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ABSTRACT

This dissertation explores the application of self-supervised learning methods in

dental radiology to address the challenges posed by limited data availability for train-

ing deep learning models. The overarching goal is to enhance the e�ciency and

accuracy of automated systems for various dental diagnostic tasks, including teeth

numbering, detection of dental restorations, orthodontic appliances, implant systems,

marginal bone level, and dental caries from panoramic radiographs, CBCT images,

intra-oral 3D scans, and dental radiographs.

Key contributions include the development of several novel approaches:

• Self-supervised Learning for Dental Panoramic Radiographs: Utiliz-

ing SimMIM and UM-MAE with Swin Transformer, we achieved significant

improvements in teeth detection and instance segmentation, increasing the av-

erage precision by 13.4% and 12.8%, respectively, over baseline methods.

• Self-Distillation Enhanced Self-supervised Learning (SD-SimMIM):

Enhancing SimMIM with self-distillation loss, we improved performance on

teeth numbering, dental restoration detection, and orthodontic appliance de-

tection tasks, demonstrating superior outcomes compared to other methods.

• DentalMAE for Intra-oral 3D Scans: Extending the mesh masked au-

toencoder (MeshMAE), DentalMAE evaluates predicted deep embeddings of

masked mesh triangles, yielding better generalization and higher accuracy in

teeth segmentation tasks.

• DEMAE for Dental CBCT Images: Proposing the Deep Embedding MAE

(DEMAE), which measures the closeness of predicted deep embeddings of masked

patches to their originals, we achieved significant accuracy improvements in

teeth segmentation from CBCT images.
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• Masked Deep Embedding (MDE) for Implant Detection: By leveraging

MIM, we developed MDE to enhance dental implant detection, creating a com-

prehensive Implant Design Dataset (IDD) with expert annotations, significantly

boosting detection performance.

• Deep Embedding of Patches (DEP) for Bone Loss Assessment: An

extension of MAE, DEP improved the accuracy of marginal bone level detection,

supported by the creation of a Bone Loss Assessment Dataset (BLAD) with

detailed annotations.

• Masked Deep Embedding of Patches (MDEP) for Caries Detection:

This method enhanced dental caries detection performance, validated on the

CariesXrays dataset, demonstrating higher precision and recall rates compared

to traditional baselines.

Through these innovations, the dissertation establishes the e�cacy of self-supervised

learning in overcoming data scarcity in dental imaging, o↵ering promising AI-driven

solutions for improved diagnostics and patient care in dentistry.
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CHAPTER 1

IMPROVING DENTAL DIAGNOSTICS WITH

SELF-SUPERVISED LEARNING

1.1 Introduction

The need for computer-assisted decisions is rising to facilitate diagnosis and treat-

ment planning for dental care providers. Dental imaging is a valuable diagnostic tool

for diagnosis and treatment plans, which is not possible solely through clinical ex-

ams and patient history [1]. A dental panoramic X-ray is a comprehensive tool that

screens the teeth, surrounding alveolar bone and upper and lower jaws [2].

Moreover, dental restoration is a biocompatible synthetic material used to restore

missing tooth structures. The missing tooth structure can be restored with full and

partial coverage depending on the extension and intensity of the missing structure to

restore the tooth’s coronal (top) part. Furthermore, root canal filling is a restorative

procedure used to fill the space inside the tooth structure (root portion) with bio-

compatible restorative materials. Various dental restorative materials are available

in the dental world; each has its indication, advantages, disadvantages, and clinician

preferences. Most dental restorative materials appear radiopaque in the x-ray, and

they can be identified by dental care providers [3, 4].

However, manual intervention for teeth numbering and identification of tooth

restorations is time-consuming and may overlook significant data. Thus, the inter-

est in computer vision and computer science for automated processes was aroused.

Few studies have attempted to apply computer vision algorithms in dental radio-

graph analysis. They include convolutional neural networks (CNNs) for teeth num-

bering and instance segmentation [5], two-stage network [6], Faster R-CNN [7–11],

PANet [12], Mask R-CNN [13–16], and U-Net network [17–19]. Recently, CNNs have
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enormous emerging applications in analyzing medical images with the advent of com-

putation hardware/algorithm and expansion in the amount of data [5]. However,

CNNs are limited in overall capability because of inherent inductive biases [20].

In this study, we propose to use a recently introduced Swin Transformer [21] to an-

alyze dental panoramic radiographs. However, Swin Transformer requires large data

for training, but there is only a very limited number of available dental radiographs.

To alleviate this problem, we propose to use self-supervised learning. To the best of

our knowledge, this is the first study that applied self-supervised learning methods

to Swin Transformer on dental panoramic radiographs.

Recently, the self-supervised learning methods, SimMIM [22], UM-MAE [23],

BEiT [24], MAE [25], SplitMask [26], MoCo v3 [27], and DINO [28], are e↵ective

in pre-training Transformers [20,21] for learning visual representation. However, only

UM-MAE and SimMIM pre-training methods are enabled for Pyramid-based ViTs

with locality (Swin Transformer). Generally, the Masked Image Modeling (MIM)

methods mask some image patches before they are fed into the transformer to predict

the original patches in the masked area. This feature of aggregating information from

the context helps many vision tasks. Although both UM-MAE and SimMIM provide

a simple and e�cient pre-training strategy for the Swin transformer encoder [21], the

process of the input to the encoder is dissimilar. MAE discards the masked tokens and

inputs only visible patches to the lightweight decoder. However, MAE also breaks the

two-dimensional structure of the input image. Therefore, it is not applicable to the

Swin transformer without the Uniform Masking (UM) introduced in [23] to bridge the

gap between the MAE and Swin transformer. SimMIM includes the masked tokens

in the encoder and uses them as a direct prediction mechanism. Using the randomly

masked patches for SimMIM is a reasonable reconstruction target, and a lightweight

prediction head is su�cient for pre-training. In addition, the location of the patches

is essential in dental radiographs for a predictable outcome. SimMIM maintains the

location of the patches known to both encoder and decoder, while MAE drops the

location information, which may induce inaccuracy, as we demonstrate in this paper.
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As there is no standard dental image dataset for pre-training (unlike ImageNet

for natural images), SimMIM and UM-MAE are trained on the same dataset as the

downstream tasks (excluding the test dataset). We conduct experiments on dental

image tasks, including teeth numbering, detection of dental restorations, and instance

segmentation on the dental panoramic X-rays dataset [12]. For these tasks, we use the

base Swin Transformer (Swin-B) [21] as the backbone of Cascade Mask R-CNN [29].

We compare four Swin Transformer initializations, including SimMIM and UM-MAE,

supervised initialization, and random initialization baseline. Our results show that

SimMIM self pre-training can significantly improve object detection and instance

segmentation performance on dental images.

Although previous studies have investigated teeth segmentation, we still address

many gaps in this work. First, there is no comprehensive instance segmentation data

set for teeth numbering. Previous work on the matter [12] used modified versions

of binary semantic segmentation masks, which leads to a lack of instance overlap-

ping and low-resolution outputs, resulting in inaccurate predictions, especially on the

boundaries of the teeth. Second, there is a considerable amount of systematic er-

rors because of the absence of dental expert supervision. Third, no prior work has

simultaneously considered dental restoration segmentation besides tooth segmenta-

tion. The inclusion of teeth restorations increases the complexity of the computer

vision problem because of class quantity and class imbalance.

To solve the data set issues, we augment and correct the existing dataset intro-

duced in [12]. In addition to correcting the manual segmentation errors under ex-

pert supervision, we further expand the dataset by developing annotations for dental

restorations, including direct restorations, indirect restorations, and root canal ther-

apy. The labeling procedure resulted in a unique high quality, augmented dataset.

Our data is available, upon request, under the name TNDRS (Teeth Numbering,

Detection of Restorations, and Segmentation) annotations.

Our main contributions are twofold:

• We utilize self-supervised learning with SimMIM and UM-MAE to alleviate the

problem of small data for panoramic radiographs.
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• The corrected dataset leads to a significant increase in performance, while added

labeling of dental restorations extends the horizon of possible dental applica-

tions.

1.2 Teeth numbering

In dentistry, various dental numbering systems are available for teeth numbering

for adults and children. These numbering systems are universally accepted for better

communication between dental care providers. The Universal Numbering System,

Palmer Notation Numbering System, and Federation Dentiaure International num-

bering system (FDI) are the most commonly used system across the globe among

dental professionals. The FDI system is the most widely used international system.

In this system, every single tooth is assigned two-digit numbers; the first digit number

represents each quadrant. The maxillary right and left quadrants are identified by

the numbers 1 and 2, while the mandibular left and right quadrants are the numbers

3 and 4, respectively. The second digit numbers represent each tooth based on its

location in the jaw from the middle. The central incisor is assigned to number 1,

whereas the third molar is set to number 8 [9, 30].

1.3 Methods

The methods include two stages: the MIM pre-training and the downstream tasks,

as illustrated in Fig. 7.2.

In the first stage, Swin Transformer is pre-trained with MIM self-supervised learn-

ing methods as the encoder. SimMIM divides the image into patches, replacing some

random patches with mask tokens. Then, these patches, along with mask tokens, are

input to the Swin encoder. Hence the positional encoding of both visible and masked

patches is preserved, while UM-MAE drops those mask positions entirely. UM-MAE

samples three random patches from each two-by-two grid, dropping 25% of the entire

image. Then it randomly masks 25% of the already sampled areas as shared learn-

able tokens. Finally, the sampled patches and the masked tokens are reorganized as
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Figure 1.1. Pipeline for teeth detection, detection of dental restorations,
and instance segmentation with MIM Self Pre-training. (a) A Swin Trans-
former is first pre-trained by MIM methods on the target dataset. (b) The
pre-trained Swin Transformer is used as the backbone in Cascade Mask
R-CNN with FPN for the detection and segmentation tasks.
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Figure 1.2. Illustration of the architecture for object detection.

a compact two-dimensional input under a quarter of the original image resolution to

feed via the Swin encoder.

Then a decoder is appended to reconstruct the original patches at the masked

area for both methods. In the second stage, the pre-trained Swin weights are trans-

ferred to initialize the detection and segmentation encoder. The features of the Swin

Transformer backbone are fed to the neck (FPN [31]) and detection head (Cascade

Mask R-CNN) for bounding box regression and classification as illustrated in Fig. 1.2.

We select the Cascade Mask R-CNN [29] framework due to its ubiquitous presence

in object detection and instance segmentation research. Then, the whole network is

fine-tuned to perform the detection and segmentation tasks.

We use the base Swin Transformer backbone (Swin-B) and compare the e↵ective-

ness of four configurations as follows:

Random. The network is trained from scratch with randomly initialized weights,

and no self-supervised methods are used. The Swin backbone configuration follows

the code of [21], and the Cascade Mask R-CNN configuration uses the defaults in

MMDetection [32].

Supervised. The Swin backbone is pre-trained for supervised object detection

and instance segmentation using ImageNet-1K [33] images with their labels. We use

the weights from [21] for Swin-B. Swin-B was pre-trained for 300 epochs.
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SimMIM. We use the Swin-B weights pre-trained on self-supervised ImageNet-

1K from [22]. This model was pre-trained for 100 epochs.

UM-MAE. Since ImageNet-1K pre-trained weights are not available; we use the

o�cial UM-MAE code release [23] to train Swin-B ourselves for 800 epochs (the

default training length used in [23]) on unsupervised ImageNet-1K.

1.4 Experiments

1.4.1 Dataset augmentation and correction

TNDRS dental panoramic radiographs dataset. Detection, Numbering,

and Segmentation (DNS) [12] is a dental panoramic X-rays dataset consisting of 543

annotated images with ground truth segmentation labels, including numbering in-

formation based on the FDI teeth numbering system. The image size is 1991x1127

pixels. The dataset annotations have some limitations as follows: 1) lack of instance

overlapping; 2) some systematic errors because of the absence of dental expert super-

vision; 3) no segmentation of dental restorations. To overcome these issues, we modify

and correct teeth instance segmentation and overlapping in all images. In addition,

we contribute to further expanding the dataset by developing segmentation for dental

restorations, including direct restorations, indirect restorations, and root canal ther-

apy. This process was under a supervision of a dentist using the COCO-Annotator

tool [34]. We attended weekly meetings where related issues, such as numbering,

dental restorations, and segmentation questions, were discussed. In the end, the an-

notations were reviewed to assure quality and avoid systematic and random errors.

Fig. 1.3 shows a sample comparing the old and new versions of the dataset annota-

tions, highlighting both the instance overlapping (blue arrow) and the correction of

systematic errors (green arrow). Fig. 1.4 presents samples of segmentation of dental

restorations.

We believe this is the most inclusive dataset for segmenting teeth and dental

restorations in dental panoramic radiographs. We are providing our data, upon re-
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Figure 1.3. Comparison between the old and new dataset annotations.
(a) Dataset old annotations. (b) Dataset new annotations. The blue
arrow donates the inclusion of instance overlapping, while the green arrow
indicates the correction of systematic errors, for example, unsegmented
molar roots.

Figure 1.4. Samples of segmentation of dental restorations. Red arrows
show an example of a) indirect restoration, b) direct restoration, and c)
root canal therapy.
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quest, under the name TNDRS (Teeth Numbering, Detection of Restorations, and

Segmentation) annotations.

1.4.2 Evaluation metric

For all our experiments, we split the data into five folds, each containing approx-

imately 20% of the images. One of these folds is fixed as the test dataset (consisting

of 111 images), and the other four folds (consisting of 108 images each) compose

the training and validation datasets in a cross-validation manner. This process is

repeated five times. The evaluation metric we adopt is the Average Precision for

object detection and instance segmentation models.

1.4.3 Implementation details

Our experiments are implemented based on the PyTorch [35] framework and

trained with NVIDIA Tesla Volta V100 GPUs. In all experiments, the batch size

equals the total number of the training sample, which is 432. The input images are

all resized to 800×600 pixels. We utilize the AdamW [36] optimizer in all experiments.

Data augmentation. We apply noise addition and horizontal flipping, which

changes teeth numbers to their equivalent new values (left teeth numbers turned into

the right numbers and vice-versa).

SimMIM pre-training. The base learning rate is set to 8e-4, weight decay is

0.05, �1 = 0.9, �2 = 0.999, with a cosine learning rate scheduler with warm-up for

10 epochs. We use a random MIM with a patch size of 16×16 and a mask ratio of

20%. We employ a linear prediction head with a target image size of 800×600 and

use L1 loss to compute the loss for masked pixel prediction.

UM-MAE pre-training. The base learning rate is set to 1.5e-4, weight decay is

0.05, �1 = 0.9, �2 = 0.95, with a cosine decay learning rate scheduler with warm-up

for 10 epochs. We use a random MIM with a patch size of 16×16 and a mask ratio

of 25%. We employ a linear prediction head with a target image size of 800×600 and

adopt mean squared error (MSE) to compute the loss for masked pixel prediction.
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Task fine-tuning. For downstream tasks, we utilize single-scale training. The

initial learning rate is 0.0001, and the weight decay is 0.05.

1.5 Results and analysis

SimMIM and UM-MAE reconstruction. The reconstruction results of Sim-

MIM and UM-MAE are shown in Fig. 6.3. The five columns show the original im-

ages, the UM-MAE masked images, the UM-MAE reconstructed images, the SimMIM

masked images, and the SimMIM reconstructed images. The results show that both

MIM methods can restore lost information from the random context. It is worth

noting that the ultimate goal of the MIM is to benefit the downstream tasks instead

of generating high-quality reconstructions.

1.5.1 Quantitative results

Comparing initializations. Table 3.2 shows the results of teeth detection and

instance segmentation only and compares them to the previously published article

from Silva et al. [12]. We present TNDRS fine-tuning results using the pre-trained

models and random configurations described in Section 1.3. We make several obser-

vations.

(1) All four Swin Transformer initializations surpass the CNN-based SOTA of

PANet with ResNet-50 backbone using ImageNet pre-training from Silva et al. [12].

(2) Fine-tuning from supervised IN-1K pre-training yields 3.4 higher AP box than

training from scratch (79.1 vs. 75.7) and 3.5 higher APmask (78.3 vs. 74.8).

(3) UM-MAE substantially outperforms supervised initialization by 5.4 AP
box

(84.5 vs. 79.1), and 4.9 AP
mask (83.2 vs. 78.3).

(4) SimMIM outperforms UM-MAE by 1.6 AP
box (86.1 vs. 84.5), and 1.4 AP

mask

(84.6 vs. 83.2).

Table 1.2 compares the four Swin Transformer initializations after data augmenta-

tion of dental restorations. Our results prove that the SimMIM method achieved the
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Figure 1.5. SimMIM and UM-MAE reconstruction results. The first col-
umn is the original image, and the second and fourth columns are the
masked image where the masked region is denoted by gray patches. The
third and fifth columns are the reconstruction of MIM from the unmasked
patches.

Initialization Backbone Pre-training Data AP box APmask

PANet [12] ResNet-50 IN-1K w/ Labels 75.4 73.9

Random Swin-B None 75.7 74.8

Supervised Swin-B IN-1K w/ Labels 79.1 78.3

UM-MAE Swin-B IN-1K 84.5 83.2

SimMIM Swin-B IN-1K 86.1 84.6

Table 1.1.
Results of teeth detection and instance segmentation only.



12

Initialization Backbone Pre-training Data AP box APmask

Random Swin-B None 77.0 76.1

Supervised Swin-B IN-1K w/ Labels 80.3 79.2

UM-MAE Swin-B IN-1K 88.3 85.7

SimMIM Swin-B IN-1K 90.4 88.9

Table 1.2.
Results after augmenting dental restorations.

highest performance of 90.4% and 88.9% on detecting teeth and dental restorations

and instance segmentation, respectively.

Parameter setting. In Table 7.4, we conduct experiments on teeth detection

and instance segmentation tasks with di↵erent SimMIM pre-training epochs and mask

ratios. First, the performance of SimMIM does not benefit from longer training. Sec-

ond, unlike the high mask ratio [22] adopted in natural images, the downstream tasks

show di↵erent preferences for the mask ratio. Both tasks are consistently improved

with a decrease in mask ratio from 60% to 10%. The reason why this decrease facili-

tates the training may be attributed to the fact that the relevant features are small

on panoramic X-rays.

Dataset correction. After we correct teeth segmentation on DNS discussed in

Section 3.4.1, teeth detection and instance segmentation performance are remarkably

improved by 5.9 AP
box and 6.4 AP

mask as shown in Table 1.4.

1.5.2 Qualitative results

In Fig. 5.5, the displayed results for four di↵erent images demonstrate qualitative

samples of improved performance when Swin Transformer is pre-trained with SimMIM

for teeth detection and segmentation only. These improvements in detection and

segmentation agree with the quantitative results in Section 5.5.2.
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Mask ratio Pre-training Epochs AP box APmask

60% 100 84.3 83.2

50% 100 84.7 83.6

50% 800 83.1 83.0

40% 100 85.5 83.9

30% 100 85.9 84.1

20% 100 86.1 84.6

10% 100 85.8 84.3

Table 1.3.
The influence of Mask Ratios on teeth detection and instance segmenta-
tion tasks.

DNS Annotations AP box APmask

Before Correction 80.2 78.2

After Correction 86.1 84.6

Table 1.4.
Correction of teeth segmentation.
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Figure 1.6. Qualitative results of teeth detection and instance segmenta-
tion only. Note that teeth detection and instance segmentation are missing
(white arrows) when created by the baseline Swin Transformer approach
compared to the segmentation produced by Swin Transformer pre-trained
with SimMIM architecture (orange arrows).
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Figure 1.7. Qualitative results of detecting teeth and dental restorations
and instance segmentation using SimMIM.

Fig. 1.7 displays qualitative results after augmenting dental restorations when

Swin Transformer is pre-trained with SimMIM.

1.5.3 Pre-training time and memory consumption

Comparing UM-MAE to the SimMIM framework, the core advantage of UM-MAE

is the memory and runtime e�ciency. In Table 1.5, we show their clear comparisons

based on Swin-B. It is observed that UM-MAE speeds up by about 2× and reduces
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Method Time Memory

SimMIM 24.6 h 18.7 GB

UM-MAE 12.5 h 6.7 GB

Table 1.5.
The comparison of pre-training time and memory consumption.

the memory by at least 2× against SimMIM, where their performances under the

downstream tasks show the opposite.

1.6 Conclusions

Two self-supervised learning methods were applied to Swin Transformer on dental

panoramic radiographs: SimMIM and UM-MAE. The results of the masking-based

method, SimMIM, obtained superior performance than UM-MAE, supervised and

random initialization for detection of teeth, dental restorations, and instance seg-

mentation. Based on this experiment, we can conclude that adjusting parameters,

including mask ratio and pre-training epochs, is useful when applying SimMIM pre-

training to the dental imaging domain for reliable outcomes. In addition, correcting

the dataset annotations lead to further improvements that significantly surpass the

available state-of-the-art results. Our plan for future work is to examine the e�cacy

of SimMIM pre-training in prognosis and outcome prediction tasks.
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CHAPTER 2

ENHANCED MASKED IMAGE MODELING FOR

DENTAL PANORAMIC RADIOGRAPHS

2.1 Introduction

The computer-assisted decisions are essential in dental practice to help dentists

diagnose and plan for treatments. Dental imaging is a valuable tool that facilitates

diagnosis and treatment plans, which is impossible through clinical examination and

patient history only [1]. A Dental X-ray is a two-dimensional radiograph that captures

the patient’s entire mouth from ear to ear in a single image, including the upper and

lower jaws and surrounding alveolar bone [2].

In dentistry, many teeth numbering systems provide a specific code for each tooth.

Specifically, in this study, we utilize The Federation Dentiaure International number-

ing system (FDI), which is internationally known among dental care providers. It is

a two-digit code where the first digit is given for each quadrant from 1 to 4 for per-

manent adult teeth. And the second digit is assigned for each tooth number based on

its location in the jaw, starting from the middle front teeth (number 1) and moving

back up to the third molar (number 8) [30].

Furthermore, dental restorations are used to restore the tooth’s missing structure

resulting from caries or trauma with full or partial coverage. Moreover, root canal

fillings are utilized to fill the space of the root portion inside the tooth structure

because of decay or other damage. In addition, orthodontic appliances apply force

onto the teeth to be moved into the correct position; such appliances include but

are not limited to bands, brackets, and retainers. The restorative materials and

orthodontic appliances appear radiopaque in the X-rays and can be identified by

dental practitioners [4].
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Deep learning models are successful when trained with a large amount of data,

however, a very limited number of dental radiographs is available for training. To

mitigate this problem, we propose a new self-distillation and self-supervised learn-

ing combination for training a Swin Transformer [21] for dental panoramic X-rays

analysis.

Recently, self-supervised learning methods with masked image modeling (MIM)

such as SimMIM [22], MAE [25] and UM-MAE [23] are shown to be e↵ective in pre-

training deep learning models, like Transformers [21,37]. However, only SimMIM and

UM-MAE are applicable to Swin Transformer. Generally, the idea of MIM methods

is to mask some patches before they are fed into the Swin encoder and predict the

original patches to gain more understanding of the images. However, the patches’

location is important in dental panoramic X-rays for a predictable outcome. SimMIM

maintains the patches location known to both the encoder and decoder, while UM-

MAE drops the location information unknown to the encoder, which may induce

inaccuracy. Therefore, SimMIM pre-training is selected in this study.

Inspired by [22,25,38], we hypothesize that the Swin encoder can be improved by

transferring knowledge obtained by decoded visible patches to their encoded peers

through self-distillation. We believe that the visible patches in the decoder contain

more knowledge than the ones in the encoder. Moreover, similar to [22, 25] and

unlike [38], we found out that predicting the masked area only outperforms predicting

all image pixels.

The proposed SD-SimMIM is trained on the same dataset as the downstream

tasks, excluding the test dataset. We apply SD-SimMIM on dental panoramic X-rays

for teeth numbering, detection of dental restorations and orthodontic appliances, and

instance segmentation tasks. It is shown that SD-SimMIM performs better than other

self-supervised learning methods.

Although previous studies investigated teeth numbering [12] and segmentation

of dental restorations [39], there is no comprehensive dataset that simultaneously

studied orthodontics appliance segmentation. We believe that the inclusion of seg-

mentation of orthodontics appliances increases the complexity of the computer vision
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problem because of class quantity and class imbalance. Therefore, we augment the ex-

isting dataset introduced in [12] under dental expert supervision. We further expand

the dataset by developing annotations for orthodontics appliances, including bands,

brackets, and retainers. The labeling process led to a unique high-quality augmented

dataset. Our data will be available, upon request, under the name Dental analysis

(Dentalysis) annotations. Our main contributions are twofold:

• We introduce SD-SimMIM, a self-distillation enhanced SimMIM. It aims to

boost the feature representation on top of SimMIM to alleviate the demands

on large data for dental panoramic radiographs, and further help downstream

tasks.

• The augmented dataset increases performance, while added labeling of or-

thodontics appliances extends the horizon of possible dental applications.

2.2 Methods

Fig. 7.2 illustrates our SD-SimMIM framework. It includes two modules, masked

image modeling (MIM) and visible image modeling (VIM). MIM generates self-

supervised learning on unlabeled data by masking some image patches, while VIM

imposes self-distillation constraints on visible patches for better and more powerful

encoder learning. Hence, VIM enhances the original SimMIM, particularly for dental

panoramic radiographs.

2.2.1 SimMIM

SimMIM framework includes four components: patchifying and masking, encoder,

decoder, and prediction target.

Patchifying and masking designs how to select the area to mask, and how to

implement masking of the selected area. The Patchifying first divides the input image

x into N patches. Then, it flattens each patch to a token (a one-dimensional vector

of visual features) with length D. Hence, the formulation of the representation of
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Figure 2.1. Our SD-SimMIM framework. Alongside the original Sim-
MIM, we benefit from decoded visible patches (as the teacher) and transfer
knowledge to their peers after encoding. (Best viewed in color)
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all patches is vall ✓ RN⇥D. Next, the masking randomly divides the patches into

two sets with respect to a masking ratio M , more precisely vall ✓ RN⇥D ! vvis ✓

RN
0⇥D

, vM ✓ RÑ 0⇥D where N 0 = N ⇥ (1�M), Ñ 0 = N ⇥M . vall will be the input to

the encoder and vM are the labels.

Encoder takes vall as input, and extracts latent feature from visible patches.

First, it maps D dimensions of tokens to D
0 with a linear projection, and then these

patch tokens are processed via Swin Transformer blocks to get latent representation

vectors of patches zvis ✓ RN
0⇥D

0
and masked tokens zM ✓ RÑ 0⇥D

0
.

Decoder takes zall ✓ RN⇥D
0
as input, and learns low-level representation from

visible patches for image reconstruction. Hence, the decoder output yall ✓ RN⇥D
0
will

divided into yvis and yM , as visible and masked tokens, respectively.

Prediction target defines the form of original signals to predict. First, we con-

sider the original masked tokens after normalizing YM = Norm(vM) as our prediction

target. The decoder applies a linear layer to align yM and Y , i.e. yM ! y
0
M
. The L1

loss is computed between the predicted masked tokens y
0
M

and the original masked

tokens after normalization YM as described in Eq. 2.1.

L1 = `1(y
0
M
, YM), y

0
M
, YM ✓ RÑ 0⇥D (2.1)

2.2.2 Self-distillation

Knowledge Distillation is the process of transferring knowledge from a large model

to a smaller one [40]. Previous studies apply it to the vectors at various depths

within the same network, either a convolutional neural network (CNN) [41] or a

Vision Transformer (ViT) [38]. Hence, knowledge is distilled from deep layers to

shallow layers, augmenting the feature representation of shallow layers. Considering

the imbalance of knowledge, we found that this is exactly how knowledge in the visible

tokens can be transferred from the decoder to the encoder through this distillation

paradigm. Particularly, there are two types of latent representation vectors for visible

tokens in SimMIM, i.e. zvis outputted from the encoder and yvis from the decoder.
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We treat zvis as shallow features and yvis as deeper features in the self-distillation

framework [41]. We use a 3-layer MLP over these two vectors, resulting in probability

distributions over K dimensional feature denoted by q and p, respectively. Each of

them is normalized with a Softmax over the feature dimension. Thus, we learn to

match these distributions by minimizing the cross-entropy loss as shown in Eq. (2.2).

q = MLP (zvis), p = MLP (yvis)

q
0 = Softmax(q), p

0 = Softmax(p)

Ldistill = �p
0
log(q0)

(2.2)

The total loss is formulated as shown in Eq.(2.3).

L = ↵L1 + (1� ↵)Ldistill (2.3)

where ↵ is the empirically defined scaling factor (in this study, ↵ is equal to 0.2).

2.3 Experiments

2.3.1 Dataset

Detection, Numbering, and Segmentation (DNS) [12] is a dental panoramic X-rays

dataset consisting of 543 annotated images with ground truth segmentation labels,

including numbering information based on the FDI teeth numbering system. Each

image size is 1991x1127 pixels. The dataset annotations from [39] do not contain any

segmentation of orthodontic appliances. Therefore, we contribute to expanding the

dataset by developing segmentation for orthodontic appliances and introducing three

more classes, namely bands, brackets, and retainers. This process was under a super-

vision of a dentist using the COCO-Annotator tool [34]. We attended weekly meetings

where related issues and questions were discussed. In the end, the annotations were

reviewed to assure quality and avoid systematic and random errors. Fig. 2.2 presents

samples of segmentation of orthodontics appliances. We believe this is the most in-

clusive dataset for segmenting teeth, dental restorations, and orthodontic appliances
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Figure 2.2. Samples of segmentation of orthodontics appliances, a) shows
examples of bands (yellow arrows) and brackets (green arrows), and b) a
retainer (orange arrow). (Best viewed in color)

in dental panoramic radiographs. Our data will be available upon request, namely

Dentalysis annotations.

2.3.2 Evaluation metric

For all our experiments, we split the data into five folds, each containing about 20%

of the images. One fold is fixed as the test set (111 images), and the other four folds

(108 images each) compose the training and validation datasets in a cross-validation

manner. This process is repeated five times. The evaluation metric we adopt is the

Average Precision for object detection and instance segmentation models.

2.3.3 Implementation details

Our experiments are implemented based on the PyTorch [35] framework and

trained with NVIDIA Tesla Volta V100 GPUs. In all experiments, the batch size

equals the total number of training samples, which is 432. The input images are all

resized to 800×600 pixels. We utilize the AdamW [36] optimizer in all experiments.

Data augmentation. We apply noise addition and horizontal flipping, which

turns left teeth numbers into right teeth numbers and vice-versa.



24

SD-SimMIM pre-training. We follow a similar protocol to SimMIM [22] to

train our SD-SimMIM. We use Swin-B [21] as the encoder and a lightweight decoder

with a linear projection. The base learning rate is set to 8e-4, weight decay is 0.05,

�1 = 0.9, �2 = 0.999, with a cosine learning rate scheduler. We use a random MIM

with a patch size of 16×16 and a mask ratio of 20%. We apply the L2-normalization

bottleneck [28] (dimension 256 for the bottleneck and K dimensions equals 4096) as

the projection head in self-distillation. This model was pre-trained for 100 epochs

with a warm-up for 10 epochs. The target image size is 800×600.

Task fine-tuning. We utilize single-scale training. The initial learning rate is

0.0001, and the weight decay is 0.05.

2.3.4 Quantitative results

Table 3.2 shows the results of di↵erent methods on the dataset for teeth number-

ing, detection of dental restorations, and instance segmentation only. As a baseline

(the first row, called Supervised), Swin-B [21] is trained using the dataset without

self pre-training to demonstrate the improvement obtained by self-supervised learn-

ing. The original Swin-B was trained on the Image Net dataset with 1000 classes

denoted as (IN-1K). The CNN-based network, PANet [12], reports a result that is

worse than Swin-B. This can be explained as the di↵erence in the network capacity,

where ResNet-50 is used as the backbone in PANet. As a comparison, the way Sim-

MIM uses image reconstruction is obviously more suitable than UM-MAE for dental

images. The reason may be attributed to the fact that the location of the patches is

essential in dental radiographs for a predictable outcome. SimMIM maintains the lo-

cation of the patches known to both the encoder and decoder, while UM-MAE drops

the location information, which may induce inaccuracy. The proposed SD-SimMIM

shows steady improvements over SimMIM and yields the best performance. Hence

transferring decoder information to the encoder with self-distillation improves the

outcomes of self-learning. We also observe that similar to [22,25] and unlike [38], our
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results show that predicting the masked area only outperforms predicting all image

pixels for both SimMIM and our SD-SimMIM.

Table 2.1.
Results of teeth numbering, detection of dental restorations, and instance
segmentation only. * denotes L1 loss is computed on the whole image.
AP

box and AP
mask indicate Average Precision for object detection and

instance segmentation, respectively.

Initialization Backbone Pre-train Data AP box APmask

Supervised Swin-B IN-1K w/ Labels 80.3 79.2

PANet [12] ResNet-50 IN-1K w/ Labels 76.8 75.1

UM-MAE [39] Swin-B IN-1K 88.3 85.7

SimMIM* Swin-B IN-1K 89.9 88.5

SimMIM [39] Swin-B IN-1K 90.4 88.9

SD-SimMIM* Swin-B IN-1K 90.7 89.6

SD-SimMIM Swin-B IN-1K 92.4 90.2

Table 2.2 shows results after including the annotations of orthodontics appliances.

The proposed SD-SimMIM method achieves the highest performance of 92.7% and

90.8% on detecting teeth, dental restorations and orthodontics appliances, and in-

stance segmentation, respectively. Again it is worth noting that the best performance

is gained when computing the loss on the masked areas only.

2.3.5 Qualitative results

To illustrate the e↵ectiveness of adding self-distillation to simMIM, we provide

some visualization examples. Firstly, we are curious about the results of image recon-

struction. Fig. 2.3 presents two reconstruction examples using our SD-SimMIM. As

shown, SD-SimMIM obtains a slightly better reconstruction than SimMIM. It proves

that self-distillation reinforces the learning capability of the SimMIM encoder.

Secondly, Fig. 2.4 displays four di↵erent qualitative samples of improved perfor-

mance when the Swin Transformer is pre-trained with SD-SimMIM for teeth number-
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Figure 2.3. Images reconstructed by SimMIM and SD-SimMIM. SD-
SimMIM shows a clearly better reconstruction than SimMIM. The color
boxes highlight their details. (Best viewed in color)
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Table 2.2.
Results after including orthodontics appliances. * denotes L1 loss is com-
puted on the whole image.

Initialization Backbone Pre-train Data AP box APmask

Supervised Swin-B IN-1K w/ Labels 81.9 80.1

SimMIM* Swin-B IN-1K 90.3 88.8

SimMIM [39] Swin-B IN-1K 90.8 89.4

SD-SimMIM* Swin-B IN-1K 91.2 90.0

SD-SimMIM Swin-B IN-1K 92.7 90.8

ing, detecting dental restorations, orthodontic appliances, and instance segmentation.

Those improvements in detection and segmentation agree with the quantitative re-

sults in Section 5.5.2.

2.4 Conclusions

We propose SD-SimMIM, a novel self-distillation scheme that transfers knowledge

from the decoder to the encoder to guide a more e↵ective visual pre-training. The

quantitative and qualitative results present the benefits of our SD-SimMIM, which

is a promising tool for the analysis of dental radiographs. For future work, we will

evaluate our SD-SimMIM on di↵erent downstream tasks such as detecting dental

disease on dental bitewing radiographs.
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Figure 2.4. Qualitative results of detection and instance segmentation.
Note that teeth detection and instance segmentation are missing (red
arrows) when Swin Transformer is pre-trained with SimMIM compared
to the ones produced by Swin Transformer pre-trained with SD-SimMIM
architecture (green arrows). (Best viewed in color.)



29

CHAPTER 3

TOOTH SEGMENTATION FROM INTRA-ORAL 3D

SCANS

3.1 Introduction

Computer-aided design (CAD) tools have gained significant popularity in modern

dentistry, especially in orthodontic or prosthetic CAD systems, for accurate treatment

planning. Advanced intra-oral scanners (IOS) are widely used to obtain precise digital

surface models of dentition. The IOSs produce 3D surface reconstructions of the teeth

either in the form of a point cloud or in a mesh format, or both. These models are

invaluable in simulating teeth extraction, movement, deletion, and rearrangement,

enabling dentists to predict treatment outcomes with greater ease. Consequently,

digital teeth models have the potential to alleviate dentists’ time-consuming and

tedious tasks.

Tooth segmentation from intra-oral scans is a key step in computer-aided den-

tistry. It can help in recognizing and classifying di↵erent dental/oral conditions like

gingivitis, caries, and white lesions. While tooth segmentation and labeling is a

first step in digital dentistry, it is di�cult due to the inherent similarities between

teeth shapes and the ambiguity surrounding their positions on jaws. Furthermore,

variations in teeth position and shape across di↵erent individuals present additional

challenges in this process. Other challenges involved in tooth mesh segmentation,

such as - crowded teeth, misaligned teeth, and missing teeth. The size of teeth can

also vary widely across meshes. The second and third molars may evade capturing

due to their being in the deep intra-oral regions. Or the second/third molar might

not be fully formed. Di↵erent teeth and gum conditions, like recession, enamel loss,

etc, can also alter the appearance of the teeth significantly.
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Furthermore, the manual process of segmenting and labeling teeth is a time-

consuming task that can potentially miss important data. This has led to a grow-

ing interest in leveraging computer vision and computer science to automate these

processes. Multiple automatic tooth mesh segmentation algorithms have been pro-

posed [42–44]. They include convolutional neural networks (CNNs) for teeth segmen-

tation from 3D intra-oral scans [45–50]. Recently, the use of CNNs in the analysis

of medical images has experienced significant growth due to advancements in com-

putational hardware, algorithms, and expansion in the amount of data [5]. However,

CNNs are constrained in their overall capability due to the inherent inductive biases

they possess [37].

Recent advancements in self-supervised learning have demonstrated the e↵ective-

ness of masked image modeling (MIM) [24, 25, 51] as a pre-training strategy for the

Vision Transformer (ViT) [37] and the hierarchical Vision Transformer using shifted

windows (Swin) [21,39,52]. MIM involves the masking and subsequent reconstruction

of image patches, allowing the network to infer the masked regions by leveraging con-

textual information. We believe that the ability to aggregate contextual information

is crucial in the context of 3D dental scan analysis. Among various MIM frameworks,

the Masked Autoencoder (MAE) [25] stands out as a simple yet e↵ective approach.

MAE employs an encoder-decoder architecture, with a ViT encoder that receives only

visible tokens and a lightweight decoder that reconstructs the masked patches using

the encoder’s patchwise output and trainable mask tokens.

This paper introduces a novel approach to teeth segmentation in 3D dental scans

called Dental Masked Autoencoder (DentalMAE) based self pre-training, which works

for 3D dental meshes analysis. We apply DentalMAE pre-training on the same

dataset, referred to as the train set, which is used for the downstream task. We term

this approach self pre-training, which is particularly advantageous in scenarios where

acquiring suitable pre-training data is challenging. Additionally, self pre-training

eliminates the domain discrepancy between the pre-training and fine-tuning stages

by unifying the training data. Our experiments focus on teeth segmentation in 3D

intra-oral scans [53].
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Specifically, We extend the self-supervised learning framework of the mesh masked

autoencoder (MeshMAE) transformer [54]. While the MeshMAE loss measures the

quality of reconstructed masked mesh triangles, the loss of the proposed Dental-

MAE evaluates the predicted deep embeddings of masked mesh triangles. After pre-

training, the decoder is discarded, and the encoder is applied to the downstream

task, i.e., teeth segmentation. We compare three ViT Transformer initializations, in-

cluding our proposed DentalMAE, MeshMAE [54], and a mesh transformer without

any self-pre-training. The experimental results demonstrate that DentalMAE self-

pre-training significantly enhances dental scan segmentation performance compared

to the baselines. Our main contributions are threefold:

• We utilize self-supervised learning with masked autoencoders to alleviate the

problem of small data for 3D intra-oral scans.

• We replace the MeshMAE reconstruction of masked mesh patches with the

reconstruction of mesh patch embeddings. Hence our loss is simply the L2

distance between the predicted and computed embeddings over the masked

patches, which is much simpler than the loss used by MeshMAE.

• Our proposed method leads to a significant performance improvement. Dental-

MAE outperforms all state-of-the-art methods on the tooth mesh segmentation

task.

3.2 Related work

Most of the existing research in this field can be categorized into two groups:

approaches based on handcrafted features and approaches based on learning.

3.2.1 Handcrafted features-based approaches

Previous methods primarily focused on extracting manually designed geometric

features to segment 3D dental scans. These methods can be classified into three

types: surface curvature-based methods, contour line-based methods, and harmonic
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field-based methods. Surface curvature is particularly useful for describing tooth

surfaces and identifying tooth/gum boundaries in IOS. Zhao et al. [42] proposed

a semi-automatic teeth segmentation method based on curvature thresholding, fol-

lowed by gum separation and identification of 3D teeth boundary curves. Another

approach by Yuan et al. [55] used minimum surface curvature calculation to extract

individual teeth regions and separate them. Wu et al. [44] presented a morphological

skeleton-based method for teeth segmentation in IOS, utilizing area growing opera-

tions. Similarly, Kronfeld et al. [56] introduced a system that detects tooth-gingiva

boundaries using active contour models. Contour line-based methods involve manual

selection of tooth boundary landmarks, followed by contour line generation based on

geodesic information, as demonstrated in studies such as Sinthanayothin et al. and

Yaqi et al. [57,58]. Harmonic field methods require less user interaction, as they allow

a limited number of surface points to be selected prior to the segmentation process,

as seen in studies by Zou et al. [59] and Liao et al. [60].

However, these approaches have limitations in achieving robust and fully auto-

mated segmentation of dental 3D scans. Setting the optimal threshold for surface

curvature-based methods is challenging, and they are sensitive to noise. Incorrect

threshold selection can significantly impact segmentation accuracy, leading to over-

or under-segmentation. Moreover, the manual threshold selection makes these meth-

ods unsuitable for fully automatic segmentation. Contour line-based methods are

time-consuming, di�cult to use, and rely heavily on human interaction. Harmonic

field techniques involve complex and computationally intensive preprocessing steps.

3.2.2 Learning-based approaches

Recent advancements in deep learning techniques have shifted the focus of teeth

segmentation from handcrafted features to learned features. It is now widely recog-

nized that data-driven feature extraction, using techniques like convolutional neural

networks (CNNs), outperforms handcrafted features in various computer vision tasks,

including object detection [61] and image classification [62]. The same applies to 3D
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teeth segmentation and labeling. Learning-based approaches can be divided into

two main categories based on the input data: 2D image segmentation and 3D mesh

segmentation.

For 2D image segmentation, CNNs have been extensively used to extract rele-

vant features. Cui et al. [63] introduced a two-stage deep supervised neural network

architecture for tooth segmentation and identification in Cone-Beam Computed To-

mography (CBCT) images. They employed an autoencoder CNN to extract edge

maps from CBCT slices, which were then fed into a Mask R-CNN network for tooth

segmentation and recognition. Similarly, Miki et al. [64] fine-tuned a pre-trained

AlexNet network on CBCT dental slices for automatic teeth classification. Rao et

al. [65] proposed a symmetric fully convolutional residual neural network for tooth

segmentation in CBCT images. They incorporated dense conditional random field

techniques and a deep bottleneck architecture for teeth boundary smoothing and seg-

mentation enhancement, respectively. Zhang et al. [66] isomorphically mapped 3D

dental scans into a 2D harmonic parameter space and used a CNN based on the U-Net

architecture for tooth image segmentation.

Learning-based methods applied directly to 3D dental meshes have also been ex-

plored. Sun et al. [67] used a graph CNN-based architecture called FeaStNet for

automated tooth segmentation and labeling from 3D dental scans. They extended

this architecture to propose an end-to-end graph convolutional network-based model

that achieved tooth segmentation and dense correspondence in 3D dental scans. Xu

et al. [68] introduced a multi-stage framework based on a deep CNN architecture

for 3D dental mesh segmentation. They employed two independent CNNs for teeth-

gingiva and inter-teeth labeling. Zanjani et al. [69] proposed an end-to-end deep

learning system based on the PointNet network architecture for semantic segmenta-

tion of individual teeth and gingiva from point clouds. They also used a secondary

neural network as a discriminator in an adversarial learning setting to refine teeth

labeling. Lian et al. [47] modified the PointNet architecture by incorporating graph-

constrained learning modules to extract multi-scale local contextual features for teeth

segmentation and labeling in 3D intra-oral scans. Tian et al. [70] introduced a pre-
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processing step that encoded input 3D scans using sparse voxel octree partitioning.

They then employed three-level hierarchical CNNs for the segmentation process and

another two-level hierarchical CNNs for teeth recognition. Other studies, such as Cui

et al. [71] and Zanjani et al. [72], proposed pipeline-based architectures combining

multiple CNNs for teeth localization, segmentation, and labeling. Ma et al. [73] sug-

gested a deep neural network architecture for pre-detected teeth classification based

on adjacency similarity and relative position feature vectors, explicitly modeling spa-

tial relationships between adjacent teeth.

Zhao et al. [74] proposed an end-to-end network utilizing graph attentional con-

volution layers and a global structure branch for fine-grained local geometric feature

extraction and global feature learning from raw mesh data. These features were fused

to perform segmentation and labeling tasks. In another study, Zhao et al. [75] intro-

duced a two-stream graph convolutional network (TSGCN). The first stream captured

coarse structures of teeth from 3D coordinate information, while the second stream

extracted distinctive structural details from normal vectors. To address the reliance

on expensive point-wise annotations in current learning-based methods, Qiu et al. [76]

presented the Dental Arch (DArch) method for 3D tooth segmentation using weak

low-cost annotated data. The DArch consists of two stages: tooth centroid detection

and segmentation. It generates the dental arch using Bezier curve regression and

refines it using a graph-based convolutional network (GCN).

To the best of our knowledge, there have been no studies in the literature that

specifically employ transformer models, such as the Vision Transformer (ViT) [37],

for 3D dental scan analysis. Additionally, the application of self-supervised learning

techniques to ViT on intra-oral scans is also unprecedented.

Transformer models, originally introduced in natural language processing tasks

[77], have shown remarkable success in various computer vision domains, including

image classification, object detection, and image segmentation. The ViT architecture,

in particular, has gained attention for its ability to e↵ectively process 2D images by

leveraging self-attention mechanisms.
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However, the application of transformer models to 3D dental scans and the use of

self-supervised learning techniques on intra-oral scans have not been explored in the

existing literature. This indicates a research gap and an opportunity to investigate

the potential benefits and challenges of utilizing ViT and self-supervised learning in

the context of 3D dental scan analysis.

By applying self-supervised learning to ViT on intra-oral scans, it becomes pos-

sible to mitigate the limited number of available intra-oral scans. This can help

overcome the limitations of traditional supervised learning approaches, which rely

heavily on large data for training. Self-supervised learning enables the model to learn

from the inherent structure and properties present in the data, leading to improved

generalization and potentially reducing the need for extensive manual labeling.

The application of transformer models and self-supervised learning techniques to

3D dental scans, specifically intra-oral scans, has the potential to advance the field by

providing new insights and improved performance in tasks such as segmentation, la-

beling, and analysis of dental structures. Further research in this direction could pave

the way for more accurate and e�cient automated dental scan analysis, benefiting

various clinical applications and oral healthcare practices.

3.3 Methods

In this paper, we use the Mesh Transformer framework for tooth mesh segmen-

tation, which extends the Vision Transformer to mesh analysis. We propose a novel

self-supervised learning pre-training strategy, which is based on mesh masked autoen-

coding. Fig. 7.2 illustrates the DentalMAE framework. DentalMAE divides the input

mesh into non-overlap patches, these patches are embedded using an MLP, and certain

random patches are replaced with mask tokens. Only the visible patches are utilized

by the ViT encoder. Subsequently, the mask tokens are combined with the encoded

embeddings and are input to the decoder. The primary objective of the decoder is

to reconstruct the vertices and face features of the masked patches, followed by the

prediction of the patch embeddings of the masked patches. We do the two-stage pro-
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Figure 3.1. The teeth segmentation pipeline for DentalMAE self-pre-
training. Initially, the input mesh is divided into non-overlap patches.
These patches are then embedded using an MLP. During the pre-training
phase, the patch embeddings are randomly masked, and only the visible
embeddings are utilized by the transformer. Subsequently, the masked
embeddings are combined with the encoded embeddings and sent to the
decoder. The objective of the decoder is to reconstruct the vertices and
face features of the masked patches, followed by the prediction of the
patch embeddings of the masked patches. The L2 loss is used to compare
the masked patch embeddings. After the completion of pre-training, the
decoder is discarded, and the encoder is employed for segmentation.

cess of reconstructing vertices and face features followed by computing embeddings

because it performs better than directly predicting the embeddings as shown in the

supplementary materials. Compared to MeshMAE [54], its loss measures the quality

of reconstructed masked mesh triangles, while the loss of the proposed DentalMAE

evaluates the predicted deep embeddings of masked mesh triangles. Following the

pre-training phase, the decoder is discarded, and the encoder is employed for the

specific task of tooth segmentation.
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Figure 3.2. The remeshing operation involves several steps. Initially, the
input mesh undergoes a simplification process. Subsequently, a mapping
is established between the original mesh and the base mesh. The base
mesh is then subdivided three times, and the newly generated vertices are
projected back onto the input mesh.

3.3.1 Mesh Transformer

Mesh Patch Split. The faces of a 3D mesh establish connections between ver-

tices, allowing us to utilize geometric information from each face to represent their

features. Similar to SubdivNet [78], we define a 10-dimensional vector for each face

fi comprising the face area (1-dim), three interior angles of the triangle (3-dim), face

normal (3-dim), and three inner products between the face normal and three vertex

normals (3-dim).

Transformers, with their self-attention-based architectures, simplify the process

of designing feature aggregation operations for 3D meshes. However, applying self-

attention to all faces incurs a prohibitively high computational cost due to quadratic

complexity. To overcome this, the faces are grouped into non-overlapping patches

before applying transformers. Unlike regular image data that can be divided into

grid-like patches, mesh data is irregular, and faces are typically unordered.
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To address this challenge, we utilize a ”re-meshing” step to regularize and hierar-

chically structure the original mesh. We employ the MAPS algorithm [79] to simplify

the mesh into a coarser base mesh with a varying number of faces N faces within a

specific range (96  N  256 in our experiments). Although less accurate in shape

representation, the resulting base mesh serves as a foundation. To refine it, we further

subdivide all faces in the base mesh t times in a 1-to-4 manner, resulting in a more

detailed mesh called t�mesh. By grouping the faces of the t�mesh corresponding to

the same face in the base mesh, we create non-overlapping patches. In our implemen-

tation, we perform three subdivisions, yielding patches consisting of 64 faces each.

The process is illustrated in Fig. 3.2.

Transformer Backbone. The transformer serves as the backbone network for

the Mesh Transformer. It consists of multi-headed self-attention layers and feed-

forward network (FFN) blocks. To represent each patch, we concatenate the feature

vectors of the constituent faces belonging to that patch. The order of concatenation is

determined by the re-meshing process, which guarantees a consistent and predictable

face order. Consequently, an MLP is employed to project the feature vector of each

patch into a representation denoted as {ei}gi=1, where g denotes the number of patches.

These representations serve as inputs to the transformer.

In addition to shape information captured by the input features, transformer-

based methods often rely on positional embeddings to provide spatial information.

Since mesh data contains 3D spatial coordinates for each face, we leverage the center

3D coordinates of the faces to compute the positional embeddings. To accomplish

this, we calculate the center point coordinates {ci}gi=1 for each patch and apply an

MLP to obtain the positional embedding {pi}gi=1 associated with each patch.

Formally, the input embeddings X = {xi}gi=1 are defined as the combination of

the patch embeddings E = {ei}gi=1 and positional embeddings P = {pi}gi=1. This

results in an overall input sequence denoted as H
0 = x1, x2, ..., xg. The encoder

network consists of L layers of transformer blocks, and the output of the last layer

H
L = h

L

1 , ..., h
L

g
represents the encoded representations of the input patches.
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3.3.2 Mesh Pre-training Task

In this section, we provide a detailed description of the mesh pre-training task,

which employs a masked modeling strategy based on the Mesh Transformer archi-

tecture. The task aims to predict deep embeddings of masked mesh triangles from

embeddings of visible mesh triangles. We outline the components of the pre-training

task, including the encoder and decoder networks, masked sequence generation, and

prediction.

Encoder and Decoder. The encoder and decoder networks used in the pre-

training task are composed of several transformer blocks. The Mesh Transformer

serves as the encoder, consisting of 12 layers, while a lightweight decoder with 6

layers is employed. During pre-training, a predefined masking ratio is applied to ran-

domly mask a subset of patches in the input mesh. The visible patches are fed into

the encoder, and a shared mask embedding is used to replace the masked embed-

dings in the input before feeding them into the decoder. The positional embeddings

are added to both the masked and visible patches to provide location information.

It is important to note that the decoder is only used during pre-training for mesh

reconstruction tasks, while the encoder is utilized in downstream tasks.

Masked Sequence Generation. Mesh embeddings, represented by E, have

corresponding indices denoted as I. Following the MAE approach, we randomly mask

a subset of patches by sampling indices Im from I with a ratio r. Masked embeddings

are represented as Em, while unmasked embeddings are denoted as Eum. We replace

the masked embeddings Em with a shared learnable mask embedding Emask without

altering their positional embeddings. Finally, the corrupted mesh embeddings Ec are

formed by combining Eum with the sum of Emask and positional embeddings pi for

each index i in Im. These corrupted embeddings are then inputted into the encoder

for further processing.

Prediction. MeshMAE [54] recovers the shape of the masked patches as the

reconstruction target. It predicts 3D relative coordinates of vertices to match the

ground truth positions, where the reconstruction loss is calculated using the Chamfer
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distance [80] between the predicted relative coordinates and the ground truth relative

coordinates. It also predicts the face-wise features using a linear layer behind the de-

coder. It uses face-wise mean squared error (MSE) loss to evaluate the reconstruction

e↵ect of the features.

The overall optimization objective of MeshMAE combines the Chamfer distance

loss LCD and the MSE loss LMSE to L = LMSE +� · LCD, where � is the loss weight.

In contrast, our loss is simpler in that it does not require any meta parameter �. We

simply compute the L2 loss between the original and predicted embeddings of the

mask triangle patches.

3.4 Experiments

3.4.1 Dataset

We use the public dataset 3D Teeth Seg Challenge 2022 [53]. There are a total of

1800 3D intra-oral scans collected for 900 patients covering their upper and lower jaws

separately. They are separated into training (1200 scans, 16004 teeth) and test data

(600 scans, 7995 teeth). The task is tooth segmentation from the 3D dental model.

Throughout the paper, we use the color coding shown in Fig. 3.3 to visualize the teeth

labels. There are 8 di↵erent semantic parts, indicating the central incisor (T7), lateral

incisor (T6), canine/cuspid (T5), 1st premolar/bicuspid (T4), 2nd premolar/bicuspid

(T3), 1st molar (T2), 2nd molar (T1), and background/gingiva (BG).

3.4.2 Evaluation metric

We use Dice Score(DSC), Overall Accuracy (OA), sensitivity (SEN), and Positive

Predictive Value (PPV) to evaluate the performance of our model.
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Figure 3.3. Tooth segmentation and the corresponding color coding.

3.4.3 Implementation details

Data Pre-processing. The dataset is processed by the re-meshing operation,

and the face labels are obtained from the mapping between the re-meshed data and

the raw meshes using the nearest face strategy.

Data Augmentation. We employ three data augmentation techniques: 1) ran-

dom rotation, 2) random translation, and 3) random rescaling. By applying these

techniques, we generate 40 augmented versions for each data point, resulting in the

creation of 40 additional samples for every jaw scan.

Training Details. For pre-training, We utilize ViT-Base [37] as the encoder

network with very slight modification, e.g., the number of input features’ channels.

And following [25], we set a lightweight decoder, which has 6 layers. We employ

an AdamW optimizer, using an initial learning rate of 1e-4 with a cosine learning

schedule. The weight decay is set as 0.05, and the batch size is set as 32. We set the

same encoder network of pre-training in the downstream task. For our segmentation
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Method BG T1 T2 T3 T4 T5 T6 T7

PointNet [81] 0.947 0.793 0.920 0.895 0.925 0.903 0.909 0.933

PointNet++ [82] 0.924 0.780 0.903 0.876 0.883 0.837 0.782 0.837

DGCNN [83] 0.968 0.847 0.944 0.936 0.945 0.941 0.939 0.947

MeshSegNet [47] 0.922 0.712 0.799 0.775 0.860 0.831 0.684 0.794

MeshSegNet+GCO [47] 0.957 0.850 0.904 0.902 0.926 0.879 0.778 0.906

TSGCNet [49] 0.962 0.642 0.915 0.916 0.945 0.937 0.916 0.926

GAC [48] 0.909 0.643 0.819 0.759 0.828 0.846 0.823 0.845

BAAFNet [84] 0.511 0.465 0.677 0.639 0.673 0.655 0.586 0.682

pointMLP [85] 0.975 0.865 0.959 0.950 0.969 0.959 0.945 0.953

PCT [86] 0.789 0.307 0.524 0.459 0.330 0.375 0.459 0.588

MBESegNet [50] 0.818 0.420 0.708 0.695 0.739 0.661 0.556 0.535

CurveNet [87] 0.964 0.783 0.923 0.917 0.939 0.922 0.918 0.939

Point-MAE [88] 0.971 0.802 0.956 0.924 0.949 0.943 0.942 0.948

Point-BERT [89] 0.976 0.835 0.962 0.939 0.952 0.951 0.951 0.957

ViT 0.985 0.885 0.971 0.966 0.959 0.969 0.959 0.968

ViT+MeshMAE 0.990 0.908 0.982 0.976 0.978 0.985 0.961 0.983

Ours 0.995 0.921 0.989 0.988 0.986 0.992 0.974 0.990

Table 3.1.
The tooth segmentation results from di↵erent methods in terms of the
label-wise Dice Score.

task, we utilize two segmentation heads to provide a two-level feature aggregation.

Specifically, we concatenate the output of the encoder with the feature embedding

of each face to provide a fine-grained embedding. We set the batch size as 32 and

employed an AdamW optimizer with an initial learning rate of 1e-4. The learning

rate is decayed by a factor of 0.1 at 80 and 160 epochs.
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Figure 3.4. Comparison of teeth segmentation of DentalMAE and base-
lines. The first three rows show samples of the lower jaw, while the last
two rows show the upper jaw.
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3.5 Results and analysis

3.5.1 Quantitative results

Table 3.1 presents the quantitative results of tooth segmentation using various

methods, and it clearly shows that DentalMAE outperforms other state-of-the-art

methods.

Comparing the Dice Scores of ViT with the other methods, it is evident that ViT

achieves higher scores on almost all tooth labels (T1-T7) and the background (BG).

ViT achieves Dice Scores ranging from 0.885 to 0.985, indicating its e↵ectiveness

in accurately segmenting tooth structures. This demonstrates the capability of the

Vision Transformer to capture relevant features and contextual information, leading

to improved segmentation results.

The results of ViT+MeshMAE outperform the standard ViT, indicating further

improvements. The combination of ViT and MeshMAE enhances the segmentation

accuracy and ensures more precise delineation of tooth boundaries.

Our method, DentalMAE, surpasses not only the other methods but also the

standalone ViT and its enhanced version MeshMAE. It is evident that our method

consistently achieves the highest Dice Scores across all tooth labels (T1-T7) and

the background (BG). The Dice Scores range from 0.921 to 0.995, highlighting the

e↵ectiveness of incorporating the loss on mask patches embedding for tooth structure

reconstruction.

All ViT variants outperform traditional methods like PointNet [81], PointNet++

[82], DGCNN [83], and MeshSegNet [47], as well as advanced methods such as

MeshSegNet+GCO [47], TSGCNet [49], GAC [48], BAAFNet [84], pointMLP [85],

PCT [86], MBESegNet [50], and CurveNet [87]. It also performs better than state-of-

the-art self-supervised learning methods, Point-MAE [88] and Point-BERT [89]. This

indicates the superiority of our proposed methods in accurately segmenting tooth

structures and surpassing the performance of existing state-of-the-art approaches.

Table 3.2 presents additional quantitative results for tooth segmentation, evaluat-

ing various methods based on Overall Accuracy (OA), Dice Score (DSC), Sensitivity
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(SEN), and Positive Predictive Value (PPV). The results further confirm the superior

performance of our proposed method, DentalMAE, compared to other state-of-the-art

techniques.

Method OA DSC SEN PPV

PointNet [81] 0.926 0.903 0.913 0.912

PointNet++ [82] 0.892 0.853 0.864 0.865

DGCNN [83] 0.933 0.915 0.923 0.923

MeshSegNet [47] 0.901 0.873 0.888 0.879

MeshSegNet+GCO [47] 0.931 0.918 0.929 0.911

TSGCNet [49] 0.936 0.895 0.924 0.902

GAC [48] 0.855 0.809 0.818 0.844

BAAFNet [84] 0.601 0.611 0.755 0.594

pointMLP [85] 0.943 0.927 0.936 0.931

PCT [86] 0.629 0.479 0.509 0.586

MBESegNet [50] 0.716 0.642 0.710 0.644

CurveNet [87] 0.939 0.912 0.922 0.923

Point-MAE [88] 0.945 0.927 0.942 0.936

Point-BERT [89] 0.949 0.935 0.948 0.944

ViT 0.955 0.945 0.950 0.957

ViT+MeshMAE 0.971 0.954 0.966 0.983

Ours 0.983 0.970 0.977 0.989

Table 3.2.
The tooth segmentation results from di↵erent methods in terms of the
Overall Accuracy, the Dice Score, the Sensitivity, and the Positive Pre-
dictive Value.

Our method, DentalMAE, achieves an OA value of 0.983. This score indicates

the overall accuracy of the tooth segmentation results obtained by our method. It is

evident that DentalMAE outperforms all other SOTA methods.

The Dice Score measures the similarity between the predicted and ground truth

tooth segmentations. In terms of DSC, our method, DentalMAE, achieves a score of
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0.970. These scores demonstrate the accuracy and overlap of the segmented tooth

structures compared to the ground truth. Notably, our method consistently outper-

forms all other methods, including the top-performing MeshMAE method.

SEN and PPV evaluate the ability of the segmentation methods to correctly iden-

tify tooth structures (SEN) and the precision of the predicted tooth segmentations

(PPV). Our method exhibits high SEN and PPV scores, with a SEN value of 0.977,

and a PPV value of 0.989. These results indicate the robustness and accuracy of

our method in identifying tooth structures while minimizing false positives and false

negatives.

Parameter Setting and Masking Strategies. The experiments conducted

in Table 3.3 explore the e↵ects of di↵erent masking strategies and ratios on teeth

segmentation. In contrast to the high mask ratios commonly used in 3D natural

models [54], the segmentation task for teeth exhibits distinct preferences regarding

the mask ratio. Notably, we consistently observe performance improvements as the

mask ratio decreases from 50% to 20%. This finding suggests that reducing the mask

ratio is beneficial for training the model, potentially because relevant features in 3D

intra-oral models tend to be smaller in scale.

Mask ratio strategy OA DSC

50% random 0.947 0.936

50% block 0.931 0.930

50% grid 0.943 0.932

40% random 0.955 0.939

30% random 0.959 0.941

20% random 0.971 0.954

10% random 0.958 0.943

Table 3.3.
The influence of Mask Ratios/strategies on teeth segmentation of our
DentalMAE.
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Additionally, the random masking strategy outperforms the block and grid strate-

gies, emphasizing its e↵ectiveness in generating masks during the training process.

These findings contribute to our understanding of optimal parameter settings for teeth

segmentation and inform the development of more accurate and e�cient segmentation

models in this domain.

3.5.2 Qualitative results

Figure 5.5 presents qualitative examples that showcase the enhanced performance

achieved through pre-training the ViT mesh transformer with DentalMAE for teeth

segmentation. The observed improvements in segmentation align with the quantita-

tive findings discussed in Section 5.5.2.

3.6 Conclusions

We have demonstrated that DentalMAE pre-training improves SOTA segmen-

tation performance on 3D dental scan analysis. Importantly, DentalMAE self-pre-

training outperforms existing methods on a small dataset, something that has not pre-

viously been explored. Our results also suggest that parameters, including mask ratio

and strategy, should be tailored when applying masked autoencoders pre-training to

the 3D dental scan domain. Together, these observations suggest that DentalMAE

can further improve the already impressive performance of mesh ViTs in intra-oral

scan analysis. In future work, we will test the e�cacy of DentalMAE pretraining in

prognosis and outcome prediction tasks.
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CHAPTER 4

TEETH SEGMENTATION FROM CONE-BEAM CT

IMAGES

4.1 Introduction

In the last decade, digital dentistry has rapidly evolved, emphasizing the acqui-

sition and division of complete three-dimensional (3D) tooth models. These models

are crucial for defining the intended arrangement and movements of individual teeth,

particularly for orthodontic diagnosis and treatment planning. Obtaining these com-

prehensive 3D tooth models presents a challenge. Currently, two main technologies

for acquiring these models are intraoral or desktop scanning and cone beam computed

tomography (CBCT) [90]. Intraoral or desktop scanning is convenient for capturing

the surface geometry of tooth crowns but lacks information about tooth roots, essen-

tial for precise diagnoses and treatments. Conversely, CBCT provides comprehensive

3D volumetric data for all oral tissues, including teeth, and due to its high spatial

resolution, it is widely used in oral surgery and digital orthodontics. This paper fo-

cuses on 3D tooth segmentation and identification from CBCT images, which crucial

for digital orthodontics applications.

Segmenting teeth from CBCT images presents significant challenges due to several

reasons. Firstly, in natural occlusion conditions where upper and lower teeth touch,

it is di�cult to di↵erentiate and separate lower teeth from the opposing upper teeth

along their occlusal surface due to a lack of variations in gray values [91, 92]. Sim-

ilarly, distinguishing teeth from their surrounding alveolar bone is challenging due

to their similar densities. Additionally, adjacent teeth with similar appearances pose

confusion in identifying di↵erent teeth. Consequently, relying solely on the intensity
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variation of CT images, as attempted in previous tooth segmentation methods, has

proven insu�cient.

Prior attempts to address these issues involved using either the level-set method

[91–94] or template-based fitting methods [95] for tooth segmentation. The former

methods necessitate a suitable initialization, often requiring laborious user annota-

tions and yielding unsatisfactory results in natural occlusion conditions. The latter

methods lack robustness when confronted with significant shape variations among

di↵erent patients. While deep learning methods for medical image analysis [96–98]

have shown promise in various tasks, their application to tooth segmentation has been

limited.

Recent advancements in self-supervised learning have demonstrated the e↵ective-

ness of masked image modeling (MIM) [24, 25, 51] as a pre-training strategy for the

Vision Transformer (ViT) [37] and the hierarchical Vision Transformer using shifted

windows (Swin) [21,39,52]. MIM involves the masking and subsequent reconstruction

of image patches, allowing the network to infer the masked regions by leveraging con-

textual information. We believe that the ability to aggregate contextual information

is crucial in the context of CBCT image analysis. Among various MIM frameworks,

the Masked Autoencoder (MAE) [25] stands out as a simple yet e↵ective approach.

MAE employs an encoder-decoder architecture, with a ViT encoder that receives only

visible tokens and a lightweight decoder that reconstructs the masked patches using

the encoder’s patchwise output and trainable mask tokens.

We propose to use self pre-training since it is particularly advantageous in scenar-

ios where acquiring suitable pre-training data is challenging. Additionally, self pre-

training eliminates the domain discrepancy between the pre-training and fine-tuning

stages by unifying the training data. Our experiments focus on teeth segmentation

in 3D CT scans [99]. As our base model, we use UNEt TRansformer (UNTER) in-

troduced in [100] for 3D CT scan analysis. Therefore, we call the proposed method

UNETR+DEMAE. We apply UNETR+DEMAE pre-training on the same dataset

that is used for the downstream task, i.e., to the training dataset.
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Specifically, we propose to extend the self-supervised learning framework of the

masked autoencoder (MAE) transformer [25]. While the MAE loss measures the

quality of reconstructed masked patches, the loss of the proposed UNETR+DEMAE

evaluates the predicted deep embeddings of masked patches. After pre-training, the

decoder is discarded, and the encoder is applied to the downstream task, i.e., teeth

segmentation. We compare three ViT Transformer initializations, including our pro-

posed UNETR+DEMAE, MAE [25], and a transformer without any self-pre-training.

The experimental results demonstrate that UNETR+DEMAE self-pre-training sig-

nificantly enhances CBCT segmentation performance compared to the baselines. Our

main contributions are threefold:

• We utilize self-supervised learning with masked autoencoders to alleviate the

problem of small data for 3D CT scans.

• We replace the MAE reconstruction of masked patches with the reconstruction

of patch embeddings. Hence, our loss is simply the L2 distance between the

predicted and computed embeddings over the masked patches.

• Our proposed method leads to a significant performance improvement. UN-

ETR+DEMAE outperforms all state-of-the-art methods on the tooth segmen-

tation task.

4.2 Methods

4.2.1 Vision Transformer

Our framework utilizes the Vision Transformer (ViT) as the foundational archi-

tecture for both pre-training and subsequent tasks. The ViT comprises a patch em-

bedding layer, position embedding, and Transformer blocks.

Patch Embedding: The patch embedding layer within the ViT is responsible for

transforming data into sequences. Initially, 3D volumes x 2 RH⇥W⇥D⇥C are reshaped

into a sequence of flattened 3D patches xp 2 RN⇥(P 3·C). The parameters (H,W,D)

represent the image resolution, (P, P, P ) denotes the patch resolution, C signifies the
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input channel, and N = HWD/P
3 stands for the number of patches or the sequence

length fed into the Transformer. These patches are then mapped to patch embeddings

via a trainable linear projection.

Position Embedding: To retain positional information, the patch embeddings

are supplemented with position embeddings. While the standard ViT utilizes 1D

learnable position embeddings, our experiments led us to employ sine-cosine [25, 27]

position embeddings during the pre-training stage. Sine-cosine functions provide a

fixed pattern that is not learned during training. This can be advantageous to the

model to learn more generalizable features and avoid overfitting to the specifics of the

training data, which is very scarce. Subsequently, for downstream tasks, we initialize

the learnable position embeddings with the sine-cosine embedding values.

Transformer Block: The ViT architecture involves layers comprising multi-

headed self-attention (MSA) [77] and MLP blocks.

4.2.2 Self-Supervised Pre-training with Masked Autoencoders

This section delineates the constituents of the Masked Autoencoder (MAE): the

encoder, the decoder, and the associated loss function.

Encoder. As illustrated in Fig. 7.2(Left), the ViT encoder is responsible for

reconstructing the complete input data from partially masked patches. The input

undergoes partitioning into non-overlapping patches, which are then randomly divided

into visible and masked groups. The MAE encoder operates solely on visible patches,

incorporating position embeddings to retain positional information. The resulting

representation serves the purpose of reconstructing the masked input, urging the

encoder to derive a comprehensive representation from partial observations.

Decoder. The MAE decoder is fed with a complete set of tokens, encompassing

patch-wise representations from the encoder, alongside learnable mask tokens placed

in the positions of masked patches. By integrating positional embeddings with all

input tokens, the decoder aims to restore each specific patch within its masked posi-
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Figure 4.1. Segmentation Pipeline with MAE Self Pre-training. Left: A
ViT encoder is first pre-trained with MAE. A random subset of patches
is input to the encoder and a transformer decoder reconstructs the full
image. Right: The pre-trained ViT weights are transferred to initialize
the segmentation encoder. Then the whole segmentation network, e.g.,
UNETR [100], is finetuned for segmentation.

tion. It’s noteworthy that the decoder serves as an auxiliary module exclusively for

pre-training and is not utilized in downstream tasks.

Masked Sequence Generation. Patch embeddings are represented by a set E.

Following the MAE approach, we randomly mask a subset of patches, represented

as Em, while unmasked embeddings are denoted as Eum. We replace the masked

embeddings Em with a shared learnable mask embedding Emask without altering

their positional embeddings. Finally, the corrupted embeddings Ec are formed by

combining Eum with the sum of Emask and a set of positional embeddings p. These

corrupted embeddings are then inputted into the encoder for further processing.

Prediction. MAE [25] reconstructs the input by predicting the pixel values

for each masked patch. Its loss function computes the mean squared error (MSE)

between the reconstructed and original images in the pixel space. In contrast, We

propose to compute the L2 loss between the original and predicted embeddings of the
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mask patches. As our experimental results in Sec. 4.3.3 demonstrate, this leads to a

performance increase.

4.2.3 Architectures for Downstream Tasks

Following MAE self-pre-training, we append task-specific head for the downstream

task, i.e., tooth segmentation.

We employ the UNETR [100] built upon the pre-trained ViT encoder via MAE,

in conjunction with a convolutional decoder initialized randomly. UNETR, designed

for 3D image segmentation tasks, mirrors the concept of U-Net [17]. It involves skip

connections between features from various encoder resolutions and the decoder. The

input to the UNETR decoder constitutes a sequence of representations from the en-

coder. Each representation is reshaped to restore spatial dimensions, followed by

iterative upsampling and concatenation with shallower features to enhance segmen-

tation resolution.

4.3 Experiments and Results

4.3.1 Datasets and Implementation Details

Tooth segmentation on CBCT images. We use the public dataset 3D CT

scans [99]. There are a total of 150 CBCT images with a resolution varied from 0.25

mm to 0.35 mm. We randomly split the dataset into 80% for training and 20% for

validation. The task is tooth segmentation from the 3D CT scans. Next, we normalize

the intensity of the CBCT image to fit within the range of [0, 1]. For the creation

of training data, we randomly extract 150 sub-volumes measuring 128 ⇥ 128 ⇥ 128

around the alveolar bone ridge in the CT scan, resulting in approximately 18,000 sub-

volumes for training. The dataset’s ground truth includes annotations with tooth-

level bounding boxes, masks, and labels.

During the testing phase, we employ the overlapped sliding window method to

crop sub-volumes of size 128⇥ 128⇥ 128 with a stride of 32⇥ 32⇥ 32. Subsequently,
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in the scenario where two teeth segments overlap, we select the one with the highest

value of Pcls ⇥ Pid as the final tooth prediction if the Intersection over Union (IoU)

of their teeth segmentation results is greater than 0.2. Here, Pcls and Pid represent

the probabilities for tooth classification and identification, respectively.

We conduct our experiments using PyTorch [35] and MONAI [101]. ViT-B/16

serves as the backbone, and we utilize AdamW as the optimizer across all experiments.

The patch size for 3D volumes is set at 16⇥ 16⇥ 16.

4.3.2 Evaluation metric

We use Dice similarity coe�cient (DSC) to evaluate the performance of our model

as follows:

DSC =
2⇥ |Y \ Z|
|Y |+ |Z| , (4.1)

where Y and Z represent the voxelized predicted outcomes and the ground truth

masks, respectively.

Additionally, we establish the accuracy of detection and identification as follows:

assuming G represents the entirety of teeth within the ground truth data, and D

indicates the set of teeth detected by our network, where within D there are L cor-

rectly labeled teeth. The detection accuracy (DA) and identification accuracy (FA)

are determined through the following calculations:

DA =
|D|

|D [G| and FA =
|L|

|D [G| (4.2)

UNETR+DEMAE Self Pre-training. The starting learning rate (lr) remains

at 1.5e-3, and the weight decay is set at 0.05. The learning rate decays to zero

using a cosine schedule that includes warm-up periods. The pre-training for UN-

ETR+DEMAE lasts for 100 epochs, utilizing training batch sizes of 256.

Finetuning for Teeth Segmentation. We apply a layer-wise learning rate

decay (with a layer decay ratio of 0.75) to ensure the stability of UNETR training,

along with implementing random DropPath with a 10% probability. The learning
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rate is set at 8e-3, and the training batch size is maintained at 256. Additionally, the

learning rate during the fine-tuning phase also follows a cosine decay schedule.

4.3.3 Results

Teeth segmentation on CBCT images. Table 4.1 presents the quantitative

results of tooth segmentation using various methods, and it clearly shows that UN-

ETR+DEMAE outperforms other state-of-the-art methods.

Comparing the scores of DSC, PA and FA of UNETR with the other methods, it

is evident that it achieves the highest performance, indicating its e↵ectiveness in ac-

curately segmenting tooth structures. This demonstrates the capability of the Trans-

formers to capture relevant features and contextual information, leading to improved

segmentation results.

The result of UNETR+MAE is superior to the standard UNETR, indicating fur-

ther improvements. It also outperforms the ImageNet pre-training paradigm (UN-

ETR+ImageNet). The combination of UNETR and MAE enhances the segmentation

accuracy and ensures more precise delineation of tooth boundaries.

Our method, UNETR+DEMAE, surpasses the other methods and the standalone

UNETR and its enhanced version MAE. Our method consistently achieves the high-

est results, highlighting the e↵ectiveness of incorporating the loss on mask patch

embeddings for tooth structure reconstruction.

Parameter Setting. We perform experiments involving various UNETR+DEMAE

pre-training epochs and mask ratios, as detailed in Table 7.4. Firstly, we note that

the performance of UNETR+DEMAE does not improve with longer training periods.

Secondly, unlike the high mask ratio commonly used in natural images [25], the seg-

mentation task demonstrates varied preferences for di↵erent mask ratios. The most

optimal segmentation outcomes are attained with a mask ratio of 25%.

Qualitative results. Figure 5.5 presents qualitative examples that showcase the

enhanced performance achieved on teeth segmentation through our UNETR+DEMAE
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Table 4.1.
Tooth Segmentation on CBCT scans. UNETR+DEMAE self pre-training
improves upon the UNETR baseline, ImageNet supervised pre-training,
and MAE self-supervised learning.

Framework DSC DA FA

U-Net(R50) [17] 84.18 82.84 79.19

AttnUNet(R50) [102] 85.92 63.91 79.20

TransUNet [103] 87.23 83.13 81.87

DSTUNet [104] 88.16 87.40 87.46

nnFormer [105] 86.07 80.17 86.57

nnUNet [106] 88.92 81.77 85.57

UNETR 89.46 90.88 88.03

UNETR+ImageNet 92.04 94.29 93.44

UNETR+MAE 93.01 95.25 94.37

UNETR+DEMAE 94.20 99.65 97.57

Table 4.2.
The influence of Mask Ratios and Pre-training Epochs on teeth segmen-
tation of our UNETR+DEMAE.

Mask ratio Pre-training Epochs DSC DA FA

85% 100 91.32 96.43 95.59

75% 100 91.73 97.85 95.74

75% 800 90.14 97.32 94.89

50% 100 93.56 98.93 95.98

25% 100 94.20 99.65 97.57

10% 100 93.10 97.82 97.09
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Figure 4.2. Comparison of teeth segmentation of UNETR+DEMAE and
baseline.

pre-training in comparison to UNETR+MAE. The observed improvements in segmen-

tation align with the quantitative findings shown in Table 4.1.

4.4 Conclusions

We have demonstrated that UNETR+DEMAE pre-training improves SOTA seg-

mentation performance on 3D dental CT scan analysis. Importantly, UNETR+DEMAE

self-pre-training outperforms existing methods on a small dataset, something that
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has not previously been explored. Our results also suggest that parameters, includ-

ing mask ratio and strategy, should be tailored when applying masked autoencoders

pre-training to the 3D dental scan domain. Together, these observations suggest that

UNETR+DEMAE can further improve the already impressive performance of ViTs

in CBCT scan analysis. In future work, we will test the e�cacy of UNETR+DEMAE

pretraining in prognosis and outcome prediction tasks.
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CHAPTER 5

DENTAL IMPLANT IDENTIFICATION

5.1 Introduction

In the 1980s, dental implants were introduced and have since become a global

solution for patients with missing teeth [107]. Their impact on dental care has been

significant, contributing to improved quality of life [108, 109]. While implant treat-

ments are now common, over decades of clinical use have brought forth challenges,

including complications in superstructures or implants and peri-implantitis [110,111].

Addressing these issues often requires additional prosthodontic, periodontic, or sur-

gical interventions, necessitating detailed information about the intra-oral implant.

Accessing such information is straightforward when patients were previously treated

at the same clinic, but complications arise when patients seek care elsewhere due to

relocation or clinic closures. Dentists faced with limited data, such as oral pho-

tographs and radiographs, must identify crucial implant details, particularly the im-

plant system, to proceed with treatments. While experienced dentists can navigate

this process, those lacking su�cient knowledge face di�culties. Consequently, there

is a demand for a system that can identify implant systems from limited data, irre-

spective of a dentist’s expertise.

Artificial intelligence (AI) technology, widely utilized in various fields, o↵ers promis-

ing solutions. In medicine, AI has already proven valuable in robotics, medical di-

agnosis, statistics, and human biology [112]. Deep learning, a subset of AI, excels in

tasks like prediction, object detection, and classification. Dentistry has seen the ap-

plication of deep learning in diagnosing dental diseases from images, predicting treat-

ments, classification, and statistical analysis [113–120]. Notably, deep learning-based

object detection algorithms have enhanced diagnostic systems [121], often matching

or surpassing human capabilities.
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This study aims to develop an automated system using a deep learning-based

object detection method to identify implant systems. The hypothesis is that this

system can e↵ectively detect and identify implants, o↵ering a valuable tool for dentists

and patients grappling with implant-related issues.

Recent progress in self-supervised learning has highlighted the e�cacy of masked

image modeling (MIM) [22,24,25,122,123] as a pre-training strategy for Vision Trans-

former (ViT) [37,124] and the hierarchical Vision Transformer using shifted windows

(Swin) [21, 39, 52]. MIM involves masking image patches and reconstructing them,

allowing the network to deduce masked regions by utilizing contextual information.

The capacity to aggregate contextual information is deemed crucial in the context

of dental radiograph analysis. Among various MIM frameworks, the Masked Au-

toencoder (MAE) [25] stands out as a straightforward yet e↵ective approach. MAE

utilizes an encoder-decoder architecture, incorporating a ViT encoder that receives

visible tokens and a lightweight decoder reconstructing masked patches using the

encoder’s patchwise output and trainable mask tokens.

We advocate for self-pre-training, particularly advantageous when obtaining suit-

able pre-training data is challenging. Self-pre-training also eradicates domain discrep-

ancies between pre-training and fine-tuning by unifying the training data [123]. Our

experiments center on dental implant identification and classification in panoramic

and periapical radiographs [125]. We apply our proposed method, Masked Deep Em-

bedding (MDE) pre-training, on the same dataset used for the downstream task, i.e.,

the training dataset.

Specifically, we extend the self-supervised learning framework of the masked au-

toencoder (MAE) transformer [25]. While the MAE loss gauges the reconstructed

masked patches’ quality, the MDE loss assesses predicted deep embeddings of masked

patches. Post pre-training, the decoder is discarded, and the encoder is applied to

the downstream task, i.e., dental implant detection. We compare three ViT Trans-

former initializations, including our proposed MDE, MAE [25], and a transformer

without any self-pre-training. Experimental results demonstrate that MDE self-pre-
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training significantly enhances dental implant detection performance compared to the

baselines.

Moreover, a comprehensive dataset addressing the simultaneous examination of

implant design is currently unavailable. We contend that incorporating implant design

amplifies the complexity of the computer vision problem, given the increased number

of classes and potential class imbalances. Consequently, we enhance the existing

dataset introduced in [125] under the supervision of a dental expert. We further enrich

the dataset by creating annotations specifically for implant design, encompassing the

classification of coronal, middle, and apical parts. The meticulous labeling process

has resulted in a distinctive, high-quality augmented dataset. Interested parties can

access our data, named Implant Design Dataset (IDD), upon request.

Our contributions are threefold:

• We replace MAE’s reconstruction of masked patches with the reconstruction of

patch embeddings. Consequently, our loss is the simple L1 distance between

predicted and computed embeddings over masked patches.

• Our proposed method yields substantial performance improvement, surpassing

all state-of-the-art methods in the dental implant detection task.

• The labeling of implant design extends the horizon of possible dental applica-

tions.

5.2 Dental Implant Design

The categorization of implant design in the images was carried out, as detailed

in Table 5.1. The coronal one-third of the implant underwent classification based on

bone level, tissue level, microthread, and thread design (see Fig.5.1(a)). The middle

one-third was categorized concerning body shape (straight or tapered) and thread

design (see Fig.5.1(b)). The apical part was classified based on criteria such as the

presence of a groove in the apical part, the shape of the apical hole, the shape of

the apical body, and the apex shape (see Fig.5.1(c)). An experienced prosthodontist
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Figure 5.1. Categorization of (a) the coronal portion’s design based on
bone or tissue level, the existence of microthreads, and the specific thread
design, (b) the middle section’s design based on the shape of the body and
the specific thread design, and (c) the design for the apical portion based
on the shape of the apical hole, the configuration of the apical body, the
presence of a groove, and the shape of the apex.

classified each group by referencing the manufacturer’s catalog and radiographs using

the COCO-Annotator tool [34]. Subsequently, implant images were labeled according

to the design classifications (see Fig. 5.2).
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Table 5.1.
Details of classes based on the classification of implant design.

Coronal Middle Apical

Bone level Parallel fin Hole round

Tissue level Tapered fin Hole oblong

Microthread Parallel square Parallel groove

Fin Tapered square Tapered groove

Square Parallel no threads Parallel no groove

No threads Tapered no threads Tapered no groove

V-shaped Parallel V-shaped Apex shape flat

Rounded Tapered V-shaped Apex shape cone

Buttress Parallel rounded Apex shape dome

Reverse buttress Tapered rounded Apex shape semi-dome

Parallel buttress

Tapered buttress

Parallel reverse buttress

Tapered reverse buttress
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Figure 5.2. Image of a sample for categorizing and labeling implant design.

5.3 Methods

5.3.1 Two-Stage Implant Detection Methodology

To address the task of dental implant detection, we propose a two-stage detec-

tion approach comprising the identification of individual implant design parts in the

first stage and the subsequent inference of implant bounding boxes in the second

stage. This method aims to enhance detection accuracy by breaking down the com-

plex implant structure into distinct components before consolidating them into a

comprehensive bounding box representation.

Implant Design Parts Detection (First Stage). In the initial stage of our

methodology, we employ a dedicated object detection algorithm trained to recognize

specific implant design parts. The chosen algorithm, in this case, is Mask R-CNN,

which has been trained on an annotated dataset containing diverse dental implant

images. The annotations include bounding box coordinates for each implant part

such as the body, threads, and head.

During the inference process, the trained model scans input images, identifying

the presence and localization of individual implant design parts. The output con-
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sists of bounding boxes for each detected component, providing a detailed spatial

representation of the identified implant parts.

Implant Bounding Box Inference (Second Stage). Building upon the re-

sults of the first stage, the subsequent step involves inferring bounding boxes that

encapsulate the entire dental implant structure. Post-processing techniques are ap-

plied to consolidate the detected implant design parts into a cohesive representation

of the complete implant.

This involves:

• Handling Missing Implant Parts by developing post-processing strategies to

infer or estimate missing parts based on the detected components. We imple-

ment techniques such as predictive models [126], spline interpolation [127], and

adaptive thresholds [128] to enhance robustness in the presence of incomplete

information.

• Analyzing spatial relationships between detected parts to refine the assembly

process and improve the accuracy of the final representation.

• Employing clustering algorithms, such as K-Means Clustering [129], to group

related implant design parts, adapting to variations in implant geometry, and

aiding in the identification of missing components.

• Implementing heuristics based on known implant geometries to guide the as-

sembly process, especially when dealing with missing parts.

Upon successful grouping of individual implant parts, a bounding box is inferred

to encapsulate the entire implant structure. This final bounding box serves as a

holistic representation of the detected dental implant in the input image.

By dividing the detection process into these two stages and incorporating strate-

gies to handle missing implant parts, our methodology aims to enhance the accuracy

and robustness of dental implant detection, particularly in scenarios involving com-

plex implant geometries and variations in image quality. The proposed approach
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Figure 5.3. Dental Implant Detection Pipeline with MDE Self Pre-
training. The initial step in the dental implant detection pipeline for MDE
self-pre-training involves dividing the input into non-overlapping patches.
These patches undergo embedding using an MLP. Throughout the pre-
training phase, the patch embeddings undergo random masking, and only
the visible embeddings are employed by the transformer. Subsequently,
the masked embeddings are merged with the encoded embeddings and
directed to the decoder. The decoder’s role is to reconstruct the masked
patches, followed by predicting the patch embeddings of these masked
patches. The L1 loss is employed to assess the similarity between the
masked patch embeddings. Once pre-training is complete, the decoder is
omitted, and the encoder is utilized as the backbone in Mask R-CNN with
FPN for the detection.

provides a structured and systematic means of addressing the challenges associated

with implant detection in diverse clinical contexts.

5.3.2 Self-Supervised Pre-training with Masked Autoencoders

This section details the constituents of the Masked Autoencoder (MAE): the en-

coder, the decoder, and the associated loss function.
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Encoder. As illustrated in Fig. 7.2(Left), the input undergoes partitioning into

non-overlapping patches, randomly divided into visible and masked groups. The

MAE encoder operates solely on visible patches, incorporating position embeddings

to retain positional information. The resulting representation serves to reconstruct

the masked input.

Masked Sequence Generation. Patch embeddings E are represented by a set.

Following the MAE approach, a subset of patches is randomly masked, represented

as Em, and unmasked embeddings as Eum. Masked embeddings Em are replaced with

a shared learnable mask embedding Emask. Corrupted embeddings Ec are formed by

combining Eum with the sum of Emask and positional embeddings p, inputted into

the encoder.

Decoder. The MAE decoder is fed with a complete set of tokens, including

patch-wise representations from the encoder and learnable mask tokens. Integrating

positional embeddings with input tokens, the decoder aims to restore each patch

embedding within its masked position, serving as an auxiliary module exclusively for

pre-training.

Loss computation. We propose computing the L1 loss between original and

predicted embeddings of masked patches, deviating from MAE’s mean squared error

(MSE) in pixel space. As our experimental results demonstrate, this change leads to

performance improvement. This is in accord with observations in [130] that predict

deep embedding of patches instead of pixel values yields better generalization and

performance improvements.

5.3.3 Architectures for Downstream Tasks

After completing self-pre-training with MAE, we attach a task-specific head for

the subsequent task, namely, the detection of dental implants.

The pre-trained ViT weights are utilized to initialize the encoder for detection.

The features from the ViT backbone are conveyed to both the neck (FPN [31]) and the

detection head (Mask R-CNN) to facilitate bounding box regression and classification.
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We opt for the Mask R-CNN [131] framework, given its widespread use in object

detection research. Subsequently, the entire network undergoes fine-tuning to execute

the detection task.

5.4 Experiments

5.4.1 Dataset

Implants Image Dataset [125] is a dental panoramic and periapical X-rays dataset

consisting of 5572 annotated images with ground truth detection labels of dental

implants. Each image size is 416x416 pixels.

We contribute to further expanding the dataset by developing bounding boxes for

dental implant design parts, including the thread design, body shape, apical shape,

hole shape, and apex shape. This process was done by a prosthodontist using the

COCO-Annotator tool [34].

We believe this is the most inclusive dataset for dental implant identification and

classification in dental radiographs. We are providing our data, upon request, under

the name Implant Design Dataset (IDD).

5.4.2 Evaluation metric

In all our experiments, we divided the data into five sets, each comprising around

20% of the images. Among these, one set remains constant as the test dataset,

containing 1116 images, while the remaining four sets, each with 1114 images, form

the training and validation datasets using cross-validation. This procedure is iterated

five times. We use the Average Precision metric to evaluate object detection models.

5.4.3 Implementation details

We conducted our experiments using the PyTorch framework [35] and trained

them on Nvidia Tesla V100 GPUs. Throughout all experiments, the batch size re-
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mains consistent at 4456, which corresponds to the total number of training samples.

The AdamW optimizer [36] is employed in all instances.

Data augmentation. We apply noise addition up to 6% of pixels, horizontal

and vertical flipping, and 90° rotation of clockwise, counter-clockwise.

MDE pre-training. The base learning rate is established at 1.5e-4, weight decay

is set to 0.05, �1 is 0.9, and �2 is 0.95. A cosine decay learning rate scheduler with a

warm-up period of 10 epochs is applied. We utilize a random Masked Image Modeling

approach with a patch size of 16×16 and a mask ratio of 25%. Additionally, we employ

a linear prediction head, targeting an image size of 416x416.

Task fine-tuning. For downstream tasks, we employ single-scale training. The

starting learning rate is 0.0001, and the weight decay is set at 0.05.

5.5 Results and analysis

5.5.1 MDE reconstruction

The reconstruction outcomes of MDE are depicted in Fig. 6.3. The figure com-

prises four columns illustrating the original images, masked images, images recon-

structed using MAE, and images reconstructed using MDE. The results indicate that

our approach excels in recovering missing information from the random context. It

is important to emphasize that the primary objective of MIM is to enhance down-

stream tasks rather than produce reconstructions of the highest quality. It is worth

noting that the process involves a reconstruction step. Instead of directly restoring

pixel values from patches, the deep embeddings guide a generative model or decoding

process to produce image samples. This generative model uses the high-level informa-

tion encoded in the embeddings to create new pixel values, providing a reconstructed

representation of the original images.
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Figure 5.4. Results of MDE reconstruction. The first column displays
the original images, while the second column shows the masked images,
with gray patches indicating the masked regions. The third and fourth
columns exhibit the reconstructions achieved through MAE and our MDE,
respectively, from the unmasked patches.

5.5.2 Dental implant classification and identification.

The presented tables provide a comprehensive overview of the results obtained in

dental implant classification and identification tasks before and after the implemen-

tation of dental implant design labeling. The evaluation metric utilized is the AP
box

(average precision for bounding box detection), and various initialization strategies

and backbones are compared.
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In Table 7.1 (before the application of dental implant design labeling), the YOLOv5

model with CSPDarknet53 backbone achieved an AP
box of 91.5, serving as a baseline

for comparison. Notably, the ViT-B model with Random initialization, despite hav-

ing no pre-training data, demonstrated a competitive performance with an AP
box of

91.9, showcasing the ViT’s ability to learn meaningful features even in the absence

of specific pre-training. The Supervised ViT-B model, pre-trained on ImageNet-1K

with labels, improved the performance further to 92.6. The introduction of novel pre-

training approaches, MAE and our MDE, both based on ViT-B and pre-trained on

ImageNet-1K without labels, yielded impressive results of 93.2 and 94.9, respectively,

with our MDE standing out as the most e↵ective approach.

Moving to Table 7.2, where dental implant design labeling is employed, we observe

consistent improvements across all models. The Random ViT-B model achieved an

AP
box of 92.4, showcasing the impact of incorporating dental implant design infor-

mation. The Supervised ViT-B model experienced an increase to 93.2, emphasizing

the value of labeled implant design data for pre-training. The MAE and our MDE

models, both pre-trained on ImageNet-1K without labels, demonstrated substantial

improvements, reaching AP
box values of 94.0 and an impressive 96.1, respectively,

with our MDE once again outperforming the other methods.

The results suggest that dental implant design labeling significantly enhances

the performance of dental implant classification and identification models, regardless

of the initialization strategy. Furthermore, the e↵ectiveness of our MDE as a pre-

training criterion is reinforced, indicating its robustness and suitability for the specific

task at hand. These findings have important implications for the field of medical

image analysis, underscoring the importance of domain-specific pre-training and the

potential benefits of incorporating design information for more accurate and reliable

dental implant detection. The combination of advanced pre-training techniques and

domain-specific data augmentation can contribute to further advancements in the

development of robust and precise models for dental implant recognition.
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Table 5.2.
Results of dental implant classification and identification before employing
dental implant design labeling.

Initialization Backbone Pre-training Data AP box

YOLOv5 [132] CSPDarknet53 IN-1K w/ Labels 91.5

Random ViT-B None 91.9

Supervised ViT-B IN-1K w/ Labels 92.6

MAE ViT-B IN-1K 93.2

MDE (ours) ViT-B IN-1K 94.9

Table 5.3.
Results of dental implant classification and identification after employing
dental implant design labeling.

Initialization Backbone Pre-training Data AP box

Random ViT-B None 92.4

Supervised ViT-B IN-1K w/ Labels 93.2

MAE ViT-B IN-1K 94.0

MDE (ours) ViT-B IN-1K 96.1
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Figure 5.5. Qualitative results of dental implant detection and identifi-
cation. The ViT pre-trained with the MAE approach exhibits missing
or incorrect detections, whereas the ViT pre-trained with the MDE ap-
proach demonstrates accurate detection. Blue indicates the Bego dental
implant system, yellow indicates the Bicon dental implant system, and
red indicates the ITI dental implant system.

5.5.3 Qualitative Results

Figure 5.5 showcases qualitative samples highlighting the improved performance

of dental implant detection and identification when using ViT pre-trained with MDE.

The visual improvements align with the quantitative findings discussed in Section 5.5.2.
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Table 5.4.
Impact of Mask Ratios on dental implant detection.

Mask Ratio Pre-training Epochs AP box

65% 100 92.5

55% 100 93.2

55% 800 91.6

45% 100 94.0

35% 100 94.4

25% 100 94.9

15% 100 94.3

5.5.4 Parameter setting

In Table 7.4, we conduct experiments focusing on dental implant detection with

varying pre-training epochs and mask ratios for our MDE method. Firstly, we observe

that extending the training duration does not lead to improved performance for MDE.

Secondly, in contrast to the high mask ratio used in natural images [25], we find

distinct preferences for mask ratios in downstream tasks related to dental implant

detection. Notably, both tasks consistently exhibit enhancements as the mask ratio

decreases from 65% to 25%. This improvement may be attributed to the fact that

relevant features on dental X-rays tend to be smaller in size.

5.6 Conclusions

We have illustrated that the proposed MDE pre-training enhances state-of-the-

art detection performance in the analysis of dental X-rays. Notably, MDE self-pre-

training surpasses the performance of existing methods, particularly on a limited

dataset, an aspect not previously explored. Our findings also indicate that parame-
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ters, such as mask ratio and pre-training epochs, should be customized when applying

masked autoencoders pre-training to the domain of dental radiographs. These insights

suggest that MDE has the potential to further enhance the already remarkable per-

formance of ViTs in the analysis of dental X-rays. In our future work, we aim to

assess the e↵ectiveness of MDE pretraining in tasks related to prognosis and outcome

prediction. We have also demonstrated that two-stage object detection with the first

stage focused on domain-specific object parts like implant design parts can enhance

object detection results.
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CHAPTER 6

ANALYZING DENTAL PANORAMIC RADIOGRAPHS

FOR ASSESSMENT OF PERI-IMPLANT BONE LOSS

6.1 Introduction

Since the advent of dental implants in the 1980s, they have significantly revolu-

tionized the landscape of restorative dentistry, o↵ering a durable solution for missing

teeth. This breakthrough has not only improved the aesthetic outcomes for pa-

tients but has also had a profound impact on their overall quality of life by restoring

functionality and comfort. Dental implants have been lauded for their ability to

provide a foundation for replacement teeth that look, feel, and function like natural

teeth [133, 134]. Despite the widespread success and adoption of dental implants,

their longevity and stability are critically dependent on the maintenance of peri-

implant bone health. The advent of peri-implant diseases, especially peri-implantitis,

highlights the urgent need for accurate and early detection of marginal bone loss to

prevent implant failure and ensure the sustainability of the treatment [135].

The diagnostic challenge of accurately assessing bone levels around dental im-

plants is compounded when detailed patient histories or specific implant details are

lacking. This scenario is common when patients transfer their care due to relocation

or when the original dental practice is no longer accessible. The nuanced interpreta-

tion of radiographic evidence of bone loss around implants requires a high degree of

expertise and experience, underscoring the necessity for an automated system that

can consistently and reliably assess peri-implant bone health [136].

Artificial Intelligence (AI), and specifically the domain of deep learning within

AI, has emerged as a beacon of innovation across various medical fields, including

dentistry. Deep learning’s ability to decipher and learn from complex patterns in
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voluminous datasets has been a game-changer, o↵ering new horizons in diagnostic

precision and patient care [137]. In dental radiography, the application of deep learn-

ing models holds the promise of substantially enhancing the diagnostic process for

detecting marginal bone levels around dental implants, a task that remains challeng-

ing even for seasoned practitioners [138].

In comparison to the realm of medical image classification, there has been a

notable dearth of research investigating the detection of specific lesions in radio-

graphs [139, 140] or magnetic resonance imaging (MRI) [141] through semantic seg-

mentation. While certain studies have endeavored to segment lesions using techniques

like U-Net [17], the exploration of instance segmentation in radiographs or MRI, where

each distinct object requires identification, remains limited. Additionally, the research

landscape concerning Vision Transformers (ViT) in dentistry is notably less extensive

compared to the field of medicine [123], particularly in the context of identifying indi-

vidual objects in radiographs. Despite being a driving force in advancing diagnostic

imaging in dentistry, the utilization of these machine learning approaches is currently

underrepresented [142].

Recent advancements in self-supervised learning, particularly masked image mod-

eling (MIM), have presented an exciting avenue for training more e↵ective and e�cient

deep learning models in contexts where annotated data is scarce or labor-intensive

to produce. This approach, which involves the masking of parts of the input data

to compel the model to predict the missing information, has proven to be particu-

larly e↵ective in improving model performance by leveraging the rich unlabeled data

available in medical imaging [25].

Building on these technological advancements, this study introduces an innovative

automated system utilizing deep learning-based object detection to precisely identify

key landmarks such as the marginal bone level, top, and apex of dental implants from

radiographs. Our approach is grounded in the principles of self-supervised learning,

harnessing the potential of our newly proposed Deep Embedding of Patches (DEP)

pretraining method—an advancement on the traditional masked autoencoder (MAE)

transformer to markedly enhance the detection accuracy of peri-implant bone changes.
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Acknowledging the challenge presented by the scarcity of comprehensive, high-quality

datasets in dental radiography, we undertook the meticulous task of enriching an

existing dataset with expert annotations of peri-implant landmarks, thereby creating

the Bone Loss Assessment Dataset (BLAD).

To our knowledge, the detection of individual dental implants and the precise

localization of significant landmarks, such as the marginal bone level, utilizing fully

end-to-end deep learning methods, remains an area yet to be thoroughly explored.

The current study aims to address this research gap by evaluating a deep learning

model for the accurate localization of implants and the identification of key points

within the detected implant site. Furthermore, this investigation includes the calcu-

lation of the marginal bone loss ratio and subsequent classification, o↵ering potential

assistance to dentists in the analysis of periapical radiographs.

Our contributions are threefold:

• We develop a cutting-edge deep learning methodology that leverages self-supervised

learning for the detailed and accurate detection of marginal bone levels, tops,

and apexes of implants in dental radiographs, paving the way for earlier and

more precise interventions in the management of peri-implant diseases.

• We present the Deep Embedding of Patches (DEP) pretraining method, which

represents a significant advancement over traditional baseline approaches in en-

hancing the detection accuracy of peri-implant bone loss. Rather than utilizing

the mean squared error (MSE) metric in the pixel domain as the loss func-

tion, we advocate calculating the L1 loss between the original and predicted

embeddings of masked patches. Our experimental findings demonstrate that

this modification results in enhanced performance. This is consistent with the

observations reported in [130], which indicate that predicting deep embeddings

instead of pixel values leads to better generalization and performance improve-

ments.

• We introduce the Bone Loss Assessment Dataset (BLAD), a meticulously anno-

tated dataset designed specifically for the training and evaluation of AI models



79

in the detection of peri-implant bone loss. This dataset sets a new benchmark

for data quality and specificity in the realm of dental radiography research.

Through these contributions, this study aims to bridge the gap in diagnostic

capabilities within implant dentistry, democratizing access to high-level diagnostic

tools for dental professionals worldwide. By enhancing the precision and reliability

of peri-implant bone loss detection, we anticipate facilitating improved patient care

outcomes and advancing the field of implant dentistry into a new era of AI-enabled

diagnostics.

6.2 Related Work

The application of artificial intelligence (AI) and machine learning (ML) in medical

imaging has seen substantial growth over the past decade. Particularly, deep learning

(DL) approaches have gained prominence due to their ability to automatically learn

and extract features from large datasets, which is critical in the domain of medical

diagnostics. This section reviews the pertinent literature on deep learning applications

in dental radiography, with a specific focus on the detection and analysis of peri-

implant bone health.

Deep learning models have been widely applied to various tasks in medical image

analysis, such as classification, segmentation, and object detection. Convolutional

neural networks (CNNs) have been particularly e↵ective in handling image data,

thanks to their ability to capture spatial hierarchies and patterns within images. For

example, CNNs have been successfully employed in the diagnosis of dental caries, the

detection of periodontal diseases, and the identification of oral cancers from radio-

graphic images [?,?, 113].

In the context of dental implantology, accurate detection of peri-implant bone

levels is crucial for assessing the health and stability of dental implants. Traditional

methods rely heavily on the expertise of clinicians to interpret radiographic images,

which can be subjective and prone to variability. To address this challenge, researchers

have explored the use of deep learning techniques to automate the detection and
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measurement of peri-implant bone levels. One notable study utilized a CNN-based

approach to evaluate peri-implant bone loss, demonstrating significant improvements

in diagnostic accuracy compared to traditional methods [?].

Despite these advances, there remains a significant gap in the literature regarding

the use of deep learning for instance segmentation in dental radiographs. While U-

Net and its variants have been commonly used for medical image segmentation [17],

the application of these models to the segmentation of individual dental implants and

the precise localization of peri-implant landmarks has been limited.

Vision Transformers (ViTs) have recently emerged as a powerful alternative to

CNNs, o↵ering a di↵erent mechanism for capturing image features through self-

attention mechanisms. ViTs have shown promising results in various image clas-

sification tasks and are gaining traction in medical imaging research [20]. However,

their application in dental radiography, particularly for tasks such as instance seg-

mentation and landmark detection, is still in its infancy. The potential of ViTs to

handle the complex and detailed nature of dental radiographs presents an exciting

avenue for future research.

Self-supervised learning, and specifically masked image modeling (MIM), has in-

troduced new possibilities for training deep learning models in scenarios with limited

labeled data. MIM techniques, such as the Masked Autoencoder (MAE), involve

masking parts of the input image and training the model to predict the missing re-

gions. This approach has been shown to improve the robustness and generalization

of models, making it particularly useful in medical imaging where annotated data is

often scarce [25].

The proposed Deep Embedding of Patches (DEP) pretraining method builds on

these advancements by incorporating self-supervised learning into the training pro-

cess. By calculating the L1 loss between the original and predicted embeddings of

masked patches, rather than relying on pixel-level reconstruction, the DEP method

aims to enhance the model’s ability to capture meaningful features and improve de-

tection accuracy. This approach aligns with recent findings that suggest predicting
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deep embeddings can lead to better performance than traditional pixel-based meth-

ods [130].

While significant progress has been made in the application of deep learning to

dental radiography, there remains a considerable need for further research, particu-

larly in the areas of instance segmentation and landmark detection. The introduction

of advanced techniques such as ViTs and self-supervised learning holds promise for

addressing these challenges and advancing the field. This study seeks to contribute

to this evolving landscape by proposing a novel deep learning-based system for the

detection and analysis of peri-implant bone levels, leveraging the latest advancements

in self-supervised learning and vision transformer architectures.

6.3 Methods

6.3.1 Self-supervised Learning

Our main contribution is replacing patch reconstruction with deep embedding

prediction within the MAE framework. This shift introduces a new dimension to

self-supervised learning, specifically tailored for dental radiographs, resulting in sub-

stantial performance improvements. By adopting this approach, our model more

e↵ectively captures the nuances of dental radiographic imagery, enhancing the accu-

racy of key landmark detections, such as the marginal bone level, top, and apex of

implants. These contributions are clearly articulated in this section. Here, we outline

the components of the Deep Embedding of Patches (DEP), including the encoder,

decoder, and the associated loss function.

Tokenizer. The input is partitioned into non-overlapping patches, randomly

categorized into visible and masked groups, as depicted in Fig. 6.1(Left).

Masked Sequence Generation. Patch embeddings E are represented as a set.

Following the MAE approach, a subset of patches is randomly masked, denoted as

Em, while unmasked embeddings are labeled as Eum. Masked embeddings Em are

substituted with a shared learnable mask embedding Emask. Corrupted embeddings



82

Figure 6.1. Dental Implant and keypoints Detection Pipeline with DEP
Self pretraining. The initial step in the dental implant and keypoints
detection pipeline for DEP self-pretraining involves dividing the input
into non-overlapping patches. These patches undergo embedding using an
MLP. Throughout the pretraining phase, the patch embeddings undergo
random masking, and only the visible embeddings are employed by the
transformer. Subsequently, the masked embeddings are merged with the
encoded embeddings and directed to the decoder. The decoder’s role
is to reconstruct the masked patches, followed by predicting the patch
embeddings of these masked patches. The L1 loss is employed to assess
the similarity between the masked patch embeddings. Once pretraining
is complete, the decoder is omitted, and the encoder is utilized as the
backbone in Mask R-CNN with FPN for the detection.
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Ec are generated by combining Eum with the sum of Emask and positional embeddings

p.

Encoder. The DEP encoder exclusively processes visible patches, incorporating

position embeddings to preserve positional information. The resulting representation

is used to reconstruct the masked input.

Decoder. The DEP decoder receives a complete set of tokens, including patch-

wise representations from the encoder and learnable mask tokens. By integrating

positional embeddings with input tokens, the decoder aims to restore each patch

embedding within its masked position, serving as an auxiliary module exclusively for

pretraining.

As stated above the original MAE restores the original patches, not their embed-

dings.

Loss computation. Instead of employing mean squared error (MSE) in pixel

space, we propose computing the L1 loss between original and predicted embeddings

of masked patches. This change, as evidenced by our experimental results, leads to

performance improvements.

6.3.2 Architectures for Downstream Tasks

After completing self-pretraining with DEP, we attach task-specific heads for the

subsequent tasks, namely, the detection of dental implants and the detection of key-

points.

The pre-trained ViT weights are utilized to initialize the encoder for detection.

The features from the ViT backbone are conveyed to both the neck (FPN [31]) and

the detection head (Mask R-CNN with Keypoint Head) to facilitate bounding box

regression and classification. We opt for the Mask R-CNN [131] framework, given

its widespread use in object detection research. Subsequently, the entire network

undergoes fine-tuning to execute the detection task.
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Mask R-CNN with Keypoint Head

In this phase, individual implants are detected with bounding boxes. Based on the

detected region, the six keypoints, including mesial and distal marginal bone level,

are predicted.

For this procedure, a modified R-CNN architecture was used, Mask R-CNN. Mask

R-CNN, the latest descendant of the R-CNN model, comprised a “backbone” and

“heads” [131]. The backbone network is Vision Transformer (ViT) which outputs

feature maps from the original input image. It can be of various types, but the

feature pyramid network (FPN) [31] based on ViT is known for robust results when

used for Mask R-CNN, and, thus, it was adopted in this study.

Using the feature maps from the backbone network, the box head performed object

classification and bounding box regression, and the mask head performed the object

segmentation task. By attaching a keypoint detection head and properly training the

network, the model can predict specific keypoints on the objects that were detected

by the box head. As shown in the previous study, this method with a keypoint head

can be used for human pose estimation, wherein the model picks some keypoints of

the human body, such as eyes, elbows, and knees [131]. In the present study, we

adopted this architecture, the Mask R-CNN based on ViT backbone with a keypoint

detection head. The scheme of the model is shown in Fig. 6.1.

The model was trained and tested for detecting implants and locating the six key-

points on each detected implant in dental periapical radiographs. The six keypoints

were peri-implant bone level, the implant apex, and the implant top, which all have

right and left sides as shown in Fig. 6.2. To cover various types of implants, the

most coronal thread was annotated as the top of the implant. We refer to these six

positions as ”keypoints” since it is a widely used terminology in point detecting tasks,

such as human pose estimation [143,144] or facial keypoint detection [145].
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Figure 6.2. Depiction of anticipated bounding boxes and keypoints in-
cludes: (a) bounding boxes, indicated by blue arrows; (b) keypoints, rep-
resented as red dots positioned at the center of the radiographs; (c) cal-
culation of radiographic bone loss percentage, based on the locations of
the keypoints.



86

Bone Loss Ratio and Classification

Some studies exist on classification systems for peri-implantitis that use radio-

graphic bone loss together with clinical indicators, such as bleeding/suppuration on

probing or probing depth [146–148]. These studies use the ratio of the radiographic

bone loss over the total implant length to classify the peri-implantitis. Based on the

criteria suggested by these studies, we calculated and classified the bone loss ratio so

that dental practitioners can easily refer to it.

Using the coordinates of the six keypoints that resulted from the prediction, the

total length of the implant and the implant length that are not surrounded by sound

bone can be calculated. The total length was measured from the center of the apex to

the center of the implant top, and the length corresponding to the radiographic bone

loss was measured from the center of the implant top to the center of the two marginal

bone level keypoints. From these values, the percentage of the implant length in the

bone defect site over the total length was calculated.

Based on this percentage, the severity of the bone loss around the implant was

classified. As suggested by previous studies [146–148], the severity was categorized

into four groups: normal, if the percentage is 10%, early, if the percentage is ¿10%

and 25%, moderate, if the percentage is ¿25% and 50%, and severe, if the per-

centage is ¿50%.

6.3.3 Evaluation Methods

The evaluation framework consists of two distinct stages in the prediction work-

flow: implant bounding box detection and implant keypoint identification. Accord-

ingly, two separate evaluation metrics are employed for each phase.

Intersection over Union (IoU)

To gauge the accuracy of the model in identifying implants, an e↵ective met-

ric is required to ascertain the precision of the model-generated bounding boxes in
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comparison to the actual bounding boxes. The Intersection over Union (IoU), also

recognized as the Jaccard index, serves this purpose. The IoU metric is derived by

dividing the area of intersection between the ground truth bounding box (A) and the

model’s predicted bounding box (B) by the union area of both boxes.

IoU =
|A \B|
|A [B| (6.1)

By adjusting the IoU threshold values, it is possible to calculate the model’s

average precision (AP) and average recall (AR).

Object Keypoint Similarity (OKS)

For assessing the accuracy of the model’s keypoint detection, the Object Key-

point Similarity (OKS) metric is utilized, functioning similarly to the IoU for object

detection evaluations. OKS, which varies between 0 and 1, measures how closely

the model’s keypoint predictions align with the actual ground truth, with values ap-

proaching 1 indicating higher accuracy. OKS is computed for each detected implant

as follows.

OKSj =

P
i
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exp
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�d

2
ji

2s2jk
2
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� (vji > 0)

i

P
i
� (vji > 0)

(6.2)

In the equation, j denotes each individual implant, and i corresponds to each key-

point type. In this study, i represents various anatomical points such as the left bone

level, right bone level, left apex, right apex, left implant top, and right implant top.

Furthermore, v are the visibility flags for the ground truth keypoints, where v = 0 indi-

cates not labeled, v = 1 signifies labeled but not visible, and v = 2 means labeled and

visible. The keypoints for each implant are represented as [x1, y1, v1, . . . , x6, y6, v6],

with x, y indicating the keypoint locations, and v the visibility flag.

Consider a vector ~dji that extends from a ground truth keypoint to a detected

keypoint, where dji denotes the distance between these two keypoints. Additionally,

sj is defined as the scale of implant j, calculated as the square root of the ground

truth segmented area of the implant.
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Moreover, ki is considered as the per-keypoint standard deviation multiplied by

a constant factor, chosen here as 2 (ki = 2�i). The per-keypoint standard deviation

�i, standardized to the scale s of the implant, is derived from redundantly annotated

images in the validation dataset, using the formula �
2
i
= E(j)[d2

ji
/s

2
j
], where E(j)

signifies an average over j. As the mean of ~dji/sj over j approaches a zero vector, �i

can be calculated by averaging d
2
ji
/s

2
j
over j.

OKS is then employed as a threshold to determine precision and recall based on

keypoint detection. Among the detected keypoints of implants, only those with an

OKS value exceeding the OKS threshold are deemed true positives. By adjusting the

OKS thresholds, the AP, and AR values are derived.

6.4 Experiments

6.4.1 Dataset

The Implants Image Dataset [125], a collection of dental panoramic and periapi-

cal X-rays, includes 5572 images annotated with precise detection labels for dental

implants, each measuring 416x416 pixels.

Our contribution extends this dataset by adding annotations for critical peri-

implant landmarks, such as the levels of peri-implant bone, both apices of the im-

plants, and the tops of the implants, marked for both the right and left sides. This

annotation was carried out by a skilled prosthodontist using the COCO-Annotator

tool [34].

We regard this dataset as the most comprehensive for the detection of dental

implants and marginal bone levels in dental radiographs. The dataset, named Bone

Loss Assessment Dataset (BLAD), is available upon request.

6.4.2 Evaluation Metrics

For our experiments, the dataset was segmented into five equal parts, with each

part representing approximately 20% of the total images. A fixed set, containing
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1116 images, was used as the consistent test dataset across all iterations, while the

other four sets, each comprising 1114 images, were utilized for training and validation

through a cross-validation approach. This method was repeated five times. The

performance of the detection models was assessed using both the Average Precision

and Average Recall metrics.

6.4.3 Details on Implementation

Our experiments were carried out using the PyTorch library [35] and executed on

Nvidia Tesla V100 graphics processing units. The batch size was fixed at 4456 for

all experiments, matching the total number of training instances. We utilized the

AdamW optimizer [36] in every case.

Data Augmentation Techniques. We incorporated noise in up to 6% of image

pixels and performed both horizontal and vertical flips, along with rotations of 90

degrees in both directions.

DEP pretraining Settings. We set an initial learning rate of 1.5e-4 and a

weight decay of 0.05, with �1 at 0.9 and �2 at 0.95. The learning rate followed a

cosine decay schedule, complemented by a 10-epoch warm-up phase. Our pretraining

involved a random Masked Image Modeling technique using 16x16 patches, with a

masking proportion of 25%. A linear prediction head was used for predicting images

of 416x416 pixels.

Fine-Tuning for Specific Tasks. In the fine-tuning phase for particular tasks,

we trained at a single scale. The learning rate was initiated at 0.0001, with a weight

decay parameter of 0.05.

6.5 Results and analysis

6.5.1 DEP reconstruction

The reconstruction outcomes of MDE are depicted in Fig. 6.3. The figure com-

prises four columns illustrating the original images, masked images, images recon-
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Figure 6.3. Results of DEP reconstruction. The first column displays
the original images, while the second column shows the masked images,
with blue patches indicating the masked regions. The third and fourth
columns exhibit the reconstructions achieved through MAE and our DEP,
respectively, from the unmasked patches.
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structed using MAE, and images reconstructed using DEP. The results indicate that

our approach excels in recovering missing information from the random context. It

is important to emphasize that the primary objective of MIM is to enhance down-

stream tasks rather than produce reconstructions of the highest quality. We stress

that our approach predicts patch embedding and does not predict pixel values. So we

added for this visualization a process to perform the pixel reconstruction step, where

the predicted patch embeddings guide a generative model (i.e., the decoding process)

to produce image samples. This generative model uses the high-level information

encoded in the embeddings to create new pixel values, providing a reconstructed

representation of the original images.

6.5.2 Detection of dental implants and marginal bone levels

In this study, we evaluated the performance of various initialization and pretrain-

ing strategies for dental implant detection. The outcomes, summarized in Table 7.1,

showcase the comparative analysis of di↵erent models and their e↵ectiveness in accu-

rately identifying dental implants from X-ray images.

The YOLOv5 model with a CSPDarknet backbone, pre-trained on the ImageNet-

1K (IN-1K) dataset with labels, achieved an Average Precision (AP) of 91.5% and

an Average Recall (AR) of 96.4%. The YOLOv8 and YOLOx models, also with

CSPDarknet backbones and pre-trained on IN-1K with labels, showed slight improve-

ments, achieving AP/AR scores of 91.7%/96.6% and 91.8%/96.7% respectively.

Switching to a Vision Transformer (ViT-B) architecture initialized with random

weights and without any pretraining data resulted in an AP of 91.9% and an AR of

96.9%. This marginal improvement suggests that the ViT-B architecture has potential

even without domain-specific pretraining.

Further experimentation involved supervised fine-tuning of the ViT-B on the den-

tal X-rays dataset with labels, leading to an AP of 92.6% and an AR of 97.2%. This

indicates the benefit of supervised fine-tuning for the task of dental implant detection.

Using self-supervised learning methods, we observed more substantial improvements:
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Table 6.1.
Results of dental implant detection.

Initialization Backbone Pretraining Data AP all ARall

YOLOv5 [132] CSPDarknet IN-1K w/ Labels 91.5 96.4

YOLOv8 [149] CSPDarknet IN-1K w/ Labels 91.7 96.6

YOLOx [150] CSPDarknet IN-1K w/ Labels 91.8 96.7

Random ViT-B None 91.9 96.9

Supervised Fine-tuning ViT-B IN-1K w/ Labels 92.6 97.2

DINOv2 [?] ViT-B IN-1K 92.8 97.4

SimMIM [22] ViT-B IN-1K 93.0 97.5

MAE [25] ViT-B IN-1K 93.2 97.8

DEP (ours) ViT-B IN-1K 94.9 98.3

the DINOv2 model achieved an AP of 92.8% and an AR of 97.4%, while SimMIM

attained an AP of 93.0% and an AR of 97.5%.

The Masked Autoencoder (MAE) pretraining method yielded even higher perfor-

mance, with an AP of 93.2% and an AR of 97.8%, demonstrating the e↵ectiveness of

MAE in enhancing the ViT-B model’s detection capabilities.

The best performance was achieved with our proposed Deep Embedding of Patches

(DEP), which, when applied to the ViT-B model pre-trained on the IN-1K dataset,

resulted in the highest performance metrics—an AP of 94.9% and an AR of 98.3%.

This demonstrates the e↵ectiveness of our DEP approach in enhancing the model’s

ability to accurately detect dental implants, surpassing both traditional and alterna-

tive pretraining methods.

These results underline the potential of specialized pretraining strategies, such as

DEP, in improving the performance of deep learning models for specific tasks like

dental implant detection in radiographic imagery. The success of DEP highlights the
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Table 6.2.
Results of keypoints detection.

Initialization Backbone pretraining Data AP all ARall

Random ViT-B None 93.5 97.1

Supervised Fine-tuning ViT-B IN-1K w/ Labels 94.0 97.8

MAE [25] ViT-B IN-1K 94.8 98.6

DEP (ours) ViT-B IN-1K 95.7 98.9

importance of tailoring pretraining approaches to the nuances of the target domain,

in this case, dental radiographs, to achieve optimal results.

In the pursuit of enhancing detection accuracy for marginal bone levels in dental

radiographs, we extended our investigation to evaluate the performance of di↵erent

initialization and pretraining strategies tailored for this specific task. The summarized

results in Table 7.2 reflect a rigorous comparative analysis, highlighting the advance-

ments in detection precision facilitated through innovative pretraining approaches.

Commencing with a baseline model, a Vision Transformer (ViT-B) initialized

with random weights and devoid of any pretraining, demonstrated a commendable

Average Precision (AP) of 93.5% and an Average Recall (AR) of 97.1%. This set a

foundational benchmark indicating the inherent capabilities of the ViT-B architecture

in processing complex dental radiographic imagery.

Progressing to supervised pretraining utilizing the ImageNet-1K (IN-1K) dataset

with labels, we observe an enhancement in performance metrics, with the AP in-

creasing to 94.0% and the AR to 97.8%. This increment underscores the benefit of

leveraging a large-scale labeled dataset to imbue the model with a richer understand-

ing of visual features, which is pertinent to the nuanced task of marginal bone level

detection.

The application of Masked Autoencoder (MAE) for unsupervised pretraining on

the IN-1K dataset yielded further improvements, pushing the AP to 94.8% and the AR
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Figure 6.4. Illustration of anticipated outcomes: Each implant is iden-
tified using a bounding box, and the predicted keypoints are displayed
within the box. The ratio of radiographic bone loss is determined from
the positions of the keypoints. Additionally, confidence scores for both
implant and keypoint detection are provided.

to 98.6%. This leap forward illuminates the e↵ectiveness of self-supervised learning

strategies in extracting and leveraging latent representations that are highly relevant

to the task at hand, even in the absence of explicit labels.

Our proposed Deep Embedding of Patches (DEP) strategy, when applied to the

ViT-B model alongside pretraining on the IN-1K dataset, achieved the highest perfor-

mance metrics, with an AP of 95.7% and an AR of 98.9%. This remarkable outcome

not only substantiates the superior e�cacy of the DEP approach in detecting marginal

bone levels but also signifies a notable advancement over conventional and alternative

pretraining methods. An example of the predicted results are shown in Fig. 6.4.

These findings illuminate the pivotal role of specialized pretraining strategies, such

as DEP, in pushing the boundaries of model performance for specific dental radio-

graphic analysis. The notable success of DEP in both dental implant detection and

marginal bone level identification underscores the strategy’s potential to significantly
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Table 6.3.
Impact of mask ratios and pretraining epochs on dental implant detection.

Mask Ratio pretraining Epochs AP box

65% 100 92.5

55% 100 93.2

55% 800 91.6

45% 100 94.0

35% 100 94.4

25% 100 94.9

15% 100 94.3

elevate the precision of radiographic interpretations in dental diagnostics, o↵ering

promising prospects for future research and clinical applications.

6.5.3 Parameter setting

In Table 7.4, we conduct experiments focusing on dental implant detection with

varying pretraining epochs and mask ratios for our DEP method. Firstly, we observe

that extending the training duration does not lead to improved performance for DEP.

Secondly, in contrast to the high mask ratio used in natural images [25], we find

distinct preferences for mask ratios in downstream tasks related to dental implant

detection. Notably, both tasks consistently exhibit enhancements as the mask ratio

decreases from 65% to 25%. This improvement may be attributed to the fact that

relevant features on dental X-rays tend to be smaller in size.
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6.6 Conclusions

This study demonstrates the significant improvement in detection accuracy for

dental X-ray analysis provided by the innovative DEP pretraining method. Remark-

ably, DEP’s self-supervised pretraining method outperforms existing techniques, es-

pecially in scenarios involving limited datasets, a challenge not adequately addressed

before. Our research highlights the importance of tailoring specific parameters, such

as the mask ratio and the duration of pretraining epochs, when implementing masked

autoencoders for pretraining in dental radiography. These findings underscore the

potential of DEP to further enhance the already impressive capabilities of Vision

Transformers (ViTs) in dental X-ray analysis. Looking ahead, our next goal is to

explore the impact of DEP pretraining on prognostic and outcome prediction tasks

within dentistry.



97

CHAPTER 7

DENTAL CARIES DETECTION

7.1 Introduction

Dental caries, also known as tooth decay or cavities (illustrated in red circles in

Figure 7.1), is a prevalent oral health issue with significant global health implications.

According to the World Health Organization, nearly 60-90% of school children and

almost 100% of adults worldwide have dental cavities, making it one of the most

common non-communicable diseases. Early detection and intervention are crucial to

preventing the progression of caries, which can lead to more severe dental compli-

cations such as pulpitis, abscesses, and tooth loss if left untreated. The economic

burden associated with dental caries is substantial, impacting healthcare systems and

individuals due to the costs of treatment and loss of productivity [151,152].

Traditional methods of caries detection, such as visual-tactile examinations and

radiography, have limitations in sensitivity and specificity, often resulting in delayed

diagnosis and treatment [153–157]. Visual-tactile examinations rely heavily on the

practitioner’s experience and can be subjective, leading to variability in diagnosis.

Radiographic methods, while more reliable, still face challenges such as overlapping

structures in the images that can obscure caries, and the radiation exposure risk

associated with frequent use. These conventional approaches are prone to human error

and often require follow-up visits, increasing patient inconvenience and healthcare

costs. These limitations highlight the need for more reliable and automated diagnostic

tools that can provide consistent and accurate results, minimizing human error and

ensuring timely treatment.

In recent years, the advent of computer vision and machine learning technologies

has opened new avenues for enhancing diagnostic accuracy in various medical fields,

including dentistry. Automated dental caries detection systems, leveraging these tech-
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Figure 7.1. Illustration of dental X-ray images, displaying the various
forms and appearances of dental caries.

nologies, have the potential to provide timely, accurate, and non-invasive assessments,

thus improving patient outcomes and reducing healthcare costs. These advancements

promise not only to streamline the diagnostic process but also to mitigate the sub-

jectivity inherent in traditional diagnostic methods. Machine learning algorithms,

particularly deep learning, have shown remarkable performance in image analysis

tasks, enabling the development of systems that can analyze dental radiographs with

high precision and consistency. These systems can assist dentists by highlighting po-

tential carious lesions, thereby serving as a second opinion and reducing diagnostic

errors.

Recent progress in self-supervised learning has underscored the potential of masked

image modeling (MIM) [22, 24, 25, 122, 123] as an e↵ective pre-training strategy for

Vision Transformers (ViT) [37] and hierarchical Vision Transformers using shifted

windows (Swin) [21, 39, 52, 124]. MIM, which involves masking image patches and

reconstructing them, enables the network to infer masked regions by leveraging con-

textual information. This capability is particularly relevant for the analysis of dental

radiographs, where integrating contextual information can significantly improve diag-

nostic accuracy. Given the subtle and complex nature of dental caries, an enhanced

ability to discern these details through sophisticated image analysis is crucial. Self-
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supervised learning methods do not require labeled data for pre-training, which is

advantageous in medical fields where acquiring large labeled datasets can be chal-

lenging and expensive.

In this study, we propose a novel approach to dental caries detection using self-

supervised learning with Masked Deep Embeddings of Patches (MDEP) for dental

radiographs. Our method builds upon the framework of the Masked Autoencoder

(MAE) [25] but focuses on enhancing representation learning by predicting deep em-

beddings of masked patches instead of reconstructing them. This approach leverages

the Vision Transformer (ViT) architecture [37], where the encoder processes visi-

ble patches, and the MDEP loss function evaluates the predicted embeddings of the

masked patches. To further validate our approach, we experiment with an additional

dataset called CariesXrays [158], demonstrating the robustness and adaptability of

our method across di↵erent datasets. By utilizing the power of deep learning, our

technique extracts and utilizes intricate details from radiographic images, thereby

improving the overall diagnostic process for dental caries detection.

Self-pre-training is especially beneficial when domain-specific pre-training data

is scarce, as it mitigates domain discrepancies between pre-training and fine-tuning

stages by utilizing the same dataset. We apply our MDEP pre-training method on

the same dataset used for the downstream task of dental caries detection, ensuring

consistency and relevancy in the learned representations. This approach addresses a

significant challenge in medical image analysis, where labeled data is often limited

and expensive to obtain. Furthermore, the MDEP method leverages the advantages

of both self-supervised learning and the powerful ViT architecture to create a robust

model capable of high performance even with limited data. Our main contributions

are threefold:

• We introduce a self-supervised learning framework with masked deep embed-

dings, specifically tailored for dental radiograph analysis. This framework re-

places the traditional MAE reconstruction of masked patches with the recon-

struction of patch embeddings.
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• We demonstrate that MDEP self-pre-training significantly improves perfor-

mance in dental caries detection, outperforming other state-of-the-art methods.

• We conduct an extensive evaluation of our method on two di↵erent types of

radiographs, periapical [159] and panoramic (CariesXrays dataset [158]), show-

casing its robustness and generalizability across di↵erent patient populations

and imaging conditions.

The proposed method addresses the challenge of limited data availability in dental

radiographs and presents a robust solution for automated dental caries detection,

potentially transforming diagnostic practices and improving patient outcomes. By

advancing the capabilities of dental diagnostics through cutting-edge machine learning

techniques, this research contributes to the broader goal of enhancing healthcare

delivery and patient care in the field of dentistry. The implications of this study

extend beyond dental caries detection, suggesting that self-supervised learning can

be e↵ectively applied to other areas of medical imaging where data scarcity is a

significant challenge.

By leveraging the strengths of modern machine learning techniques and address-

ing the limitations of traditional diagnostic methods, this research o↵ers a pathway

toward more accurate and e�cient dental care. The integration of automated systems

in dental diagnostics not only improves the accuracy of caries detection but also has

the potential to revolutionize the field of dentistry by enabling early intervention,

personalized treatment plans, and ultimately better patient outcomes.

7.2 Related Work

7.2.1 Dental X-rays

Recent advancements in artificial intelligence and deep learning have significantly

reduced the e↵ort and error rates in identifying dental caries [160]. Various ma-

chine learning methods have been integrated into clinical practices to enhance the

diagnosis of dental caries [161]. Techniques for localizing dental caries employ image



101

Figure 7.2. Dental Caries Detection Pipeline with MDEP Self Pre-
training. The first step in this pipeline involves splitting the input into
non-overlapping patches, which are then embedded using a multi-layer
perceptron (MLP). During the pre-training phase, random masking is
applied to the patch embeddings, with only the visible embeddings pro-
cessed by the transformer. The masked embeddings are combined with
the encoded embeddings and sent to the decoder. The decoder’s task is
to predict the embeddings of the masked patches. The similarity between
the predicted and actual masked patch embeddings is evaluated using the
L1 loss. After pre-training, the decoder is discarded, and the encoder
serves as the backbone in the Mask R-CNN with FPN for detection.

processing, classifiers, and neural networks to detect a↵ected dental regions [13,162].

Additionally, several tools have been developed for dental caries localization. This

section reviews the approaches and tools used in dental caries localization and dis-

cusses state-of-the-art detection and treatment techniques within a clinical context.

Di↵erent types of images are used in clinical settings to diagnose carious regions,

including panoramic X-rays, periapical X-rays, bitewing X-rays, and ultrasound [163].

Each imaging modality has its own set of challenges and advantages in dental caries

detection.

Panoramic X-ray images provide a comprehensive view of the entire dentition and

surrounding structures but can be challenging to interpret due to the inclusion of
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surrounding areas such as the chin, spine, and jaws [113]. This can complicate the

localization of dental cavities, often requiring multiple images to achieve accurate

results [164]. The complexity of these images can lead to less satisfactory results in

detecting dental cavities and increase the risk of misdiagnosis, potentially resulting

in improper treatment [165].

Periapical X-rays, on the other hand, o↵er detailed views of specific teeth and

their surrounding bone structures, demonstrating good accuracy in detecting carious

regions even with small datasets [166]. These images are particularly e↵ective for

identifying issues at the root level and are less prone to the complexities seen in

panoramic X-rays.

Bitewing radiographs, although useful for detecting proximal and occlusal lesions,

have shown lower sensitivity for identifying non-cavitated lesions [167]. Ultrasound

imaging for cavity localization via deep learning also presents challenges, requiring

extensive expertise for accurate interpretation [168].

In our research, we tested our model using both periapical and panoramic X-rays

to leverage the strengths of each modality. Periapical X-rays provided high-resolution,

localized views that facilitated precise caries detection, while panoramic X-rays o↵ered

a broad overview of the dental structures, enabling comprehensive analysis despite

the challenges in localizing specific lesions. This dual approach allowed us to validate

the robustness and versatility of our model in di↵erent clinical scenarios, ultimately

enhancing its diagnostic accuracy and reliability.

7.2.2 Self-supervised Learning

Masked language modeling and its autoregressive variants, such as BERT [169]

and GPT [170–172], have proven to be exceptionally e↵ective for pre-training in

natural language processing (NLP). These techniques involve withholding a segment

of the input sequence and training models to predict the missing parts. It has been

demonstrated that these methods scale e�ciently [172], and extensive evidence shows



103

that these pre-trained representations generalize e↵ectively across various downstream

tasks.

Autoencoding is a traditional approach for learning representations, involving an

encoder that maps an input to a latent representation and a decoder that reconstructs

the input. Examples of autoencoders include PCA and k-means [173]. Denoising au-

toencoders (DAE) [174] are a subclass of autoencoders that introduce noise to the

input signal and train the model to reconstruct the original, uncorrupted signal. Sev-

eral methods can be considered generalized DAEs under di↵erent corruption strate-

gies, such as masking pixels [175–177] or removing color channels [178]. Our Masked

Deep Embedding of Patches (MDEP) is a type of denoising autoencoder, di↵ering

from traditional DAEs in several aspects.

Masked image encoding methods focus on learning representations from images

corrupted by masking. The foundational work of Vincent et al. [175] introduces

masking as a type of noise in DAEs. Context Encoder [176] utilizes convolutional

networks to inpaint large missing regions. Inspired by the success in NLP, recent

methods [24, 37, 177] employ Transformers [77]. For instance, iGPT [177] operates

on pixel sequences and predicts unknown pixels, while the ViT paper [37] investi-

gates masked patch prediction for self-supervised learning. Recently, BEiT [24] has

suggested predicting discrete tokens [179,180].

Self-supervised learning methods have garnered considerable interest in computer

vision, often centered on various pretext tasks for pre-training [178, 181–185]. Re-

cently, contrastive learning [186, 187] has gained popularity, exemplified by methods

such as [188–191], which model image similarity and dissimilarity (or solely similar-

ity [192, 193]) between multiple views. Contrastive and related methods heavily rely

on data augmentation [191–193]. In contrast, autoencoding follows a conceptually

distinct path and exhibits di↵erent behaviors, as we will demonstrate.
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7.2.3 Object Detection

Previous research on object detection has significantly advanced computer vision.

The introduction of R-CNN [194] was a groundbreaking milestone, revolutionizing

object detection by proposing the concept of region proposals, which led to accurate

localization and classification of objects within images. Inspired by R-CNN’s success,

subsequent studies aimed to enhance the speed and e�ciency of object detection

algorithms, resulting in developments like Fast R-CNN [195], Faster R-CNN [61],

and SSD [196]. Additionally, the inclusion of two-stage detectors, such as Mask R-

CNN [131] and Cascade R-CNN [197], has further amplified object detection systems’

capabilities. Furthermore, the YOLO family [150,198,199] has made substantial con-

tributions to computer vision by providing real-time and e�cient object detection

solutions. DERT [200] employs a transformer encoder-decoder architecture, captur-

ing long-range dependencies and modeling global contextual information in object

detection. Despite advancements in conventional object detection algorithms, dental

caries detection remains challenging due to the complex and multifaceted nature of

caries presentations.

The CariesXrays dataset, introduced by Chen et al. [158], represents a significant

advancement in dental caries detection. This hospital-scale panoramic dental X-ray

benchmark comprises 6,000 panoramic dental X-ray images with 13,783 instances of

dental caries meticulously annotated by dental professionals. The authors proposed

a novel Feature Pyramid Contrastive Learning (FPCL) framework that incorporates

a dual-directional feature pyramid network (D2D-FPN) and a proposals-prototype

contrastive regularization learning (P2P-CRL) mechanism to enhance the generaliza-

tion ability and detection accuracy of dental caries. Their extensive experiments on

the CariesXrays dataset demonstrated the potential of FPCL to make a significant

social impact on caries diagnosis by providing a robust and e�cient diagnostic tool

for dental practitioners.
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7.3 Methods

7.3.1 Masked Autoencoders

Encoding. As depicted in Figure 7.2 (Left), the input image is divided into non-

overlapping patches. These patches are then randomly separated into two groups:

visible and masked. The encoder of the Masked Autoencoder (MAE) processes only

the visible patches, incorporating positional embeddings to retain spatial information.

This step ensures that the model learns the spatial dependencies between di↵erent

parts of the image, which is essential for understanding the context of the patches

during the pre-training phase.

Masked Sequence Generation. Patch embeddings E are treated as a set.

Following the MAE method, a subset of patches is randomly masked, denoted as

Em, while unmasked embeddings are denoted as Eum. The masked embeddings Em

are replaced with a shared learnable mask embedding Emask. Corrupted embeddings

Ec are created by combining Eum with the sum of Emask and positional embeddings

p, which are then inputted into the encoder. This approach allows the model to

learn robust feature representations by predicting the embeddings of masked patches

based on their surrounding context, which is crucial for capturing the intricate details

necessary for accurate dental caries detection.

Decoding. The MAE decoder is not involved in this process since our focus is

on obtaining deep embeddings rather than reconstructing the original patches. The

embeddings generated by the encoder are directly used for further tasks, ensuring that

the learned representations capture the essential features of the dental radiographs.

Loss Function. Instead of using the mean squared error (MSE) in pixel space

as in traditional MAEs, we propose computing the L1 loss between the original and

predicted embeddings of masked patches. Our experimental results demonstrate that

this approach leads to improved performance. This is consistent with findings in [130],

which suggest that predicting deep embeddings of patches rather than pixel values

results in better generalization and performance enhancements. The L1 loss is more
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robust to outliers and can lead to sharper and more accurate embeddings, which is

particularly beneficial for medical image analysis where fine details are crucial.

7.3.2 Architectures for Downstream Tasks

Upon completing self-pre-training using MAE, we incorporate a task-specific head

for the subsequent task, which in this case is the detection of dental caries. The inte-

gration of a task-specific head allows the model to fine-tune its learned representations

for the specific requirements of dental caries detection, ensuring optimal performance.

The pre-trained Vision Transformer (ViT) weights are employed to initialize the

encoder for the detection task. The features extracted by the ViT backbone are

then passed to both the neck (Feature Pyramid Network, FPN) and the detection

head (Mask R-CNN) to facilitate bounding box regression and classification. We

choose the Mask R-CNN framework [131] due to its widespread adoption in object

detection research. The FPN helps in building high-level semantic feature maps

at di↵erent scales, which improves the model’s ability to detect objects of various

sizes. The Mask R-CNN adds an additional mask output, which provides pixel-level

segmentation information, making it a suitable choice for precise localization tasks

such as dental caries detection.

The entire network undergoes fine-tuning to perform the detection task. During

this phase, the pre-trained weights serve as a strong initialization, allowing the net-

work to converge faster and perform better with limited training data. Fine-tuning

involves adjusting the weights of the entire network, including the pre-trained encoder

and the newly added layers, to optimize for the specific task of dental caries detection.

This process ensures the model can accurately identify and localize carious lesions in

dental radiographs, leveraging the robust features learned during the self-supervised

pre-training phase.
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7.3.3 Training and Data Augmentation

E↵ective data augmentation techniques are employed to increase the diversity of

the training dataset and improve the model’s robustness. These techniques include

random rotations, flipping, and adding noise to the images. Data augmentation helps

in mitigating overfitting and enhances the model’s generalizability to new, unseen

data. Additionally, all images are normalized to a standard scale and resolution to

ensure consistency during training.

The training process involves a two-stage approach. First, the self-supervised pre-

training phase using the proposed MDEP framework is conducted. This phase focuses

on learning meaningful representations from the unlabelled dental radiographs. Sec-

ond, the fine-tuning phase adapts these learned representations to the specific task of

dental caries detection using labeled data.

7.4 Experimental Evaluation

7.4.1 Data Sets and Evaluation Metrics

We use two datasets in this study. The first dataset [159] comprises dental peri-

apical X-rays with annotations for dental caries detection. This dataset contains 936

images, each sized at 748×512 pixels. We partitioned the dataset into five subsets

for cross-validation purposes. One subset, comprising 188 images, was used as the

test dataset, while the remaining four subsets, each containing 187 images, formed

the training and validation datasets. This process was iterated five times.

To further validate the robustness and generalizability of the proposed method, we

conducted additional experiments using the CariesXrays dataset [158]. This dataset

consists of 6,000 annotated panoramic radiographs, each sized at 1333×800 pixels.

Similar to the previous dataset, we partitioned the CariesXrays dataset into five

subsets for cross-validation. One subset, comprising 1,200 images, was used as the

test dataset, while the remaining four subsets, each containing 1,200 images, formed

the training and validation datasets.
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Initialization Backbone Pre-training Data P R AP AP@50 AP@75

M-RCNN [159] ResNet-50 IN-1K w/ Labels 95.8 96.2 - - -

Random ViT-B None 96.9 96.8 95.1 95.9 94.4

Supervised ViT-B IN-1K w/ Labels 97.3 97.3 96.2 96.9 95.7

MAE ViT-B IN-1K 97.9 97.9 96.7 97.5 96.2

MDEP (ours) ViT-B IN-1K 98.1 99.0 97.3 98.1 97.1

Table 7.1.
Results of dental caries detection on periapical X-rays dataset [159] in
terms of precision (P), recall (R), average precision (AP), and average
precision at IoU thresholds of 50% (AP@50) and 75% (AP@75).

The evaluation metrics for object detection models include precision (P), recall

(R), and Average Precision (AP). Precision is the ratio of true positives to total pre-

dicted positives, while recall is the ratio of true positives to all actual positives. Av-

erage Precision (AP) summarizes the precision-recall curve, with AP@50 and AP@75

measured at IoU thresholds of 0.50 and 0.75, respectively.

7.4.2 Quantitative Results

The proposed approach, Masked Deep Embeddings of Patches (MDEP), demon-

strates superior performance across multiple metrics on two dental caries detection

datasets: the periapical X-rays dataset and the CariesXrays dataset.

For the periapical X-rays dataset (Table 7.1), our method outperforms the Mask

R-CNN baseline and other ViT-B based models. Specifically, MDEP achieves a pre-

cision (P) of 98.1%, a recall (R) of 99.0%, and an average precision (AP) of 97.3%.

These results indicate a significant improvement in both precision and recall, with

the highest AP values at di↵erent IoU thresholds (AP@50 and AP@75) compared

to other methods. The results of the M-RCNN method are taken from [159]. It is
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Initialization Backbone Pre-training Data AP AP@50 AP@75

FPCL [158] ResNet-50 IN-1K 48.2 84.1 50.6

Random ViT-B None 46.3 82.4 49.1

Supervised ViT-B IN-1K w/ Labels 49.8 85.3 52.2

MAE ViT-B IN-1K 51.6 86.7 54.3

MDEP (ours) ViT-B IN-1K 54.4 87.6 60.9

Table 7.2.
Results of dental caries detection on CariesXrays dataset [158] in terms
of Average Precision (AP) metrics.

worth noting that [159] did not report AP results, which is why they are not in-

cluded in Table 7.1. The improvement can be attributed to the e↵ective utilization

of masked autoencoders for pre-training, which enhances the model’s ability to cap-

ture fine-grained features in dental X-ray images, thus leading to better detection

performance.

On the CariesXrays dataset (Table 7.2), our MDEP method also sets new bench-

marks. With an AP of 54.4%, AP@50 of 87.6%, and AP@75 of 60.9%, MDEP sur-

passes previous state-of-the-art methods, including FPCL, which achieved an AP of

48.2%. The substantial margin by which MDEP outperforms existing methods high-

lights the robustness and generalization capability of our approach. The masked deep

embeddings allow the model to learn more generalized and transferable features. In

particular, the significant improvement over MAE shows the importance of predicting

deep embeddings instead of actual pixel values of image patches.

When comparing our method with other state-of-the-art techniques on the CariesXrays

dataset (Table 7.3), MDEP maintains a consistent lead. Traditional methods like

SSD [196] and RetinaNet [31] show considerably lower performance, while even ad-

vanced models like YOLOv8 [149] and Conditional-DETR [203] fall short of MDEP’s

results. The highest scores achieved by MDEP can be linked to its transformer back-
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Initialization Backbone AP AP@50 AP@75

SSD [196] VGG 12.7 36.2 5.90

RetinaNet [31] ResNet-50 13.0 30.5 10.2

DETR [200] Transformer 25.7 64.5 13.7

E�cientDet [201] E�cientNet 34.1 52.5 36.0

FCOS [202] ResNet-50 35.9 75.6 29.5

YOLOv7 [199] CSPDarkNet 39.3 79.8 34.3

Faster R-CNN [61] ResNet-50 39.9 78.0 37.8

YOLOv8 [149] CSPDarkNet 40.3 80.7 35.5

YOLOx [150] CSPDarkNet 40.5 81.3 36.1

Conditional-DETR [203] Transformer 42.2 80.6 40.4

FPCL [158] ResNet-50 48.2 84.1 50.6

MDEP (ours) Transformer 54.4 87.6 60.9

Table 7.3.
Comparison with state-of-the-art on CariesXrays Dataset [158].
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bone, which provides a more e↵ective architecture for handling the complex patterns

present in dental images. The use of self-supervised learning further enhances the

model’s ability to discern subtle caries features, resulting in higher detection accu-

racy. The results of other methods in Table 7.3 are taken from [158].

The significant performance gains achieved by MDEP across various metrics un-

derscore the e↵ectiveness of our approach in dental caries detection. The superior

results demonstrate the advantage of leveraging masked autoencoders and transform-

ers in medical image analysis, paving the way for more accurate and reliable diagnostic

tools in dental care.

7.4.3 Qualitative Results

Figures 7.3 and 7.4 compare dental caries detection using the state-of-the-art

methods and our proposed Masked Deep Embeddings of Patches (MDEP) on two

datasets: the periapical radiographs dataset [159] and the CariesXrays dataset [158].

7.4.4 Mask Ratio Analysis

The impact of di↵erent mask ratios on the precision (P ) of dental caries detection

was evaluated, as presented in Table 7.4. Various mask ratios were tested, each

pre-trained for 100 epochs, except for one configuration which was pre-trained for

800 epochs. The results highlight the relationship between mask ratio, pre-training

epochs, and detection precision.

The results show a clear trend in precision performance with varying mask ratios:

At higher mask ratios, such as 65% and 55%, the precision values are 95.5%

and 95.8%, respectively. The model pre-trained for 800 epochs at a 55% mask ratio

yielded a slightly lower precision of 95.6%. This suggests that increasing the number

of pre-training epochs does not significantly enhance performance at higher mask

ratios.
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Mask Ratio Pre-training Epochs P

65% 100 95.5

55% 100 95.8

55% 800 95.6

45% 100 96.1

35% 100 97.4

25% 100 98.1

15% 100 98.0

Table 7.4.
Impact of Mask Ratios on dental caries detection.
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Figure 7.3. Comparison of dental caries detection on periapical radio-
graphs dataset [159]. Bounding boxes (BB) are used to highlight detected
caries. Red BBs indicate detected cavities with confidence scores, while
green BBs indicate the ground truth cavities.

Figure 7.4. Comparison of dental caries detection on the CariesXrays
dataset [158].
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Reducing the mask ratio to 45% resulted in a noticeable improvement, with a

precision of 96.1%. A further decrease to 35% produced a significant jump in precision

to 97.4%.

The highest precision was achieved at a 25% mask ratio, with a precision of 98.1%,

marking the peak performance among all tested configurations. Interestingly, a slight

increase in mask ratio to 15% resulted in a marginally lower precision of 98.0%.

The findings indicate that lower mask ratios generally lead to higher precision

in dental caries detection. The optimal mask ratio identified in this study is 25%,

which produced the highest precision score. This suggests that a moderate amount of

masking allows the model to learn more e↵ectively from the available data, enhancing

its detection capabilities.

Additionally, the results show that the number of pre-training epochs plays a less

significant role in improving precision when compared to the choice of mask ratio.

The model with 800 pre-training epochs at a 55% mask ratio did not perform better

than the models with fewer epochs but lower mask ratios.

These insights highlight the importance of selecting an appropriate mask ratio

to maximize the performance of dental caries detection models. Future work could

explore even finer granularity in mask ratios and the potential benefits of combining

di↵erent pre-training strategies to further enhance detection accuracy.

7.4.5 Implementation Details

Our experiments were conducted using the PyTorch framework [35] and trained

on Nvidia Tesla V100 GPUs. We used a batch size of 748 for [159] and 4,800 for [158],

corresponding to the total training samples. The AdamW optimizer [36] was employed

for all experiments.

Data Augmentation: We applied various augmentation techniques, including

noise addition up to 6% of pixels, horizontal and vertical flipping, and 90° rotation in

both clockwise and counterclockwise directions.
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MDEP Pre-training: The pre-training phase involved setting the base learning

rate to 1.5e-4, weight decay to 0.05, �1 to 0.9, and �2 to 0.95. We utilized a cosine

decay learning rate scheduler with a warm-up period of 10 epochs. A random Masked

Image Modeling approach with a patch size of 16x16 and a mask ratio ranging from

15% to 65% was employed. Additionally, we utilized a linear prediction head targeting

an image size of 400x300 for [159] and 800x600 for [158].

Task Fine-tuning: For downstream tasks, we employed single-scale training

with a starting learning rate of 0.0001 and weight decay set at 0.05.

The implementation details remained consistent with those used for the original

dataset [159]. The same data augmentation techniques, pre-training, and fine-tuning

procedures were applied to ensure a fair comparison between the two datasets.

7.5 Conclusion

In this study, we introduced the Masked Deep Embedding of Patches (MDEP) pre-

training approach, which significantly enhanced dental caries detection performance in

dental X-ray analysis. Our findings demonstrate the e�cacy of MDEP, particularly in

scenarios with limited training data, by leveraging self-supervised learning to achieve

superior results compared to traditional methods. Additionally, our experimentation

with two di↵erent imaging modalities, periapical and panoramic X-rays, confirmed

the robustness and adaptability of our method across di↵erent datasets and imaging

conditions. The consistent outperformance of MDEP underscores its potential in

practical applications where labeled data is scarce or expensive to obtain. Future

research will focus on extending the application of MDEP to other medical imaging

tasks, such as prognosis and outcome prediction, to further validate its e↵ectiveness

and broaden its impact in the field of dental diagnostics and beyond.
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