequently higher than the similarity to

the database image’s own [CLS] token, particularly for images within the same fine-grained

category as shown in Figure 3.1.

This discovery suggested that the registers implicitly learned discriminative features

overlooked by the global [CLS] token and that retaining them could significantly enrich the

image representation for retrieval. This repurposing of register tokens, leveraging an emergent

property contrary to their original design intent, forms the first component of the augmented

representation.

3.2.2 Token Selection and ROI Discovery Mechanism

Building upon the established value of the global [CLS] token and the newly recognized

potential of the register tokens, the proposed multi-vector representation begins with the set of

”cue” tokens: {tcls, t1r, . . . , tRr } (where typically R = 4). To further enhance representational
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granularity by incorporating highly localized information, the framework introduces a novel, fully

internal mechanism for deriving an additional set of Region-of-Interest (ROI) tokens. One ROI

token is generated corresponding to each of the R + 1 cue tokens, based entirely on the similarity

patterns computed between the cue tokens and the image patch tokens during the ViT’s standard

forward pass.

The ROI token discovery process unfolds in three steps:

1. Identify ”Buddy” Patches: For each cue token tcue ∈ {tcls, t1r, . . . , tRr }, its affinity to every

image patch token tjp (j = 1, . . . , P , where P is the number of patches) is measured using

the dot-product similarity:

sj = tTcuet
j
p

The patch token tj
∗
p that exhibits the highest similarity is designated as the ”buddy” patch

for that specific cue token: j∗ = argmaxj sj . The intuition here is powerful: the model’s

own learned representations (the cue tokens) are used to identify the image region (the

buddy patch) they are most strongly associated with or focused on. This provides a

data-driven, attention-guided mechanism for locating potentially salient points within the

image, directly reflecting the model’s internal understanding, without external guidance.

Different cue tokens (global [CLS] vs. part-focused registers) naturally identify different

buddy patches, capturing diverse points of interest. Figure 3.2 visually demonstrates how

buddy patches for [CLS] and different registers often correspond to distinct semantic parts

like a dog’s head, paw, or a nearby object.

2. Define Region of Interest (Ω): Relying on a single buddy patch token might be sensitive to

noise or overly specific. To capture a more robust representation of the local area, a small

spatial neighborhood around the buddy patch is defined. An N×N grid of patch tokens (e.g.,

N = 3, capturing the buddy patch and its immediate neighbors) centered on tj
∗
p constitutes

the Region of Interest, Ω.

3. Compute ROI Token: The final ROI token bcue associated with the cue token tcue is obtained
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by averaging the embeddings of all patch tokens tp falling within the defined region Ω:

bcue =
1

|Ω|
∑
tp∈Ω

tp (3.1)

(Eq. (3.1) in [5]) This local averaging acts as a spatial smoothing mechanism, yielding a

descriptor bcue that represents the salient local region identified by the cue token in a more

stable and contextually informed manner than a single patch token could provide.

This internal discovery process generates R+1 ROI tokens (bcls, b1r, . . . , b
R
r ), one derived from

each of the R + 1 cue tokens. The final proposed multi-vector representation E(I) for an image I

is the union of the original cue tokens and these newly derived ROI tokens:

E(I) = {tcls, t1r, . . . , tRr } ∪ {bcls, b1r, . . . , bRr } (3.2)

(Eq. (3.2) in [5]) For a standard DINOv2-reg model (R = 4), this yields a highly compact set of

only 2(R + 1) = 10 tokens per image, drastically smaller than the full set of patch tokens.

Figure 3.2: Visualization of DINOv2-reg token similarities and identified buddy patches. Top row
shows similarity maps for [CLS] and register tokens. Bottom row highlights the corresponding
buddy patch (black box) and the 3 × 3 ROI (red box), showing how different cue tokens focus on
different semantic parts (dog head, paw, cat ear, ball).
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3.2.3 Retrieval Framework and Multi-Vector Training

This compact yet diverse set of E(I) tokens enables an efficient multi-vector retrieval framework,

adopting the late-interaction strategy popularized by ColBERT [37] in the text domain. This

paradigm shifts away from comparing single pre-aggregated global vectors and instead performs

comparisons at the level of individual tokens, allowing for finer-grained matching.

Given the token sets for a query Q, E(Q) = {q1, . . . , qm}, and for a database item D, E(D) =

{d1, . . . , dn} (where m = n = 10 in the typical case), the late-interaction matching score S(Q,D)

is computed by summing the maximum similarity achieved by each query token across all database

tokens:

S(Q,D) =
m∑
i=1

max
1≤j≤n

(qTi dj) (3.3)

(Eq. (3.3) in [5]) All tokens (qi, dj) are L2-normalized prior to the dot product calculation. The

intuition behind this scoring function is its flexibility; it allows different types of query tokens

(global, part-focused, localized ROI) to independently find their best counterpart in the database

representation. A strong match might occur between the global [CLS] tokens, or between specific

register tokens capturing the same object part, or between ROI tokens representing similar local

details. Aggregating these ”best local matches” provides a robust similarity score that captures

partial or fine-grained correspondences, which are often missed by single-vector comparisons that

enforce a single global alignment.

To ensure the learned token embeddings are optimized for this late-interaction scoring, a multi-

vector triplet training objective is employed. For each training triplet (Q,D+, D−), where D+ is

semantically similar to Q and D− is dissimilar, the loss function aims to maximize the score

S(Q,D+) relative to S(Q,D−) by at least a margin α:

L =
∑
triplet

[max(0, α+ S(Q,D−)− S(Q,D+))] (3.4)

This triplet loss directly optimizes the entire set of 2(R + 1) token embeddings jointly,

pushing the encoder to produce representations where the aggregate late-interaction score

38



accurately reflects semantic similarity, thereby leveraging the fine-grained matching capability

enabled by the multi-vector format. Figure 3.3 provides a visual schematic of the complete

training pipeline, including ROI generation and the multi-vector triplet loss computation.

Figure 3.3: Training pipeline for the Augmenting CLS method. Top: Overall flow showing
query/positive/negative images passing through DINOv2-reg, ROI token generation, and multi-
vector triplet training. Bottom Left: Detail of ROI token generation (buddy patch identification,
region pooling). Bottom Right: Detail of multi-vector triplet loss using ColBERT-style matching
scores.

3.3 Enhanced Retrieval via Focused Information

The effectiveness of this strategy—augmenting the [CLS] token with internally discovered

register and ROI tokens, coupled with the late-interaction framework—was rigorously validated

on several standard image retrieval benchmarks, demonstrating clear advantages over baseline

approaches.
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Method Dim Architecture CUB-200 In-Shop Cars-196 Stanford Online Products
1 2 4 8 1 10 20 30 1 2 4 8 1 2 4 8

NSoftmax [20] 512 R50 61.3 73.9 83.5 90 86.6 97.5 98.4 98.8 84.2 90.4 94.4 96.9 78.2 90.6 96.2 -
ProxyNCA++ [21] 512 R50 69.0 79.8 87.3 92.7 90.4 98.1 98.8 99.0 86.5 92.5 95.7 97.7 80.7 92.0 96.7 98.9
A-BIER [22] 512 GoogleNet 57.5 68.7 78.3 86.2 93.1 95.1 96.9 97.5 82.0 89.0 93.2 96.1 74.2 86.9 94.0 97.8
ABE [23] 512 GoogleNet 60.6 71.5 79.8 87.4 87.3 96.7 97.9 98.2 85.2 90.5 94.0 96.1 76.3 88.4 94.8 98.2
SM [24] 512 GoogleNet 56.0 68.3 78.2 86.3 90.7 97.8 98.5 98.8 83.4 89.9 93.9 96.5 75.3 87.5 93.7 97.4
Proxy-Anchor [25] 512 Inception-BN 68.4 79.2 86.8 91.6 91.5 98.1 98.8 99.1 86.1 91.7 95.0 97.3 79.1 90.8 96.2 98.7
SoftTriple [26] 512 Inception-BN 65.4 76.4 84.5 90.4 - - - - 84.5 90.7 94.5 96.9 78.6 86.6 91.8 95.4
HORDE [27] 512 Inception-BN 66.8 77.4 85.1 91.0 90.4 97.8 98.4 98.7 86.2 91.9 95.1 97.2 80.1 91.3 96.2 98.7
XBM [28] 512 Inception-BN 65.8 75.9 84.0 89.9 89.9 97.6 98.4 98.6 82.0 88.7 93.1 96.1 79.5 90.8 96.1 98.7
MS [29] 512 Inception-BN 65.7 77.0 86.3 91.2 89.7 97.9 98.5 98.8 84.1 90.4 94.0 96.5 78.2 90.5 96.0 98.7
HTL [30] 512 Inception-BN 57.1 68.8 78.7 86.5 80.9 94.3 95.8 97.2 81.4 88.0 92.7 95.7 74.8 88.3 94.8 98.4
IRT R [31] 384 DeiT-S 76.6 85.0 91.1 94.3 91.9 98.1 98.7 98.9 - - - - 84.2 93.7 97.3 99.1
Sph-DeiT [32] 384 DeiT-S 76.2 84.5 90.2 94.3 89.6 97.2 98.0 98.4 81.7 88.6 93.4 96.2 82.5 92.9 97.1 99.1
Sph-DINO [32] 384 ViT 78.7 86.7 91.4 94.9 90.1 97.1 98.0 98.4 86.6 91.8 95.2 97.4 82.2 92.1 96.8 98.9
Sph-ViT [32] 384 ViT(IN21k) 85.1 90.7 94.3 96.4 90.4 97.4 98.2 98.6 81.7 89.0 93.0 95.8 82.1 92.5 97.1 99.1
Hyp-DeiT [32] 384 DeiT-S 77.8 86.6 91.9 95.1 90.5 97.8 98.5 98.9 86.4 92.2 95.5 97.5 83.3 93.5 97.4 99.1
Hyp-DINO [32] 384 ViT 80.9 87.6 92.4 95.6 92.4 98.4 98.9 99.1 89.2 94.1 96.7 98.1 85.1 94.4 97.8 99.3
Hyp-ViT [32] 384 ViT(IN21k) 85.6 91.4 94.8 96.7 92.5 98.3 98.8 99.1 86.5 92.1 95.3 97.3 85.9 94.9 98.1 99.5
DINOv2-reg (ours) 384 ViT 87.1 92.3 94.7 96.9 92.9 98.4 98.9 99.4 89.1 93.8 96.9 98.0 86.2 95.4 98.0 99.5

Table 3.1: Recall@k metrics comparing across state-of-the-art methods on the CUB-200, In-Shop,
Cars-196, and Stanford Online Products datasets. We perform competitively across architectures
and outperform all previous methods in several settings.

3.3.1 Performance Gains

The empirical evaluations reported in [5] revealed substantial improvements in retrieval accuracy,

with the most pronounced gains observed on datasets characterized by fine-grained visual

distinctions, such as CUB-200 (birds) and Cars-196. When compared against using only the

single [CLS] token from the identical DINOv2-reg backbone, the proposed 10-token

multi-vector representation consistently delivered significantly higher recall metrics, particularly

the crucial Recall@1 metric which reflects the ability to find the correct match as the top-ranked

result.

Ablation studies carefully dissected the contributions of each component. Adding just the

register tokens to the [CLS] token already provided a solid performance boost, confirming their

value in capturing complementary information. However, the subsequent addition of the

automatically discovered ROI tokens resulted in further, often larger, improvements, highlighting

the significant benefit of incorporating these targeted, localized region descriptors. (Table 3.2 in

[5] presents these key ablation results).

These findings strongly validate the core hypotheses: specialized tokens like registers and

internally derived ROIs capture critical fine-grained information missed by the global [CLS]
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token, and the multi-vector late-interaction framework effectively leverages this enriched

representation for superior retrieval. When compared against a wide range of existing

state-of-the-art methods (many using different backbones or more complex architectures), the

proposed approach demonstrated highly competitive, and in several cases superior, performance,

underscoring its effectiveness. Refer to Table 3.1 for detailed benchmark comparisons. Figure 3.4

offers qualitative visualizations suggesting how different cue tokens attend to distinct patterns and

how this facilitates matching across images).

Method CUB (R@1) Cars-196 (R@1)

DINOv2-reg (CLS only) 82.2 87.8
DINOv2-reg (CLS+Registers) 85.1 88.2
DINOv2-reg (CLS+Register+ROI) 87.1 89.1

Table 3.2: Ablation study showing the impact of adding register tokens and ROI tokens to the
base [CLS] token representation on Recall@1 performance. Both additions provide significant
improvements (Adapted from).

Method #Tokens Total Dim Memory (1M imgs) CUB R@1

Single-Vector 1 384 1.5 GB 83.5
Ours (CLS+Reg+ROI) 10 3,840 15 GB 87.1
All Patch+Reg+CLS ≈201 77,184 309 GB 87.3

Table 3.3: Theoretical index size comparison for 1 million images (384-dim float32 embeddings).
Shows the proposed 10-token method offers a significant performance boost over single-vector
retrieval with much lower memory cost than using all tokens (Adapted from).

3.3.2 Efficiency

Beyond accuracy, a defining characteristic of this framework is its efficiency, particularly

concerning computational and storage resources, when contrasted with the alternative of using

dense, all-patch representations. While using all P patch tokens (where P can be several hundred

for standard ViT configurations) provides the most exhaustive local information, the associated

costs render it impractical for most large-scale retrieval deployments. Indexing hundreds of
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Figure 3.4: We show how the tokens from a query image search for patterns in another image by
showing the heat map from a given token to all image patch tokens. Row 1 shows the heatmap
from query (left) cue tokens to its image patches. Row 2 shows the same for the other (right)
image. Row 3 shows the heat map computed by using query cue tokens across the other images
image patch tokens. For example, register 1 in the query focuses strongly on the head shape when
searching across the other image (row 3).

vectors per image leads to enormous storage requirements, and the O(m × n) complexity of

late-interaction matching becomes prohibitive when m and n are large.

The proposed method achieves its significant performance improvements using only a small,

fixed set of tokens (e.g., 10). This represents a highly practical trade-off between representational

richness and efficiency. The memory footprint is only marginally larger than single-vector

methods but remains orders of magnitude smaller than storing all patch embeddings, making

large-scale indexing and deployment feasible. Similarly, the computational cost of the

late-interaction matching remains manageable due to the small number of tokens involved. (Table

3.3 provides a compelling theoretical comparison of index sizes and retrieval performance for
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single-vector, the proposed 10-token method, and an all-patch approach, clearly illustrating the

efficiency benefits).

Furthermore, the approach demonstrated practical robustness. Ablation studies on the size (N×

N ) of the region Ω used for pooling ROI tokens indicated that performance was relatively stable

across different reasonable sizes (e.g., N = 3, 5, 7), with N = 3 often providing near-optimal

results. This suggests the method is not overly sensitive to this hyperparameter. Importantly, using

a pooled region (N ≥ 3) consistently outperformed using just the single buddy patch (N = 1),

confirming the value of incorporating local spatial context in the ROI token. See Table ?? for

results varying ROI size).

The combination of the fully internal ROI discovery mechanism, the compactness of the final

token set, and the robustness to hyperparameters makes this approach a practical and effective

solution for enhancing fine-grained retrieval.

ROI Size CUB (R@1) Cars-196 (R@1)

Single Patch 85.6 88.9
3× 3 87.1 89.1
5× 5 87.1 89.0
7× 7 87.3 89.2
9× 9 87.1 89.0

Table 3.4: Ablation on region size for ROI tokens. We report Recall@1 on CUB and Cars-196
with single patch vs. N ×N mean pooling for N=3, 5, 7, 9. Our default setting is N=3.

3.4 Synthesis: Leveraging Internal Attention for Richer,

Efficient Representations

The research presented in this section introduces a novel and effective strategy for overcoming the

inherent limitations of single global vector representations in vision transformers, particularly for

challenging fine-grained image retrieval tasks. The core achievement lies in demonstrating how to

construct richer, multi-vector representations by exploiting latent information within specialized
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tokens (registers) and leveraging the internal similarity structures revealed by the ViT’s own self-

attention mechanism, all accomplished in an efficient and entirely self-contained manner.

The key contribution is the method for augmenting the global [CLS] token with a small,

intelligently curated set of additional tokens: the part-aware register tokens (repurposed from

their original design [36]) and the localized ROI tokens derived automatically via the novel

”buddy patch” mechanism. This ROI discovery process, driven by cue-token-to-patch similarities,

offers a unique way to identify and extract features from salient image regions without

necessitating external detection, segmentation, or saliency modules, relying instead on the

model’s learned internal representations.

This work strongly embodies the principle of attending to focused information within the

image to build better representations. It moves decisively beyond holistic descriptors by

acknowledging that different learned tokens can specialize—capturing global context ([CLS]),

distinct object parts (registers), or specific local details (ROIs). The adoption of the

late-interaction matching framework [37] provides the necessary mechanism to effectively

harness this diverse set of features during the retrieval comparison process, allowing for nuanced,

part-to-part or region-to-region matching. Crucially, this significant enhancement in

representational capability and retrieval performance is achieved while maintaining computational

tractability. By using only a small number of tokens, the method strikes a practical and highly

effective balance between retrieval accuracy and the resource constraints of large-scale systems.

This research underscores the largely untapped potential residing within the internal workings of

Vision Transformers, suggesting that further exploration of their attention patterns and emergent

token behaviors can lead to more powerful and efficient approaches to visual understanding.
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Chapter 4

Controlling Attention: Aligning with Object

Focus for Robustness

4.1 Motivation: Mitigating Shortcut Learning in ViTs via

Explicit Attention Control

Having explored methods to leverage context across examples (Chapter 2) and to select

informative features within images (Chapter 3), we now turn to a more direct form of

intervention: explicitly controlling the internal attention mechanism of Vision Transformers

(ViTs). This focus is motivated by a well-recognized vulnerability of ViTs and other powerful

deep learning models: their propensity for shortcut learning [6]. Shortcut learning occurs when

models exploit superficial correlations or biases within the training data to achieve high accuracy

on that data, without necessarily learning the underlying semantic concepts intended by the task.

ViTs, with their ability to form global dependencies from the earliest layers and their relative lack

of strong spatial inductive biases compared to CNNs, can be particularly adept at discovering and

exploiting such shortcuts. Instead of grounding their predictions in the intrinsic properties of

objects, such as their shape and structure, they might learn to associate classes with co-occurring

background textures, specific dataset artifacts, or simple local patterns that happen to be
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Figure 4.1: We restrict learning attention to objects of the same class.

discriminative only within the training distribution [7, 8, 9, 10]. For instance, a model trained on

ImageNet might learn that ”snow” is a strong predictor for ”husky,” failing when presented with a

husky indoors.

The consequences of relying on these shortcuts are severe. Models exhibit poor generalization

performance when faced with out-of-distribution (OOD) data, where the spurious correlations

learned during training are no longer present. This brittleness makes them unreliable for

real-world applications where encountering novel contexts or variations is inevitable.

Furthermore, this reliance on superficial cues often manifests as a strong bias towards texture over

shape [9, 10]. While humans rely heavily on configural shape information for object recognition

[7, 8], models biased towards texture fail to capture this crucial aspect of visual understanding,

limiting their semantic grounding. While techniques like large-scale pre-training and

sophisticated data augmentation strategies aim to mitigate shortcut learning by exposing the

model to greater data diversity, they provide no explicit guarantee against it. Architectural

modifications that re-introduce CNN-like locality biases (e.g., Swin Transformer [38], ConViT

[39]) offer another direction, but may also limit the unique strengths of the original Transformer
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architecture.

This landscape reveals a compelling need for methods that directly address the mechanism

of shortcut learning within ViTs by explicitly guiding the model’s focus towards semantically

relevant information. This motivates the Object-Focused Attention (OFA) framework presented

in [11]. OFA proposes a novel training strategy that directly intervenes in the ViT’s self-attention

computation. The central hypothesis is that by actively penalizing attention paid to non-object

regions during training, using semantic segmentation masks as a readily available form of weak

supervision, we can compel the model to prioritize learning from intra-object interactions. This

explicit guidance aims to instill a stronger inductive bias towards object-centric processing, thereby

reducing reliance on spurious background cues, fostering a better understanding of object shape,

enhancing robustness to OOD scenarios, and ultimately leading to more semantically grounded

representations.

Figure 4.2: Object Focused Attention (OFA) Module. Right: Standard self-attention calculation
producing output Y. Left: Parallel OFA branch calculating the L2 loss between the model’s
foreground attention distribution (S ′′) and the target object-centric distribution (B′′) derived from
the Patch Attention Matrix (PAM).
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4.2 Object-Focused Attention (OFA) Framework

The OFA framework introduces a modification to the standard ViT training regime, designed to

encourage the self-attention mechanism to concentrate its focus within the boundaries of semantic

objects. This is achieved by incorporating an auxiliary loss term computed directly from the

attention weights, without altering the core ViT architecture for inference.

Figure 4.3: Data flow showing differences in training and inference. OFA is shown explicitly as a
training time method and thus can be used without any segmentation labels during inference.

4.2.1 Method: Auxiliary OFA Loss Guided by Semantic Masks

Recall that in a standard ViT self-attention layer, input patch tokens X ∈ RN×d are projected

to Query (Q), Key (K), and Value (V ) matrices. The pairwise compatibility between patches is

captured in the pre-softmax attention score matrix:

S =
QKT

√
d

∈ RN×N

Applying row-wise softmax yields the final attention weights:

A = softmax(S) ∈ RN×N (4.1)
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(Eq. (4.1) in [11]) Row Ai dictates how patch pi aggregates information from all patches pk (via

the Value matrix V ) to form its updated representation.

OFA introduces a parallel computation during training that compares the model’s learned

attention patterns (S) against an ideal object-focused pattern derived from semantic segmentation

masks. Given an image segmented into regions R = {R1, . . . , Rr} (where some regions

correspond to foreground objects and potentially one or more to background), the goal is to

enforce that a patch pi primarily attends to other patches pk that fall within the same foreground

object region.

To quantify this ideal behavior, a target Patch Attention Matrix (PAM) B ∈ {0, 1}N×N is

constructed. For a pair of patches (pi, pk), the entry Bik is set to 1 if both patches intersect the

same foreground object mask Rj , and Bik is set to 0 otherwise (including cases where one or both

patches are background, or they belong to different foreground objects). This matrix B encodes the

desired sparse connectivity, restricting attention flow strictly within object boundaries. (Handling

patches overlapping multiple regions might involve assigning them to the region with the largest

overlap or other heuristics, though the core principle remains restricting attention based on shared

object identity).

Directly comparing the raw scores S with the binary target B is problematic. Instead, both are

processed to represent attention distributions focused on foreground objects:

• Normalization: Both the model’s scores S and the target matrix B are normalized row-wise

using the softmax function: S ′ = softmax(S) and B′ = softmax(B). For a row i in B′

corresponding to an object patch, this normalization creates a uniform distribution over the

k patches belonging to that object (B′
ik = 1/k if pk is in the same object, 0 otherwise),

representing the target of attending equally to all parts of the same object.

• Background Masking: To concentrate the learning signal on relevant foreground

interactions, rows in both S ′ and B′ corresponding to patches primarily identified as

background are masked out or ignored during the loss computation. This yields the final

matrices S ′′ and B′′ representing the model’s and the target’s foreground attention
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distributions, respectively.

The Object-Focused Attention (OFA) loss, LOFA, quantifies the discrepancy between these two

distributions. The squared L2 distance was chosen in [11] as a simple and effective measure:

LOFA = ||S ′′ −B′′||22 (4.2)

(Eq. (4.2) in [11]) Minimizing this loss directly penalizes the model whenever its attention

distribution S ′′ for a foreground patch deviates significantly from the ideal object-centric

distribution B′′. It pushes the model to reduce attention weights assigned to patches outside the

current object boundary and potentially encourages a more uniform spread of attention within the

object. This auxiliary objective gently guides the self-attention mechanism towards learning

object structures defined by the masks, complementing the primary task objective. This approach

differs from methods that might enforce hard constraints or use attention supervision for specific

downstream tasks (like localization), offering instead a general training adaptation aimed at

improving the underlying representation quality. Figure 4.2 provides a clear diagram of this

auxiliary loss computation.

4.2.2 Integration and Training

The OFA loss is seamlessly integrated into the ViT training pipeline:

• Placement: Rather than applying the loss only at the final layer, OFA is typically computed

at multiple self-attention layers distributed throughout the ViT architecture. The rationale

is that attention patterns evolve through the network depth; guiding attention at early layers

might influence low-level feature grouping, while guidance at later layers can shape higher-

level semantic focus. Empirical studies in [11] found that applying LOFA at early, middle,

and late layers (specifically layers 1, 7, and 14) yielded superior results compared to single-

layer application or other combinations. Though this application is dataset dependent and is

left as a design choice.
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When using multiple OFA losses, their contributions are typically aggregated. For instance,

in [11], a weighting scheme gave increasing importance to guidance at deeper layers using

geometrically decaying weights. For OFA losses at layers l1, l2, ..., lk (ordered from shallow

to deep), the total OFA loss might be computed as:

LOFA =
1

Nofa

Nofa∑
i=1

wi · L(li)
OFA where wi = γk−i (4.3)

with γ being a decay factor (e.g., 0.9) and Nofa the number of layers where the loss is

applied. For the specific case of layers [1, 7, 14] (Nofa = 3), this becomes:

LOFA =
1

3
(γ0L(14)

OFA + γ1L(7)
OFA + γ2L(1)

OFA) (4.4)

And for layers [1, 14] (Nofa = 2):

LOFA =
1

2
(γ0L(14)

OFA + γ1L(1)
OFA) (4.5)

• Total Loss Function: The overall objective function for training the network becomes a

weighted combination of the standard loss for the primary downstream task (Ltask, e.g.,

binary cross-entropy for multi-label classification) and the aggregated OFA loss:

Ltotal = Ltask + α · LOFA (4.6)

(Eq. (4.6) in [11]) The hyperparameter α controls the strength of the object-focusing

regularization relative to the main task objective.

• No Inference Cost: A key practical advantage is that the entire OFA auxiliary loss

computation, including the need for semantic segmentation masks, is confined to the

training phase. During inference, the OFA branch is simply removed, and the ViT operates

exactly as a standard pre-trained model, using the learned weights. Consequently, OFA
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enhances the model’s intrinsic properties—its robustness and semantic

understanding—without imposing any additional computational cost, latency, or

architectural modifications at deployment time.

While the primary focus of [11] was on using ground-truth or high-quality predicted masks, the

paper also explored the potential for self-supervised OFA. It proposed integrating OFA principles

with Masked Autoencoders (MAE) [18], utilizing a novel multi-scale masking strategy

compatible with the Musiq transformer’s spatial grid encoding [40]. Although preliminary, this

suggests pathways for extending object-focused attention principles to scenarios where explicit

pixel-level masks are unavailable, potentially by leveraging unsupervised segmentation methods

(like SAM [41]) or other self-supervised signals related to object coherence.

Figure 4.4: Examples from the OOD benchmark created by inpainting MS COCO validation image
backgrounds using Stable Diffusion with different scene prompts (Ocean, Desert, Forest, Meadow,
Beach). Foreground objects remain unchanged.
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Base Model Resolution Baseline ViT mAP (∆) ViT+OFA mAP (∆)

ViT-Base-Patch16 (1k) 224 73.9 (-7.0) 78.6 (-2.2)
ViT-Base-Patch16 (21k) 224 73.6 (-9.3) 81.7 (-2.2)
ViT-Large-Patch16 (21k) 384 79.0 (-6.9) 83.7 (-3.0)

Table 4.1: OOD robustness results on the Stable Diffusion inpainted MS COCO test set. Shows
mAP on original test set and performance drop (∆) on the inpainted set. ViT+OFA demonstrates
significantly less degradation, indicating better robustness to background changes.

Figure 4.5: Comparison of attention maps of proposed MUSIQ + OFA and baseline MUSIQ.

4.3 Benefits – Robustness and Semantic Understanding

The integration of the OFA loss during training confers significant advantages that manifest

primarily as enhanced model robustness against distributional shifts and a demonstrably improved

semantic understanding, particularly regarding object shape, moving beyond superficial texture

reliance.
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Methods MS COCO zero-shot VOC2012
ViT-Base 86.6 81.7

ViT-Base + OFA 87.3 87.8
MUSIQ-single 87.5 89.7
MUSIQ-multi 88.0 90.2

MUSIQ-single + OFA 89.0 90.9
MUSIQ-single + MAE 89.7 92.3
MUSIQ-multi + OFA 89.9 93.2
MUSIQ-multi + MAE 91.6 93.6

MUSIQ-single + MAE + OFA 91.7 94.7
MUSIQ-multi + MAE + OFA 92.1 95.4

Table 4.2: mAP multilabel classification results on the MS COCO and Pascal VOC2012 datasets.
All models are trained and evaluated on MS COCO. They are then applied on Pascal VOC2012
without any finetuning besides the linear head.

OFA at Different Layers (40% data) 1 2 3 4 5 6 7 8 9 10 11 12 mAP
[12] ✓ 83.5
[1] ✓ 83

[1,12] ✓ ✓ 83.6
[1,6,12] ✓ ✓ ✓ 83.7

[1,3,7,10,12] ✓ ✓ ✓ ✓ ✓ 84.0
[1,3,5,7,9,11] ✓ ✓ ✓ ✓ ✓ ✓ 83.7

[all] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 83.6

Table 4.3: Ablation of computing OFA loss on multiple attention blocks in ViT+OFA using the
ViT-Base-Patch16 (21k) on a subset of MS COCO.

4.3.1 OOD Robustness: Resilience to Background Perturbations

A central claim of OFA is its ability to mitigate reliance on spurious background correlations,

thereby improving generalization to OOD data. To provide rigorous evidence for this, a novel

OOD evaluation benchmark was specifically created for the study in [11]. This involved taking

the standard MS COCO validation images and systematically altering their backgrounds using the

powerful generative capabilities of Stable Diffusion inpainting [42]. For each image, the existing

semantic segmentation masks were used to precisely define the foreground object regions, which

were kept unchanged. The background region was then inpainted using Stable Diffusion guided

by diverse text prompts corresponding to distinct scene types (ocean, desert, forest, meadow,

beach). This process yielded multiple versions of each validation image where the foreground

objects were realistically placed into novel and often dramatically different background contexts,
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directly challenging models that might have learned spurious object-background associations

from the original training data. Figure 4.4 showcases examples from this challenging OOD

dataset.

Evaluating models trained on the original MS COCO data against this benchmark revealed the

effectiveness of OFA. Standard ViT baselines suffered a substantial drop in classification

accuracy when faced with the inpainted images, confirming their sensitivity to the statistics of the

background context they were trained on. In stark contrast, ViT models trained with the addition

of the OFA loss exhibited significantly greater resilience, maintaining much higher accuracy and

showing considerably less performance degradation on the OOD dataset. (Table 4.1 provides the

quantitative comparison).

This result strongly supports the hypothesis that OFA successfully encourages the model to

ground its predictions in the properties of the foreground objects themselves, making the learned

representations more invariant to background variations and thus more robust for real-world

deployment where context shifts are common.

Figure 4.6: Example shuffle operation applied to a varying number of patches. For humans, the
objects in a shuffled grid with 4 patches already seem unrecognizable. The mAP over 20 classes
on PASCAL VOC2012 when patches are shuffled. While the classification performance of ViT +
OFA drops significantly, those of ViT hardly drops.
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4.3.2 Mitigating Shortcuts & Enhancing Shape Understanding

The OFA framework directly confronts the well-documented tendency of deep networks, including

ViTs, to develop a strong bias towards texture cues at the expense of shape information [7, 8, 9,

10]. Shortcut learning often involves exploiting these easily discriminable texture patterns, even

if they are not semantically central to the object category. By explicitly forcing the self-attention

mechanism to operate within the confines of object masks via the LOFA loss, OFA discourages

attention links based merely on texture similarity between object patches and unrelated background

patches. Instead, it promotes the integration of information across the spatial extent of the object

itself. This process inherently encourages the model to learn features related to the object’s internal

structure, the spatial arrangement of its parts, and its overall configural or holistic shape.

To empirically investigate whether OFA indeed fosters a better grasp of shape, a random patch

shuffling experiment was designed [11]. This experiment serves as a direct probe for sensitivity to

spatial configuration. Input images were divided into regular grids of increasing granularity (e.g.,

2×2, 4×4, 8×8, 16×16), and the patches within each grid were randomly permuted before being

fed into the trained ViT models. This manipulation preserves all local patch information (including

textures) but systematically destroys the global spatial arrangement, i.e., the object’s shape. Figure

4.6 visually illustrates the effect of shuffling.

The results of this experiment were particularly illuminating. Standard ViT baselines

demonstrated a surprising degree of insensitivity to this shuffling; their classification performance

degraded only moderately even with significant spatial disruption (e.g., 4× 4 or 8× 8 grids). This

suggests that their predictions relied heavily on a ”bag-of-features” approach, primarily using

local patch statistics (like texture) rather than the overall spatial configuration. In dramatic

contrast, the performance of ViT models trained with OFA plummeted much more rapidly as the

degree of shuffling increased. The graph in Figure 4.6 presents this stark difference in

performance curves.

This heightened sensitivity to spatial scrambling provides compelling evidence that the OFA

training regime successfully induced the learning of representations that are dependent on the
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global configuration of object parts—in other words, OFA fostered a significantly better

understanding of holistic object shape compared to the baseline ViT.

4.3.3 Qualitative Evidence: Focused Attention Maps

The mechanism through which OFA achieves these benefits is further corroborated by qualitative

analysis of the models’ internal attention patterns. Visualizing the final-layer self-attention maps

often reveals clear differences between baseline ViTs and their OFA-trained counterparts.

Baseline models frequently exhibit diffuse attention that spreads across the image, including

significant attention paid to background regions or scattered, seemingly arbitrary high-attention

patches. Conversely, the attention maps generated by OFA-trained models typically show a much

stronger concentration on the foreground objects, often clearly outlining their silhouettes and

resembling coarse segmentation masks. Figure 4.5 provides several illustrative examples

comparing attention maps.

This direct visual evidence confirms that the auxiliary LOFA loss effectively fulfills its intended

purpose during training: guiding the self-attention mechanism to learn patterns that prioritize and

align with the semantic objects present in the scene.

4.4 Synthesis: Impact of Directly Controlling Attention

Learning

The Object-Focused Attention (OFA) framework, as detailed in this section, offers a targeted

strategy for enhancing the robustness and semantic fidelity of Vision Transformers by exerting

direct control over the self-attention learning process. Through the introduction of an auxiliary

loss function guided by semantic segmentation masks, OFA actively discourages attention to

non-object image regions during training, thereby promoting a focus on intra-object feature

relationships. This contrasts with other approaches that might rely solely on data diversity or

architectural biases to implicitly shape attention.
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The primary and most significant impact of this explicit attention control is the effective

mitigation of shortcut learning. By reducing the model’s tendency to exploit spurious correlations

involving background or texture cues, OFA cultivates representations that are more robustly

grounded in the intrinsic properties of the objects depicted. This manifests in tangible benefits,

including markedly improved generalization to out-of-distribution data where context may vary,

and a demonstrably enhanced understanding and utilization of holistic object shape information,

moving beyond superficial texture matching. A key advantage of OFA is that these substantial

improvements in representation quality and model reliability are achieved through a training-only

modification, leveraging existing semantic priors (masks) without incurring any additional

computational overhead or architectural complexity at inference time.

Positioning OFA within the overarching theme of this thesis—the critical role of attention and

information selection—it represents a powerful example of explicit attentional control. While the

methods discussed in Chapter 2 focused on leveraging context across examples and Chapter 3

focused on selecting informative features within images based on emergent model properties,

OFA actively intervenes to enforce a desired attentional behavior aligned with high-level semantic

understanding (objectness). This highlights the significant potential of incorporating domain

knowledge or semantic priors, when available and appropriate, to guide the learning dynamics of

powerful but potentially under-constrained models like ViTs. Such explicit control mechanisms

are crucial stepping stones towards building AI vision systems that are not only accurate on

standard benchmarks but also reliable, generalizable, and semantically coherent in their

understanding of the visual world. Future work could explore extending these control principles

to fully self-supervised settings or applying them to regulate attention for other desirable

properties beyond object focus.
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Chapter 5

Synthesis, Conclusion, and Future Work

5.1 Synthesis of Contributions

This thesis has embarked on an investigation into enhancing visual representation learning by

focusing on the pivotal roles of attention mechanisms and strategic information selection. Moving

beyond traditional approaches that often treat images as isolated entities or rely on monolithic

global descriptors, the research presented herein has explored diverse strategies for optimizing

what visual information models utilize and how they process it. Through four interconnected

studies, we have demonstrated that carefully guiding and structuring the flow of

information—whether across examples, within images, or by directly controlling the attention

mechanism itself—leads to representations that are demonstrably more robust, efficient, and

effective for a range of challenging computer vision tasks, including image classification,

multi-label classification, and fine-grained image retrieval.

The journey began in Chapter 2 by challenging the prevalent independent example processing

paradigm. We first introduced CNN2Graph [3], a framework designed to infuse dataset-level

context into image classification. By constructing a differentiable bipartite graph between

mini-batch images and a fixed proxy set (comprising learnable class prototypes and fixed data

anchors), and employing cross-attention for information aggregation, CNN2Graph demonstrated
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the feasibility and benefit of end-to-end learning that incorporates inter-example relationships,

while also providing efficient inductive inference capabilities. This work highlighted the

importance of the attention mechanism’s scalability in handling such interactions. Subsequently,

focusing on the specific demands of image retrieval, we presented DMCAC [4]. This framework

addressed the disconnect between typical representation learning objectives and the retrieval task

itself by explicitly conditioning representation learning on interactions with a target database

during training. Through a novel self-supervised objective based on minimizing the divergence of

retrieval distributions across augmented query views, coupled with a Cross-Attention

Classification (CAC) loss for semantic grounding, DMCAC demonstrated that aligning the

training process with the downstream task via database conditioning yields state-of-the-art

retrieval performance. Both CNN2Graph and DMCAC underscored the power of leveraging

context across examples, mediated by cross-attention.

Chapter 3 shifted the focus to attention within images, tackling the information bottleneck

imposed by single global vector representations, particularly for fine-grained retrieval. The

”Augmenting CLS” approach [5] proposed an efficient multi-vector representation strategy.

Instead of relying solely on the ViT’s [CLS] token or resorting to computationally expensive

dense patch representations, this method augments the [CLS] token with a small, curated set of

informative tokens: specialized register tokens (repurposed from DINOv2-reg [36] based on their

emergent part-representing properties) and novel Region-of-Interest (ROI) tokens. Crucially,

these ROI tokens are discovered internally by leveraging the ViT’s own cue-token-to-patch

similarity patterns, requiring no external modules. Combined with a ColBERT-inspired [37]

late-interaction matching framework, this compact multi-vector representation was shown to

significantly boost fine-grained retrieval accuracy while maintaining computational tractability,

effectively balancing representational richness and efficiency.

Finally, Chapter 4 addressed the critical issue of shortcut learning and the lack of robustness

often observed in ViTs by exploring methods for explicitly controlling the attention mechanism.

The Object-Focused Attention (OFA) framework [11] introduced an auxiliary loss term during
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training, guided by semantic segmentation masks. This LOFA loss directly penalizes

self-attention weights assigned to non-object regions, effectively forcing the model to concentrate

its attention within object boundaries. This intervention was shown to significantly mitigate

reliance on spurious background cues, leading to enhanced robustness against out-of-distribution

(OOD) data (validated on a novel dataset created using Stable Diffusion inpainting [42]) and

fostering a better understanding of holistic object shape (demonstrated via patch shuffling

experiments). Importantly, this semantic guidance is achieved without incurring any additional

computational cost at inference time.

Collectively, these four contributions illustrate a multi-faceted approach to improving visual

representations. By operating at different scopes—inter-example context, intra-image feature

selection, and direct attention control—and employing diverse mechanisms—graph structures,

database interaction, internal signal exploitation, and auxiliary losses—this body of work

consistently demonstrates that principled strategies for managing attention and selecting

information are key to unlocking more powerful and reliable visual understanding.

5.2 Overarching Principles

Across the diverse methodologies explored in this thesis, several overarching principles emerge as

central to achieving advancements in visual representation learning through the lens of attention

and information selection:

• The Primacy of Context: A recurring theme is the limitation of processing visual

information in isolation. Both CNN2Graph [3] and DMCAC [4] explicitly demonstrated

that incorporating broader context—whether the structural context of classes within a

dataset or the specific content of a target database—leads to more informative and

task-aligned representations. Mechanisms like graph-based message passing and dynamic

retrieval coupled with cross-attention proved effective in integrating this contextual

information, enabling models to learn relative similarities and task-specific nuances missed
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by context-free approaches.

• The Power of Guided Attention: Unconstrained attention mechanisms, while powerful, are

susceptible to latching onto superficial correlations (shortcut learning). The OFA framework

[11] provided strong evidence that explicitly guiding attention using semantic priors (object

masks) significantly enhances robustness and semantic grounding. Even implicit guidance,

such as the structure imposed by the proxy set in CNN2Graph or the database conditioning

in DMCAC, helps steer the model towards learning more meaningful features compared to

purely unsupervised or weakly constrained learning paradigms. Directing where and how a

model attends is crucial for reliable performance.

• Beyond Single Vectors: The Utility of Multi-Vector Representations: The work on

augmenting the CLS token [5] clearly illustrated the inadequacy of single global descriptors

for tasks demanding fine-grained detail. Moving towards multi-vector representations

allows for a more nuanced encoding of visual information, capturing global context,

distinct parts, and localized details simultaneously. However, the key lies in efficient

construction and utilization. Leveraging internal model signals (registers, attention

patterns) to select a compact, informative set of tokens, combined with late-interaction

matching, provides a practical path to harness the benefits of multi-vector representations

without succumbing to the intractability of dense methods.

• Object Focus Enhances Shape Understanding and Robustness: The OFA study [11]

directly linked controlled, object-focused attention to improved robustness and a better

grasp of holistic object shape. By mitigating the model’s reliance on background cues and

forcing it to integrate information across object regions, OFA countered the prevalent

texture bias and led to representations more sensitive to configural structure. This highlights

that controlling attention is not just about improving accuracy on standard benchmarks but

about fostering deeper, more human-like semantic understanding and resilience to

real-world variations.
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• Task Alignment Through Training: The DMCAC framework [4] emphasized the

importance of aligning the representation learning process with the specifics of the

downstream task. By simulating retrieval and conditioning learning on database

interactions, DMCAC achieved superior performance compared to methods trained with

generic objectives, demonstrating that tailoring the learning environment to the target

application yields more effective representations.

These principles are often interconnected. For instance, guided attention (OFA) naturally

promotes object focus and shape understanding. Incorporating context (CNN2Graph, DMCAC)

can implicitly guide attention towards more relevant inter-example relationships. Efficient

multi-vector representations (Augmenting CLS) provide the richer substrate needed for

fine-grained tasks where context and object focus are paramount. Ultimately, this thesis argues

that progress in visual representation learning hinges on intelligently managing the vast

information landscape of visual data through mechanisms that strategically select, contextualize,

and guide the focus of attention.

5.3 Limitations and Future Directions

While the research presented in this thesis offers significant contributions, it is also important to

acknowledge its limitations and identify promising avenues for future investigation.

5.3.1 Limitations

The CNN2Graph framework [3], while providing end-to-end learning, relies on a proxy set whose

size scales linearly with the number of classes, potentially posing scalability challenges for

datasets with extremely large label spaces. Its performance might also exhibit sensitivity to the

initial random sampling of anchor examples. The DMCAC approach [4], although effective,

introduces additional complexity during training due to the need for database embedding storage,

periodic updates, and the training-time retrieval step (even if approximate). Its performance might
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also depend on the quality of the query augmentations and the representativeness of the training

query/database split. The Augmenting CLS method [5], while efficient, is currently tied to the

specific DINOv2-reg architecture [36] and its register tokens; generalizing the principle of

leveraging specialized internal tokens to other architectures requires further investigation.

Furthermore, while the 10-token set proved effective, its optimality across all datasets and tasks is

not guaranteed, and scaling retrieval still necessitates integration with approximate nearest

neighbor (ANN) indexing techniques [5]. The OFA framework’s [11] primary limitation in its

supervised form is the reliance on semantic segmentation masks, which are not always available,

and the generation of high-quality masks can be computationally expensive itself. The interplay

between the task loss and the auxiliary OFA loss might also require careful balancing via the α

hyperparameter. Generally, across all studies, the focus remained predominantly on the visual

modality, with limited exploration of multimodal interactions.

5.3.2 Future Directions

These limitations and the insights gained throughout this work point towards several exciting future

research directions:

• Scaling Contextual Methods: Developing more scalable versions of context-aware

methods like CNN2Graph [3], perhaps using hierarchical proxy structures or more efficient

graph sampling techniques, is crucial for application to massive datasets. Similarly,

optimizing the training-time retrieval and database management in DMCAC [4] remains an

important practical challenge.

• Generalizing Internal Token Discovery: Extending the core idea from

Chapter 3—leveraging internal model signals to discover informative tokens—beyond the

specific DINOv2-reg architecture [36] holds significant promise. Can similar principles be

applied to identify salient patches, object parts, or other specialized features within standard

ViTs or even CNNs by analyzing attention maps, activation patterns, or gradient flows?
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Exploring adaptive or learned token selection mechanisms is a rich area for future work.

• Self-Supervised Object Focus: Advancing the preliminary explorations into

self-supervised OFA [11] is a key direction. Can models learn to focus attention on objects

without explicit masks? This could involve leveraging unsupervised segmentation

techniques (e.g., using foundation models like SAM [41] to generate pseudo-masks),

exploiting motion cues in videos to distinguish foreground from background, or developing

novel self-supervised objectives based on object coherence or Gestalt principles.

Successfully decoupling object-focused learning from mask supervision would vastly

broaden its applicability.

• Advanced Attention Control: Moving beyond penalizing background attention (OFA)

[11], future work could explore more sophisticated forms of attention control. Can we

guide attention towards specific attributes, functional parts, or regions relevant for

fine-grained reasoning tasks? Can attention patterns be regularized for improved

interpretability or fairness?

• Multimodal Representation Learning and Reasoning (Vision-Language Models): A

particularly compelling avenue is extending the principles of attention analysis and control

explored in this thesis to the rapidly evolving domain of Vision-Language Models (VLMs).

Current large VLMs, such as Google’s Gemini, OpenAI’s GPT-4V, or open models like

LLaVA, while demonstrating impressive capabilities, still exhibit significant failure modes,

particularly in tasks requiring complex visual reasoning, understanding fine-grained details,

spatial relationships, or handling compositionality. It is hypothesized that some of these

failures stem from challenges in effectively fusing information across

modalities—specifically, how visual attention interacts with textual attention and concepts.

Misalignments or suboptimal integration between visual grounding (what the model ”sees”)

and textual processing (what the model ”understands” or is asked) can lead to errors in

visual question answering (VQA), image captioning, and instruction following. Ongoing
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research, extending the work of this thesis, focuses on analyzing the evolution and behavior

of attention mechanisms within VLMs. This involves dissecting how attention patterns shift

when processing combined visual and textual inputs and identifying specific failure modes

where the interplay between visual and language attention leads to incorrect reasoning (e.g.,

failing to correctly bind attributes to objects, misinterpreting spatial prepositions relative to

the visual scene, hallucinating objects or relationships not present). Understanding these

cross-modal attention dynamics is crucial for diagnosing VLM limitations and developing

new methods—potentially inspired by the attention control techniques explored here—to

improve the grounding, reasoning capabilities, and reliability of these powerful multimodal

systems.

• Efficiency and Scalability: Continued research into optimizing the computational

efficiency of attention mechanisms (e.g., sparse attention, linear attention variants) and

developing scalable indexing solutions for multi-vector representations [5] remains

essential for deploying advanced representation learning techniques in real-world,

resource-constrained environments.

5.4 Concluding Remarks

This thesis has systematically investigated the critical role of attention mechanisms and strategic

information selection in advancing the state of visual representation learning. By moving beyond

simplistic assumptions of independent processing and global feature compression, we have

developed and validated novel frameworks that leverage context across examples, exploit

informative features within images, and exert explicit control over the attention process itself. The

presented contributions—CNN2Graph [3], DMCAC [4], Augmenting CLS [5], and OFA

[11]—demonstrate tangible improvements in classification accuracy, retrieval performance,

fine-grained understanding, and out-of-distribution robustness.

The overarching message is clear: how a model attends to and selects information is as crucial
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as the architecture itself. By thoughtfully designing mechanisms that guide attention towards

semantically relevant signals, whether derived from dataset structure, database context, internal

model patterns, or explicit semantic priors, we can build visual representations that are not only

more accurate but also more efficient, robust, and semantically grounded. As AI systems,

particularly large foundation models and multi-modal architectures, continue to grow in

complexity and capability, the principles of understanding, analyzing, and controlling attention

and information flow will remain paramount. The research presented here offers several concrete

steps in this direction, providing both effective methodologies and valuable insights to fuel

continued progress towards machines that can truly see and understand the visual world.
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